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Abstract The dynamical system with time varying stiffness subjected to multi excitation forces studied. The system
is written as two degree of freedom consists of the main system and absorber. The multiple time scale perturbation
method is applied to get the approximate solution up to the third approximation. The stability of the system at the
simultaneous primary resonance is investigated using both frequency response equations and phase-plane methods.
The effects of different parameters are studied numerically.
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1.Introduction

This problem made the vibration is the one of a-desired phenomenon in our life. One of the
most common methods of vibration control is theatgic absorber. It has the advantages of low
cost and simple operation at one modal frequencyhé domain of many mechanical vibration
systems the coupled non-linear vibration of sudtesys can be reduced to non-linear second order
differential equations which are solved analytigalhd numerically.

Nayfeh and Mook [1, 2] studied the nonlinear systemth linear natural frequencies which were
commensurate or nearly commensurate. Internal aesenprovides coupling and energy exchange
among the vibration modes. Jain [3] shows thetmwia of differential equations using Runge-
Kutta fourth-order method. Asfar et. al. [4] stutlithe response of self excited two-degree-of-
freedom system to multi-frequency excitations. Quet. al. [5] studied the regulation of a two-
degree-of-freedom structure using internal resomambey introduce a controller taking the form
of a second-order system that is coupled to thatplgissa [6] investigated the non-linear
mechanical oscillator subjected to parametric atidreal excitation forces. Queini and Nayfeh [7]
proposed a non-linear control law to suppress theations of the first mode of a cantilever beam
when subjected to a principal parametric excitatibhe method of multiple scales is applied
throughout. The analysis revealed that cubic veloteedback reduced the amplitude of the
response.

Eissa [8] reported that when using a dynamic alespits damping coefficient should be kept
minimal for better system performance. Pai and I3¢B] designed a refined non-linear vibration
absorber was using a quadratic velocity couplimgtéen the controller and adding a negative
velocity feedback to the system. Olkan [10] stddlee basic absorption action of auto-parametric
system under sinusoidal excitation numerically arpgerimentally. Ji and Hansen [11] studied an
experimental investigation of the non-linear resgwof clamped beam subjected to a harmonic
axial load. Ashour and Nayfeh [12] also studied-tinear adaptive control of flexible structures
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using the saturation phenomenon. This phenomenm wiitized to suppress high-amplitude
bending and torsional vibration modes of rectangoémtilever plates. Sayam et. al. [13] studied
numerical simulations of the response of a unifazamtilever beam subjected to a base excitation.
Song et. al. [14] presented a study of the vibratesponse of the spring-mass-damper system with
a parametrically excited pendulum hinged to thesmasng the harmonic balance method. The
results were verified by numerical calculation. eThird order approximation was used to analyze
the response characteristic and the stability ef shistem. Attilio [15] applied an asymptotic
perturbation method based on Fourier expansioniararescaling. Eissa and Amer [16] simulated
the vibration of a second order system to the finsde of a cantilever beam subjected to both
external and parametric excitation at primary amalisarmonic resonance. They reported that the
vibration of the system can be controlled by addinteedback cubic velocity non-linear term.
They reported also that there is a threshold vadughe linear damping coefficient which can be
applied to control the system vibration. Eissaakt[17, 18] studied the passive and active control
in some non-linear differential equations descghiine vibration of the aircraft wing subjected to:
multi-excitation force, multi-parametric excitat®@are considered. The same system is considered
with 1:2 internal resonances, 1:3 internal resoaara 1:2:4 internal resonance active controllers.

Amer [19] investigated the coupling of two non-Bmeoscillators of the main system and absorber
representing ultrasonic cutting process. The mleltipne scale perturbation technique is applied
throughout. A threshold value of linear damping basn obtained, where the system vibration can
be reduced dramatically. Amer and EL-Sayed [20Pist the non-linear dynamics of a two-
degree-of freedom vibration system with non-line@mping and non-linear spring stiffness
analytically using the method of multiple scalegtpdation technique up to the third order
approximation. The system consists of the main am¢ an absorber. Amer and El-emam [21]
investigated the nonlinear dynamical system withetivarying stiffness subjected to multi-
excitation forces without control, and studied #ffects of different parameters. Eissa and et. al.
[22, 23] studied the vibration reduction of nonanedynamical system described the nonlinear
spring pendulum under multi parametric and multeexal excitations. El- Gohary and El-Ganini
[24, 25] applied active control for suppressing vit®ation of a non-linear plant when subjected to
external and parametric excitation in the preserfide2 and 1:3 internal resonance.

In this paper, the coupled non-linear differenéigliations of the non-linear dynamical two-degree-
of-freedom vibrating system including quadratic adbic non-linearties are studied. The system
consists of the main system and the absorber. ydtera subject to multi external excitation forces

is considered with simultaneous primary resonarase @assive control absorber. The method of
multiple scales perturbation technique is applie@dughout to determine the solution up to third

order approximations. The different resonance caseseported and studied numerically. Stability

of the system is studied applying both frequenspoase functions and phase-plane methods.

2. Mathematical Modeling

Using a linear tuned mass absorber (TMA) connettddtie system, equations of motions can be
written in the following form:

W + 2670\, + WU, +eaU 2 +€(B,+B ,cosSt Y 3+l (%, &) +eyU,-U,)

= ei F, cosQ;t (1a)
W+ 267,00, (%) + o U U )=0 (1b)
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where U donates the response of the second-order comirolleepresents one of the model
co-ordinates of a structureyand o, are the natural frequencies, {,and {, are the damping

coefficients,a, B, and p, are non-linear coefficients of the winggis the linear coefficiente,is

a small perturbation parametét the forcing amplitudes an@, are the excitation frequencies,
j=1, 2, 3, 4for simplicity.

2.1. Perturbation analysis.

The method of multiple time scale is applied tcedeiine a first order uniform expansion for
the solution of equations (1a) and (1b) as in tmenf

U,(t,e)= u (T, T)+eu (T, T)+ . , = 1,2 @)

where egis a small perturbation parametef, =t,T,=st are fast and slow time scales
respectively, and the time derivatives became

2
((jll_t:DOJ“c,DlJ“c;D2 ,%:D02+23D0D1+52(Df+ 2D.D,) (3)

Substituting equations (2) and (3) in to equati@ey and (1b) and equating the coefficients
of the same power & in both sides, we obtain

(DZ+wu,, =0 (4a)
(Dy + YUy, = Wiy, 4bj

(D02 +w2)U21:'2Donm -ZZQ)DOUZ) _auzz) '(Bl+B 2(-\'OSSt mga < 1Dou a -DOU d :

N
-Y(Uy, -Uy,) + D F; cosQ T, (5a)

=

(D¢ +6)uyy = il 51-2D,D 4 ¢ -2 Dy 4 -Dli ) (5)
(D2 + ), =-2D,D 1, -D i, - ZwD,U ,+ Dy ¢)- 21U i ,-36 #B LOSt 24

-((DUp +D 5 -Dgui y-D b)) - (U U ) (6a)

(D + @)Uy, = 00U 5,~2D,D Y ,-D 4 -2 00 (DU 4+ DY ,-Dou 53D Uy) (6b)
(Dg +00")Upy =-2D, D 5,-D U - LDl ,,+ DY ,) -0 (5 2 1 ,)-yl zu )

-3(B, +B, COSSt )0 uz+UZU,,) L, DU DY , DU, DY 4y (7a)

(D02 +w12)u13 = coiu 23~ 2DoD u 12'D ij 11 ZZ W £Dou 15*’ D U 1IDou 2§D U, ) (7b)

The general solution of equations (4a) and (4é)garen by
Ugo (T, T;) = A, (T,)e""" +cC (8a)
u, (T,.T,)=B, (T )™ +C, (T )" +cc (8b)
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where A, ,B,,C, are complex function iff, and cc are represents the complex conjugate of

the preceding terms. Substituting equations (8d) (8b) in to equations (5a) and (5b), and
eliminating the secular terms, then the generaitswl obtained as:

Uy (T, T) =K 9T +K £29T +K g%9T 4K g/ 60T 4 K gl 60T 4 K gl (87300
+K e 730 4 K giofo K % + K o0 + K p'%0 +K 27
+K ;+cC (9a)
u,(T,,T,)= Fpiwﬁo + erino + ngimo + FE@Q}TO + |:§i S+o)l, 4 ng S-ol, 4 | ei (S+30TT,
+Re O + P!l +F g% +F g% +F g% +F +oc (9b)

WhereK,andF, ( = 1,2,...,.1%are complex functions T, cc are complex conjugate.
Similarly, substituting from Egs. ( 8a), (8b), (3a)d(9b) in to Egs. (6a) and (6b) we get

uzz(ro ,Tl) - R?iuﬂ—o + R§2in0 + R?a wTl, + RﬁmwT" + R §5wT0 + R giuﬂ—o + R ?i @+, + R gi -0,
4
| (@ +20)T, | (@20, i, Q) +aT, (9, -0,
*Re R +Z(R(10+i R, ¢ tR s §
e

i (Q; +20)T, i (Q; —2w)T, isT, i (S+w)T, i (S-w)T, i (S+2w)T,
R £ 2T 4R o £ 0T 4R T +R 1O 4R /T 4R
_+_F\,5(;)i(s—2m)T0 +R bei (S+3No 4 R 7ei -2 L R gi S+o¥o 4 R gi S~ 4R Qi 6+ 57T,
3 3 3 3 3 4
i (S-5w)T, i (2S+w)T, i (2S-w])T, i (2S+07), i (Z3-37,
R T AR, T 4R, 4R *R.g
i (25+50)T, i (2S-50), i (@S ) T, i (@S ¥ 27T, i (@S ¥ 2T,
+R,e +R,e +R,g © +R g @ +Rg ©

4
i ((0,-S)-2w)T, i (0, +S)T, i (0,-S)T, i((Q;, +S)+2w)T,
+Rge +R.£ +RE O 43 (R gy, '
i=1

\ i (@, -S)+20]T, (@ -S)rorT, (@ +S T,
tReu £ *Rs £ tReo; &

i ((Q; -S)+20)T,
+R(57+j )e :

+ R(73+ i®

(@ -S)T, ) +R,,+CC (10a)

U,(T, T)=Le e +L g2 + L g% + L g% 4| g3¢To 4| g/l 4| g @reo

4
i (@ -@)T, i (@ +20)T, i (- 20)T, T, i(Q -)T,
L o | @l (2o g | @O 4R () el el
i=1
i (Q +2w)T, i (Q; -2w)T, )

i (Q; +@)T, isT, i (S+w)T,
+L(18+j)e : +L(22+j)e +L(2&j £ +|—3? +L3§

i (S-w)T, i (S+2w)T, i(S-2w)T, i (S+3w)T, i (S-3w),
+L33e +L34e +L3@ +L3@ +L3¢
+L ei(S+4u))To +L ei(S—4w)To +L cei(s+5wjro +L ?i (S -5w T, +L §i (S+w T,
38 39 4 4 4
i (2S-w)T, i (2S+3w)T, i (2S -3 7T, i (B+®7, i (B -%7,
+L,e +L,.e +L,e +L,g +L.,p

+L4Sei ((wy+S)+2w)T, + L 49ei (0 -S)+2w)T, + L 5(ﬁi (W +S)-2w )T, + L SPi (W, -S)-20 ),

4
i (w+S)T, i (w-S)T, i ((Q) +2w)+S)T, i ((Q) +2w)-S )T,
+Lg€ tlog ™ +ZI(L(53+]9 l +L(57*i? |
]:

i ((Q;-2w)+S)T, i (Q; -2w)S )T, i (Qj+S)T, iQ; S,
FLiowi £ *Liew £ +L )

oo L7 8
+L.,+cCC (10b)
78
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whereR_ andL, = 1,2,...,7¢ are complex functions T, cc are complex conjugates.
From the above analysis the general solutions,aindu, is given by

U2 =U20 +€u21+£2u 22+€3U 23+0(£4) (11a)
and U, =u, +éeu, +&u,+eu +o(e?) (11b)
From above-proposed solution, the reported res@eases are:

(i) Trivial resonanceQ; HwOw O0S =0

(i) Primary resonance®, = w, &, Uw,w, US
(iif) Sub-harmonic resonancesy Cnw,n = 2,3,4,5...,7,w0 3
(iv) Super-harmonic resonance®, Dw/2,Q, Daw/2,j =1,2,3,¢

(v) Combined resonances:

(1) @ O (twtS), 2w Ot tw: B), w0t £Q,+ ), (4)4)151% § @+S

(5) g+ w+(EQ, Q) )+ wll+ EQ,+ Q.+ )T+ (0.5 ),
(B)w:S Di%(iQ4in)

(vi) Simultaneous resonance: any ndmnation of the above resonance cases is
considered as simultaneous resonance

2.2. Stability of the system
We study the stability of the system at the siimdtaus primary resonance
Q, Ow,Q, Dw, andS J2w. Using the detuning parameterso, ando such that

Q Ow+eo, Q,=w +e0,andS OD2w+ o (12)
Eliminating the secular terms of equations (9a) @inj},leads to the solvability conditions for

the first order approximation and noting thfgtand B, are functions irT, only, we get
2

(=21 (DA, + CA,) ~3BATA, T EA, = YA, + e (0l + )
1
_35, AZA e' 57T +£FeiQJ° =0 (13)
2 o" o 2 1
. BO - i F QT —

-[2 (DB, +zzw180)+% (g +y)e' +2(a‘;f—_;2§)e o = (14)

Putting the polar form
1 i
A, 25310'1)3 i (15a)

and B, :%az(l'l)ei #a(T) (15b)

where a,,a,, i, andu, are real. Substituting Equations (15a) and (15bjpirequations (13),
(14), and separating real and imaginary parts wehgefollowing

, 1 3 . F, .
al:—aiZa)—Eilaﬁ%—1—6,Bzaism0+zljsm91 (16a)
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3
o =3P Vo _ ya,

3/891 sf—— §
8w 2w @l -F) 160 ©0

(16b)

r—_ a264‘]12{1 a)lFZ H
=-a,{.,w,— + siné. 16¢c
T 7 M T oo
, a, yw. w.F

a = 221 __ 4+ L 2 __cosf 16d
T w0 2wieD) .

Where 8=0T,-2u,,6,=

=ol,—-u,andg, =o,l, - u, For  steady-state

solutions,
a=a,=d =6 =6,=0, and equations (16a), (16b), (16c) and (16d) besome

200 2(;5 Z1@2) 16[”2"3‘1 sing (172)
—;—Z)cosﬁl —(Jl:;a) —3'2)1 _%ﬁ Zwé?f—wz )— 3'féf cosd (17b)
2a2(2{fFiQ§ siné, ={,w, 2(:)?2(10)2) (17¢)
2a2((;)lfFfQ§)COS€2 - T 2(w?aflw2) (17d)

Squaring equations (17a), (17b) and adding theltresa get the corresponding frequency
response equations (FRE)

2 2 2 2
o2 - (9,[:’1a1 P 3i/a)l 3y)J +[o? - a0 . 3y2a)10 - 3yo
a)(a)l—a)) w dw ww -w) w
2,,2 2 3 2y 9 2y
Y wy . @y’ _ 3fayw, | 9Fa;
2 2 2 2 2 2 2 23\2 2 2
‘64w 4a) W W -w) WEw-w) SWw-w) v
Zl C()l lewlz + 2,2 1 2 Zzlwf 9ﬁZZal4
4w} - w?)? 2(w?-w?) ¢ 4Z << @ - w?) 256a?
2
- R 982y (18)
da’w” 16w
Similarly, from equation (17c) and (17d), we get
2 2 4 2 3
022_ 2}/0)1 0.t yzwlz 2+Zzzw12+ 0)21(1 N2 Z2516()12
(wl_w) 4(0)1_0)) 4(6‘)1_6‘)) (a)l_a))
_dR
4a; (@ -Q3)°

(19)

Now to determine the stability of the steady —slismiear solution, letA, andB, Expressed in
cartizian form as following
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Ao(T) =§(p1—iqoei Ty (20a)

1 , io
and B,(T)) zz(pz_lqz)e s (20b)

where p, andg,, (n=1, 2) are real values. Inserting equations)2Md (20b) in to the linear

form of equations (14a) ,(14b) and separating @&edlimaginary parts, the following system
of equations is obtained as:

p,+Up,+70,=0 (21a)
q, +ud,—17,p,=0 (21b)
p,+U,p,+1n9,=0 (21c)
0, +U0,-/7,p,=0 (21d)

i, il

= (Cw+iq - - _ W4
where, 0, = ((w+> 4, 2(a1f—a)2))’ U, = ({ o+ 26— )

L R A

= Ot ot -a) 2w 26f —a?)
The stability of linear solution is investigatedrn the zero characteristics matrix
A+u, 1, 0 0
-n, Aty 0 0

=C
0 0 A+u, n,

0 0 -n, A+u,
The eigen values are given by

A+ A+, A% +r A +1,=0
Where, =20 +0,), =0TV DY
My = 200,V U,) - 20 75+ 0051 = 000507

According to the Routh-Hurwitz criterion, the limesolution is stable if the following are
satisfied
rn>0, rr,-r;>0, r3|(1r2—r3)—rfr4> 0, r>

3. Numerical Result

The main system response and the phase plane rfon-@esonant case at some practical
values of equations parameters are shown in Fig.tan be seen from figure that the
maximum steady state amplitude is about 0.007 (1d@Pothe maximum excitation

amplitudeF,). The phase-plane shows approximately fine lingitle denoting the system is
free of chaos.
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3.1 Effects of parameters

The effects of different parameters are studienh &g. 2. From this figure the amplitudes of
the system and the absorber are monotonic decgefasintions on the damping coefficiebt

and the nonlinear parametgras shown in Figs (2a, 2b) From Fig 2c the amplitatiéhe
absorber is monotonic decreasing function in thepiag coefficient,. The amplitudes of

the system and absorber have maximum value ataesercas€Q [1w as show in Fig 2d.
From Fig (2e, 2f) the amplitude are monotonic iasieg functions of the excitation

amplitudes-; .

3.2. Resonance cases

The system without absorber is studied numericalgimultaneous primary resonance case
(Q, Uw, SU 2w) as in Fig (3) it can be seen that the amplitumbegases to about 700% of

the basic case in Fig .1.

3.2. Effects of control

1. The system with absorber is solved numericallycat resonance case as shown in Fig. 4.
We find that the amplitude of the main system iewlb7% of the basic case in Fig.1
which mean that the control is active and redubecamplitude of the system.

2. Fig.5. illustrates the system with absorber at tlemultaneous primary
resonanc®, DwUw,S = 2w; it can be shown that the amplitude of the maisteay to

about 14% compared with the basic case shown inlFig
3. The effect of the control on the other resonansesare studied also as shown in
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o 0.01
3 =
= 0 3 0
£ 2
S 0.005 0.0

-0.01 _0.02
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0 100 200 . 300 400 500 801 _0.005 0 0.005 0.01
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Figurel. Non-resonant case (without absorber)
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Figure 3. The steady state amplitude without absorber atlsameous primary resonance

Q, Uw,S =2w
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Figure 4. Non-resonant case (with absorber)
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Q Uwlw,S =2w
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time time

(c) Coméxd resonancey = w+S
Figure 6. Some of selected resonance cases

3.4 Frequency response curves

0.04 0.1
0.02 0.05
o S
[H]
R T 0
B =
£
@ (.02 5 008
0.04 L L . 1 01 L L . s
0 100 200 300 400 500 0 100 200 300 400 500
time time
(a) Pripaesonancesy, [lw
0.01 0.02
0.005 0.01
o =
= 0 =
2 o
g-n_nus B
-0.01 0.0
0.015 - - : : 0.02 - - . .
0 100 200 300 400 500 0 100 200 300 400 500
time time
(b) Sub-harmonic resonances [12w
0.04
0.02}
o =
g g
5 =
£ £
= .02t ©
0.04 : : : : 0.1 : : : :
0 100 200 300 400 500 0 100 200 300 400 500

The frequency response equation (18) is a nonliakgbraic equation which can be solved
numerically ofa againsto, as shown in Fig.7. From this Figure we see tivatamplitude

of the main system is monotonic decreasing functbrthe non linear coefficieny and
damping effect(, and 3, as shown in Figs. 7a, 7b, 7c. But the amplituden@otonic
increasing function of natural frequenoy and time stiffness coefficienp, as seen in Figs.

7d and 7e. The frequency response equation (18)risenlinear algebraic equation of the
amplitude of the absorbex, againsto, which can be solved numerically as shown in Fig 8.

11
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It can be seen that the amplitudg is monotonic decreasing in coefficiént (,and Q, as
shown in Figs. (8a-8c), and monotonic increasintheexcitation amplitudé-; as shown in

Fig. 8d. If y, increasing the frequency response curves areedgtleft in Fig. 8e but ity, is

increasing the curves are shifted to right as shiomiig. 8f. The amplitude of the absorber is
monotonic increasing function of natural frequenoyas shown in Fig. 8g.

20 20 -
a
15] v 19 £1=0.005
o 10 o 10*
c ]
5 £1=05
15 10 5 0 5 10 15 U0 & 0 5 10 15
CT_I g
]
20
20 d

o 10 B2=5 | o 10%

e 32:103\ 1 5 wl=-4 0l=5
p2=15
15 10 5 0 5 10 15 15 10 5 0 5 10 15
CT_1 U.]
20
e
15}
1=5
“ m“\
5F ]
1=0

Figure7. Frequency response curvesayhgainsto,
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Figure 8. Frequency response cunafsa, againsto,
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4. Conclusions

The vibration control of a system with the time wag stiffness are studied, and the
analytical solution of the system is obtained usmgtiple scale method, also the stability of
the system is studied from this studied the follayvre concluded

1- The maximum steady state amplitude is about@@M% of the maximum excitation
amplitudel, ). The phase-plane shows approximately fine limie€ denoting the system

is free of chaos.
2-The steady state amplitudes of the system andaliserber are monotonic decreasing
functions on the damping coefficie§tand the nonlinear parameter

3- The amplitudes are monotonic increasing funetiointhe excitation amplitudE} .

4- The worst resonance case is the simultaneousapyiresonance cas€)( Llw, S0 2w)

which the steady state amplitude increases to alfii# of the basic case.

5-The amplitude of the main system is reduced mubb7% of the basic case which means
that the control is active.

6- The amplitude of the system with absorber at thenultaneous primary

resonanc®, DwUw,S = 2w is reduced to about 14% compared with the basie.ca
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