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Abstract

This paper presents responses of an edge circuaatilever beanresting on Winkler-Pasternak foundation under the
effect of an impact force. The beam is excited trargsverse triangular force impulse modulated dyaamonic motion.
The Kelvin—Voigt model for the material of the bearased. The cracked beam is modelled as an a$geiftwo sub-
beams connected through a massless elastic roadtispring. The considered problem is investigatethiw the
Bernoulli-Euler beam theory by using energy baseitef element method. The system of equations tiémis derived

by using Lagrange’s equations. The obtained systbfimear differential equations is reduced toiaelr algebraic
equation system and solved in the time domain iogWéewmark average acceleration method. In thdystthe effects
of the foundation stiffness on the characterisbtthe reflected waves and cracks are investigatetbtail.
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1. Introduction

Elastic wave propagation through the monitored pardf considerable interest in many
fields. The most striking example of the enginegrapplications is detection of damage
or/and material difference in the investigated rae@iy investigating the character of waves,
the type and position of damage or/and differentenia can be determined.

In the last decades, much more attention has been ¢p the elastic wave propagation of
beam structures. Teh and Huang [1] studied an ao@lymodel, based on the elasticity
equations, to investigate wave propagation in gdlyeorthotropic beams. A finite element

technique is developed for studying the flexural@varopagation in elastic Timoshenko and
Bernoulli-Euler beams by Yokoyama and Kishida [Blave propagation in a split beam is
analyzed by treating each section separately asaweguide and imposing appropriate
connectivities at their joints by Farris and Dofd¢ A direct mathematical approach method
is developed to study the problem of coupled lamtiital and flexural wave propagation in a
periodically supported infinite long beam by LeedaYieen [4]. A spectral super-element
model was used in Gopalakrishnan and Doyle [5] eal@htransverse crack in isotropic beam
and the dynamic stress intensity factor was obthexecurately under impact type loading.
Palacz and Krawczuk [6] investigated longitudinave propagation in a cracked rod by
using the spectral element method. The use of thee\propagation approach combined with
a genetic algorithm and the gradient techniquedfonage detection in beam-like structure is
investigated by Krawczuk [7]. Krawczuk et al. [8lidied a new finite spectral element of a
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cracked Timoshenko beam for modal and elastic vpawpagation analysis. Usuki and Maki
[9] formulated an equation of motion for a beamoading to higher-order beam theory using
Reissner’s principle. They derived the Laplace gfarm of the equation and investigated
wave-propagation behavior under transverse impgaatethod of crack detection in beam is
provided by wavelet analysis of transient flexusave by Tian et al. [10]. Kang et al. [11]
applied the wave approach based on the reflediiansmission and propagation of waves to
obtain the natural frequencies of finite curved rhga A spectral finite element with
embedded transverse crack is developed and imptethén simulate the diagnostic wave
scattering in composite beams with various formsrafisverse crack by Kumar et al. [12].
The wave propagation model investigated hereinasetl on the known fact that material
discontinuities affect the propagation of elast@ves in solids by Ostachowicz et al. [13]. A
spectral finite element model for analysis of fledeshear coupled wave propagation in
laminated and delaminated, multilayer compositarises presented by Palacz et al. [14,15].
A new spectral element is formulated to analyse ev@gvopagation in an anisotropic
inhomogeneous beam by Chakraborty and Gopalakmsfitd. Watanabe and Sugimoto [17]
studied flexural wave propagation in a spatiallyiqguic structure consisting of identical
beams of finite length. Vinod et al. [18] investiga a formulation of an approximate spectral
element for uniform and tapered rotating Euler—Betin beams. Sridhar et al. [19]
investigated the development of an effective nuoa¢riool in the form of pseudospectral
method for wave propagation analysis in anisotragmcl inhomogeneous structures. An
experimental method of detecting damage usingléxaifal wave propagation characteristics
is proposed by Park [20]. Chouvion et al. [21] s#dda systematic wave propagation
approach for the free vibration analysis of networknsisting of slender, straight and curved
beam elements and complete rings. Frikha et al. ifR&stigated physical analysis of the
effect of axial load on the propagation of elastaves in helical beams. Kocattirk et al.[23]
studied wave propagation of a piecewise homegenanslever beam under impact force.
Kocaturk and Akbas [24] investigated wave propagabtf a microbeam with the modified
couple stress theory. In a recent study, wave gapzn and localization in periodic and
randomly disordered periodic piezoelectric axiatdiag coupled beams are studied by Zhu
et al. [25].

In this study, wave propagation in a cantilevercuisr beamresting on Winkler-Pasternak
foundation under the effect of an impact forcetigleed. The considered problem is investigated
within the Bernoulli-Euler beam theory by using &ge based finite element method. The
Kelvin—Voigt model for the material of the beamused. The cracked beam is modelled as an
assembly of two sub-beams connected through a esasslastic rotational spring. The system of
equations of motion is derived by using Lagrangsjsiations. The obtained system of linear
differential equations is reduced to a linear atgebequation system and solved in the time
domain by using Newmark average acceleration methbd effects of the foundation stiffness
on the characteristics of the reflected waves aadks are investigated in detalil.

2. Theory and Formulations
Consider a beam of length, diameterD, containing an edge crack of depttocated at a

distanceL, from the left end, resting on Winkler-Pasternakrnfdation with spring constant
k,, andk,, as shown in Fig. 1. It is assumed that the craglerpendicular to beam surface
and always remains open. When the Pasternak faondapring constantk, = 0, the

foundation model reduces to Winkler type. The bearsubjected to an impact force in the
transverse direction as seen from Fig. 1.
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Fig. 1 A circular beam with an open edge crack resting\vnkler-Pasternak foundation and
cross-section.

2.1 Governing equations of intact beam

The beam is modeled within the Euler-Bernoulli betdw@ory. According to the coordinate
system(X,Y,Z) shown in Fig. 1, based on Euler-Bernoulli beam thethe axial and the
transverse displacement field are expressed as

_ v Tv(X, 1)
u(X,Y,t)= Y—ﬂx (1)
v(X,Y,t)=v(X,1) (2)
w(X,Y,t)=0 3)

Whereu,v andw arex,y andz components of the displacement veaprespectively, and
indicates time.
Because the transversal surfaces of the beameigfratress, then

Syy =0 (4)

x .ﬂx—z 5)(

According to Hooke’s law, constitutive equationgtug beam are as follows:
T7v(X, t))
X2 (6)

WhereE is the Young's modulus of the bea®,, and €,, are normal stresses and normal
strains in theX direction, respectively. The potential energyra beam is follows

s =Ee =E (- Y
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1 1" 1" v(x, )0
U==00S dAdX += Ok, (V(X,1))*dX += ¢ F+dx
The kinetic energy of the beam at any instast

15 . amv(X,nbd
T=— r =
200 8 %

0 A

Where ' is the mass density of the beam. The potentialggnef the external load can be

written as
L

x=0
The Kelvin—Voigt model for the material is used.eTtonstitutive relations for the Kelvin—
Voigt model between the stresses and strains become

s = E(e+ h® (10)
whereh is the damping ratios, as follows
C
h==
£ (11)

where c is the coefficient of damping of the beémthis case, the dissipation function of the

beam at any instanis
1! “&(X,t) D
=50 hEIES e a2

0

Lagrangian functional of the problem is given dtofes:
| =T - (U| +Ue) (13)

2.2 Solution method of the problem

The problem is solved by using Lagrange’s equatiand time integration method of
Newmark [26]. In order to apply the Lagrange’s dopres, the displacements of nodes of the
unknown functiongy (X,t) which is written for a two-node beam elemshbown in Fig. 2 are
defined as follows

{0} o =[v Uy gy X 1] (14)
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Fig. 2 A two-node beam element

The displacement field of the finite element is re@gsed in terms of nodal displacements as
follows

VEX )= 1,00 D+ ,()a (9+] )W (9+] LX) as)

where] 1,] 2, j 3 and ] 4 are interpolation functions and given as follows:

j(X)=1- 3(X/L)Y+ 2(X/LY

j 2(X)= LG (XTL)+ 2(X/ L) - (X/ L))
jo(X)=3(X/L)?- 2(X/L) (16)
ja(X)= L((X/L)%- (X/L)°)

wherelL. is the length of the beam element. After substituEquation (15) into Eqg. (13) and
then using the Lagrange’s equations gives theviatig equation;

11 d 11

- + = O, =
1-[ qk(e) dt ﬂ @ée) QDK k 1,2,3,... (17)
where
o -. IR
Dk ﬂ@ge) ! k_ 1! 2131" (18)

on is the generalized damping load which can be obtafrom the dissipation function by
e)
differentiatingR with respect to@%i :

The Lagrange’s equations yield the system of eqonatof motion for the finite element and
by use of usual assemblage procedure the followysgem of equations of motion for the
whole system can be obtained as follows

[KI{a(t} +[ O{ ah t Y di) = FX1) (19)

where
[M ] = c:)rA{J'(X)}T{J(X)}dX (20)
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[D]= ¢ hEI{j(X)}{j(X)}dX 21)
L

{F(} = o {i X)FTF(X,t)dX (22)
x=0

[K]= o {i'(X)}El {j(X)} TdX (23)

where,[K] is the stiffness matri¥D] is the damping matriYM] is mass matrix anfF(t)}

is the load vector. The motion equations whichiieig by Eq. (19), are solved in the time
domain by using Newmark average acceleration meNedmark [26].

2.3. Crack modeling
The cracked beam is modeled as an assembly ofubvdasams connected through a massless
elastic rotational spring shown in Fig. 3.

51_@—2

Fig. 3 Rotational spring model

The bending stiffness of the cracked sectkons related to the flexibility G by
Kp=— (24)

Cracked section’s flexibility G can be derived fr@roek’s approximation (Broek [27]):
1- n)K; _ M*dG
E 2 da

(25)

whereM is the bending moment at the cracked sectionis the stress intensity factor (SIF)
under mode | bending load and is a function ofdeemetry and the loading properties as
well. n indicates Poisson’s ratio. For circular crossisecthe stress intensity factor fét, a
single edge cracked beam specimen under pure liehtdoan be written as follow (Tada et
al. [28])

_ 4M h, .
K'_pR“? pa F(a/h,) (26)
Where
. pa
G pa 0923 0.194 1 sm% )f
F@/h )= ) 27)
pa ~2h, cos( pa)

oh,
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Wherea is crack of depth andl, is the height of the strip, is shown Fig. 4, aniten as

h, = 2VR?- X2 (28)

whereR is the radius of the cross section of the beam.
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Fig. 4 The geometry of the cracked circular cross section

After substituting Eq. (26) into Eq. (25) and byegrating Eq. (25), the flexibility coefficient
of the crack section G is obtained as

2\ b 3

_ - u ) NN 2 2 2 '
=———=—00Y(R"- x)F (a/h ) dydx
-b O

whereb and a, are the boundary of the strip and the local crdegth respectively, are
shown in Fig. 4, respectively, and written as

(29)

b= |R2- (R- af (30)
a, = JR?- x2- (R- a) (31)

The spring connects the adjacent left and rightnelds and couples the slopes of the two
beam elements at the crack location. In the massdpsing model, the compatibility
conditions enforce the continuities of the axiapiicement, transverse deflection, axial force
and bending moment across the crack at the crasgdetbn X =L,), that is,

v,=V, M =M, (32)

The discontinuity in the slope is as follows:
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dv, dv,

ax dX)_ ki (G- %) =M, (33)

Based on the massless spring model, the stiffnessxnof the cracked section as follows:

e1/G - 1/GU gk, -k
V=

[K e = 81/6 1/G f

TE
34
( (34)

(MDXDXD:!
~
~

The stiffness matrix of the cracked section istemnitaccording to the displacement vector:

A ch={a T (35)

Where g and g, are the angles of the cracked section. With addiregk model, the

equations of motion for the finite element and tse wf usual assemblage procedure the
following system of equations of motion for the wdeystem can be obtained as follows:

(K] +[K] ){ a(® 4D ab) IMI{ g = JF(1) (37)

The dimensionless quantities can be expressed as

- kL T
"T'Cw = _];I_’ k?’ o _EiT (38)

k.. Is the dimensionless Winkler parameter ape the dimensionless Pasternak parameter,

3. Numerical Results

In the numerical examples, the effects of the fatioth stiffness on the characteristics of the
reflected waves and cracks are presented. In theemcal study, the physical properties of the
pile are Young's modulug=70 GPa, Poisson’s ratie=0,3 and mass densjiy2700kg/m3 The
geometrical properties of the pile are lengtfBm and the diameteD= 2 cm. The problem is
analyzed within the framework of the Bernoulli-Euleam theory. Numerical calculations in
the time domain are made by using Newmark averageleration method. The system of linear
diferantial equations which are given by Equatid9)( is reduced to a linear algebraic system of
equations by using average acceleration methothdmumerical calculations, the number of
finite elements is taken as = 100. The beam is excited by a transverse triangatce impulse
(with a peak value 1 N) modulated by a harmonicfiom (Fig. 5) (Ostachowicz et al., [13]). In
this study, higher frequency excitation impulsesed for detection of the cracks.
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Fig. 5 The shape of the excitation impulse in the time diom

Figure 6 illustrates the effect of the dimensiosl&¥inkler parametek, on the transverse
accelerations at the free end of the cantilevembé&a the crack depth ratia/D=0.4, the
crack locatiorl;/L=0.5 and dimensionless Pasternak paranigser O.

|
o, 18 K3 O S
\ : b)
g "
: e e :
k- v
: : ()
: o i s
¥
v v
¢ <

0 '

Time (5 o’ Time (5 il

48



X0’

Accelerations m/s?

A ccelerations /s>

e
e
DJ =

05 1 15

Time (s Time (5)

Fig. 6 Transverse accelerations at the free end of theﬂ.b@)al?w =0, b) EW =10°,
c) k,, = 10%and d)k,, = 10'°

It is seen from Figure 6 that additional waves odoucase of the cracked beam (see the
circles) because of reflecting from the cracks.hite increase in the dimensionless Winkler
parameterk,,, amplitude of waves increases seriously. Thiseisahise by increasing ik, ,

the beam gets more stiffer. Also, it is observearfrfigure 6 that With the increase in the
dimensionless Winkler parametes,, the reflected waves disappear. It shows that the
Winkler parameterg,. play important role on the wave propagation oftieam.

In figure 7, the effect of the dimensionless Pasterparameter k, on the transverse
accelerations at the free end of the cantilevembé&a the crack depth ratia/D=0.4, the
crack locatior_,/L=0.5 and dimensionless Winkler parameter= 10°.
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It is seen from Fig. 7 that with increase in theneisionless Pasternak paramekgr,
amplitude of waves increases as expected. It israed from figures 6 and 7 that Pasternak
parameteﬁ?,j is more effective than Winkler parameiter It shows that Pasternak parameter
is very effective for wave propagation.

It is deduced from figures that the stiffness pagtars of the foundation are very effective for
reducing the negative influence of the cracks. Whit# increase foundation parameters, the
generation time and location of the primary anditamtthl waves decreases.

4. Conclusions

Wave propagation in an edge circular cantilever nbe@sting on Winkler-Pasternak
foundation under the effect of an impact forcengestigated. The considered problem is
investigated within the Bernoulli-Euler beam thedry using energy based finite element
method. The system of equations of motion is ddribg using Lagrange’s equations. The
obtained system of linear differential equationsreduced to a linear algebraic equation
system and solved in the time domain by using Newkragerage acceleration method. The
stiffness parameters of the foundation have a grdlatence on wave propagation in the
beam. It is observed from the investigations thatdtiffness parameters of the foundation are
very effective for reducing the negative influerafe¢he cracks. It is seen from results that the
Pasternak parameter is more effective than Wirgdeameter on the wave propagation.
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