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Abstract 

This paper investigates the static behavior of non-uniform bi-directional functionally graded (FG) circular plates 

embedded on gradient elastic foundations (Winkler- Pasternak type) and subjected to non-uniform asymmetric transverse 

and in-plane shear loads. The governing state equations are derived in terms of displacements based on 3D theory of 

elasticity, and assuming the material properties of the plate except the Poisson’s ratio varies continuously throughout the 

thickness and radial directions according to an exponential function. These equations are solved by means semi-

analytical method using state-space based differential quadrature method. Numerical results are displayed to clarify the 

effects of foundation stiffnesses, material heterogeneity indices, various foundation patterns, foundation grading indices, 

loads ratio and geometric parameters on the displacement and stress fields. The results are reported for the first time and 

the new results can be used as a benchmark solution for future researches. 

Keywords: Functionally graded, circular Plate, Gradient elastic foundation, Elasticity, Semi-analytical method, 

Boundary condition. 

1. Introduction 

Recently, a new class of materials known as two-directional functionally graded materials 

(2D-FGMs) has been introduced in the literature. FGMs have received considerable attention by 

researchers in recent years because their novel thermo-mechanical properties enable them to be 

widely used in many scientific and engineering disciplines, such as optics, aerospace, 

biomedical, civil, mechanical, nuclear and vehicle engineering. Circular plates made of FGMs 

resting on elastic foundations often find various applications in engineering fields. Typical 

examples may be found in the power transmission systems, machining devises, photographic 

facilities, support tables, driven plates of a friction clutch, Vehicle brake disk on friction pads, 

Nano-plates embedded in an elastic matrix. The bending, vibration, stability and buckling 

response of such structures to mechanical and thermal loads, with/without considering the 

interaction between structure-foundation have also been studied by many scientists and 

numerous papers have been devoted to these problems. Nemat-Alla [1] introduced the concept of 

adding a third material constituent to the conventional FGMs material in order to significantly 

reduce the thermal stresses in machine elements that subjected to sever thermal loading, and his 

investigation on 2D-FGMs has shown that it is more capable of reducing thermal and residual 

stresses than one-directional FGMs.  

A number of approaches have been employed to study the static bending problems of FGM 

circular plates, among which analytical methods based on certain simplified plate theories have 

been used frequently. For example, Saidi et al. [2] studied axisymmetric bending of thick 

functionally graded circular plates based on third order shear deformation plate theory. They 
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obtained closed form expressions for stress, deflection and moment distribution through the plate 

and considered various types of boundary conditions for outer edge of the plate.  Nosier and 

Fallah [3] presented analytical solutions for axisymmetric and asymmetric large deformations of 

FG circular plates under transverse mechanical load based on the first-order shear deformation 

plate theory with Von Karman non-linearity. Sahraee and Saidi [4] applied fourth order shear 

deformation plate theory and established four coupled ordinary differential equations to analyze 

bending and stretching of thick FG plates under the effect of uniformly distributed mechanical 

load. 

Differential quadrature (DQ) method as an efficient and accurate numerical tool has been used 

to study the static and dynamic behavior of FG circular plates under various loads. Based on the 

first order shear deformation theory (FSDT) and adopting this technique, Malekzadeh et al. [5] 

studied the free vibration of temperature-dependent functionally graded annular plates on elastic 

foundations. Following uncoupled 2D thermo-elasticity theory and virtual work principle, 

Safaeian et al. [6] presented the effects of thermal environment and temperature-dependence of 

material properties on axisymmetric bending of FG circular and annular plates. They used the 

DQ method to obtain the initial thermal stresses and response of the plate. Based on classical 

plate theory (CPT), Kumar and Lal [7] predicted the free axisymmetric vibration of two 

directional functionally graded annular plates resting on Winkler foundation using DQ method 

and Chebyshev collocation technique. In their study power low type property distribution in both 

thickness and radial directions is considered. 

The differential transformation method (DTM) based on the Taylor series expansion is one of 

the mathematical techniques has been used to solve the differential equation of structures in 

recent years. Based on classical plate theory and using this method, Shariyat and Alipour [8] 

analyzed the free vibration and modal stress of two-directional functionally graded circular 

plates embedded on two-parameter elastic foundations. The static behavior of FG circular plates 

with power law distribution of constituents and resting on Winkler-type elastic foundation were 

studied by Abbasi et al. [9]. 

There are relatively few exact analytical solutions derived directly based on elasticity theory 

by the researchers, which can serve as benchmarks for accessing the validity of various 

approximate plate theories or numerical methods. In this regard, Li et al. [10] obtained elasticity 

solutions for transversely isotropic FG circular plates subject to an axisymmetric transverse load 

in the form of an even order polynomials (e.g., q k
r , k is zero or a finite even integer). Using a 

direct displacement method, Wang et al. [11] investigated the axisymmetric bending of FG 

circular plates subjected to Bessel function-type transverse loads. Yun et al. [12] also presented 

an analytical solution for axisymmetric bending of FG circular plates. Recently, Sburlati and 

Bardella [13] developed a three-dimensional elasticity solution for the bending problem of FG 

thick circular plates subjected to axisymmetric conditions. Equilibrium equations are described 

in terms of potential functions based on Plevako's representation. The material properties were 

varied along the thickness of the plate.  

The semi-analytical method is applicable to more complicated problems. This approach 

employs the state space method (SSM) to express exactly the plate behavior along the thickness 

direction and the one dimensional differential quadrature (DQ) rule to approximate the radial 

variations of the parameters. Based on three-dimensional theory of elasticity and adopting this 

method, Nie and Zhong [14] investigated the axisymmetric bending of 2D-FG circular and 



A. , Behravan Rad, K. Mohammadi Majd   

54 

 

annular plates. Lu et al. [15] analyzed the static behavior of multidirectional FG rectangular 

plate. Davoodi et al. [16] demonstrated the free vibration problem of multi-directional FG 

circular and annular plates. Their work covers the effect of different parameters on natural 

frequencies and corresponding mode shapes. Most recently, one of the authors discussed the 

static behavior of unidirectional and two directional FG circular plates resting on linear elastic 

foundations under the effect of axisymmetric transverse load by using this approach [17-18]. In 

these studies exponential type of constituent distribution in both thickness and radial directions 

are considered. 

 In a survey of literature, the authors have found no work on three dimensional static analysis 

of variable thickness bi-directional functionally graded circular/annular plates supported by 

gradient elastic foundations and subjected to compound non-uniform asymmetric loads. Hence, 

present research is devoted to this problem. In this work, the material properties of the plate 

except the Poisson's ratio ( ν ) are assumed to be graded in the thickness and radial directions 

according to an exponential type distribution of constituents. The formulations are based on the 

three-dimensional theory of elasticity and a hybrid semi-analytical approach, which makes use of 

the state space method and the one-dimensional differential quadrature rule, is employed to 

extract the numerical results. A convergence study of the proposed method is performed for non-

uniform multi-directional FG circular plates, and its accuracy is validated by comparing the 

results are available in the open literature.  The effects of material properties gradient indices, 

loads ratio, foundation parameters and plate geometry variation coefficients on the displacement 

and stress fields are intensively investigated.  

The novelties of the present study can be summarized as follow:  

• Presenting a semi-analytical solution for static analysis of variable thickness 2D-FG 

circular/annular plates with complicated boundary conditions. 

• Three dimensional deformation and stress analyses of non-uniform 2D-FG circular/annular 

plates under the effect of general tractions (e.g., variation of mechanical loads and plate-

foundation interaction in an arbitrary pattern in the radial and circumferential directions), for 

the first time.  

• Extracting new differential equation for the two parameters linear elastic foundation with 

gradient coefficients in both radial and circumferential directions, for the first time. 

• Presenting the effect of foundation parameters and foundation gradient indices on elastic 

behavior of variable thickness 2D-FG circular/annular plates, for the first time. 

•  Presenting quite new and interesting stress and deformation results for the non-uniform  

2D-FG circular/annular plates. 

2. Problem formulation 

2.1 Basic equations  

 Fig.1 illustrates a non-uniform bi-directional functionally graded annular plate with outer 

radius a,
 
inner radius b, inner edge thickness oh embedded on gradient elastic foundation and 

subjected to combined non-uniform asymmetric transverse and in-plane shear loads. To describe 

the displacement field of the plate an orthogonal cylindrical coordinate system (r,θ , z) with the 

origin o located at the center of mid surface of the plate is used.  
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Fig. 1 Geometry of non-uniform 2D-FGMs annular plate resting on gradient elastic foundations 

 

 To demonstrate the plate material properties, geometry of the plate, external asymmetric loads 

the fallowing equations are considered.   
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h 2 a b
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 −   
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( ) ( )
2
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 
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− 
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 (4) 

where bE is the Young’s module at the bottom surface and inner radius of the plate, 1n , 2n are 

the parameters indicating the trends of the plate material properties gradient, 
op , 

oq are the 

values of external loads at the inner radius of the plate, 1α , 2α ,
1p ,

2p ,
1q ,

2q  are the plate 

geometry and external loads variation coefficients. 

 In the absence of body forces the equilibrium equations are 

( )1 1
r,r r , rz,z r 0r r

− −
θ θ θ+ + + − =σ τ τ σ σ       (5-a) 

11
r ,r , z,z r 02rr

−−
θ θ θ θ θ+ + + =τ σ τ τ

   
(5-b) 

 1 1
rz,r z, z,z rz 0r r

− −
θ θ+ + + =τ τ σ τ  (5-c)  

where r z z rz r, , , , ,θ θ θσ σ σ τ τ τ  are the stress components and the comma denotes differentiation 

with respect to the indicated variable. 

 The displacements field is 

 u(r, , z) u(r, z)cos( )θ = θ  (6-a)  

 v(r, , z) v(r, z)sin( )θ = θ  (6-b) 

 w(r, , z) w(r, z)cos( )θ = θ  (6-c) 

where u , v , w  are displacement components in the r,θ  and z directions. 

 The kinematic equations are 

 r , r
u(r, ,z)= θε  (7-a) 1 1

,
uv(r, ,z)r r

− −
θ θ

= +θε
 

(7-b) 

 z ,z
w(r, ,z)= θε

 
(7-c)

    rz , z , r
u(r, ,z) w(r, ,z)= +θ θγ

 
(7-d)  
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1

z , , z
w(r, ,z) v(r, ,z)r

−
θ θ

= +θ θγ  (7-e) 
  

1 1
r , , r

v(r, , z)u(r, ,z) v(r, ,z)r r
− −

θ θ
= + − θθ θγ  (7-f)  

 

where r z z rz r
, , , , ,θ θ θγ γ γε ε ε are the strain components. 

The constitutive relations from 3-D theory of elasticity are 

( )1
r , r , , z

E(r, z)
( u(r, , z))

(1 )(1 2 )
(1 ) u(r, ,z) v(r, ,z) w(r, ,z)r

−
θ

= + ν + θ + ν
+ ν − ν
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     (8-a) 

( )1
,r ,z
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−
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−= ν + ν θ + − ν
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( )rz ,z ,r
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2(1 )
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+ ν
θ θτ       (8-d) 

( )z ,z,

E(r,z) 1
2(1 )

v(r, ,z)w(r, ,z)rθ θ
−= +

+ ν
θθτ

 
     (8-e)

 

( )1 1
r ,r ,

E(r, z)
v(r, , z)

2(1 )
v(r, ,z) u(r, ,z)r r

− −
θ θ

= − θ +
+ ν
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For the sake of dimensionless formulae, the following non-dimensional quantities are 

introduced: 

o

z rr z rz

u(r, , z) v(r, , z) w(r, , z) r z(r)
U , V , W , , , s , 0.5 0.5 , 0.5

h(r) h(r) h(r) a h(r) 2a

, , , , ,
p p p p p p

h

θ θ θ
η Θ ξ ηξ Θξ ηΘ

θ θ θ
= = = η = ξ = = − ≤ ξ ≤ ζ = ξ +

= = = = = =
σ τ τσ σ τσ τ τ τσ σ

 (9) 

 

by considering the Eqs.(1)-(9), the normalized form of the governing differential equations in 

terms of displacements in the bottom surface of the plate can be obtained as: 
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2.2 The plate-foundation interaction 

 It is assumed that, the two parameter elastic foundation is perfect, frictionless, attached to the 

plate, non-uniform, asymmetric, and isotropic, that is, pr p pk k kθ= = . In the referred coordinate 

system the interface pressure 
zbp between the structure and a non-uniform foundation may be 

expressed mathematically as follow 

b b
w bzb p p2

1 1
(r , , z) (r (r , , z) ) ( (r , , z) )

r r r

w w
k kp wk

r

∂ ∂
= θ − θ − θ

∂ ∂ ∂ θ ∂ θ

∂ ∂
 (11) 

where 
zbp denotes the foundation reaction per unit area and bw is the deflection of the bottom 

surface of the plate. ( )w r, ,zk θ , ( )p r, ,zk θ are the coordinate dependent Winkler-Pasternak 

coefficients and can be expressed as  

( ) ( )2 2
w wbo 1 2 p Pbo 1 2(r, , z) 1 (r a) ( cos( ) , (r, , z) 1 (r a) ( cos( )r a) r a)k k f f k k f fθ = + + θ θ = + + θ  (12) 

where 3
wbo pbo(N / m ) , (N / m)k k  are the elastic coefficients of Winkler-Pasternak foundation  

at the  center of bottom surface of the plate  

 

2.3 Boundary and edge conditions 

 The edge conditions for solid circular plate ( b 0= ) are  

  Clamped edge (C): 

                                                             u(r, , z) 0, v(r, , z) 0, w(r, , z) 0θ = θ = θ =       at  r a=  (13) 

  Simply supported edge (S): 

                                                             r 0, v(r, , z) 0, w(r, , z) 0= θ = θ =σ             at  r a=    (14) 

 Free edge (F): 

                                                                r r rz0, 0, 0θ= = =σ τ τ         at  r a=    (15) 

 Regularity conditions on the center of the plate: 

                                                         
,r

u( r, , z ) 0, v( r, , z ) 0, 0w( r, ,z )θ = θ = =θ   at  r 0=  (16) 

The edge conditions for annular plate are  

  Clamped – clamped edges (C-C): 

 u(r, , z) 0, v(r, , z) 0, w(r, , z) 0θ = θ = θ =        at    r b=  (17-a) 

 u(r, , z) 0, v(r, , z) 0, w(r, , z) 0θ = θ = θ =     at    r a=  (17-b) 
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  Simply – simply supported edges (S-S): 

 r 0, v(r, , z) 0, w(r, , z) 0= θ = θ =σ    at  r b=    (18-a) 

 r 0, v(r, , z) 0, w(r, , z) 0= θ = θ =σ    at  r a=    (18-b) 

  Simply supported – clamped edges (S-C): 

 r 0, v(r, , z) 0, w(r, , z) 0= θ = θ =σ    at  r b=    (19-a) 

 u(r, , z) 0, v(r, , z) 0, w(r, , z) 0θ = θ = θ =          at  r a=  (19-b) 

  Clamped – free edges (C-F): 

 u(r, , z) 0, v(r, , z) 0, w(r, , z) 0θ = θ = θ =    at   r b=  (20-a) 

 r r rz0, 0, 0θ= = =σ τ τ    at   r a=    (20-b) 

Boundary conditions at the top and bottom surfaces of the plate are assumed as follow: 

at z h 2= − , 

  z rzzbz
, 0 , 0p θ= = =σ τ τ  (21) 

at z h 2= , 

 ( ) ( )z rzz
p r, , z , 0 , q r, , zθ= − θ = = − θσ τ τ    (22) 

3. Solution technique  

 Obtaining an analytical solution for the governing differential equations appeared in Eq. (10) 

is difficult, if it is not impossible. Hence, a semi-analytical procedure is employed in this study. 

This method gives an analytical solution along the thickness direction (z-direction) by using the 

state space method (SSM) and a numerical solution in the radial direction of the plate by 

applying one dimensional differential quadrature rule (DQ) to approximate the stress and 

deformation fields. By using this method the governing differential equations is transformed 

from physical domain to a normalized computational domain and the special derivatives are 

discretized by applying the one dimensional differential quadrature rule as an efficient and 

accurate numerical tool. The obtained linear eigenvalue system in terms of the displacements is 

solved and the static behavior of the plate under non-uniform boundary conditions is analyzed. 

 

3.1 DQM procedure and its application 

 The DQ method is a numerical technique which divides the continuous domain in to a set of 

discrete points and replaces the derivative of an arbitrary unknown function with the weighted 

summation of the functions values in the discretized points. There for, the principle of DQ rule 

can be stated as follow: for a continuous function g (r)  defined in an interval r [0,1]∈ , its nth- 

order derivative with respect to argument r at an arbitrary given point ir can be approximated by 

a linear sum of the weighted function values of g (r)  in the whole domain [19, 20]. The 

mathematical presentation of the method is 

 
( )

( )

1

( )
( )

=

=
∂

∑
∂

n N
ni

ij jn
j

g
g

r
rA

r
  i 1, 2, , N and n 1,2, , N 1= = −L L  (23) 

where (n)
ijA  is the weighting coefficients matrix of the nth-derivative determined by the 

coordinates of the sample points ir and N is the number of the grid points in the radial direction. 

 There are different ways for calculating the weighting coefficient matrix, because different 
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functions may be considered as test functions. In this study a set of Lagrange polynomials are 

employed as test functions, and to achieve more accuracy the non-uniform grid spacing is 

considered. Explicit expressions of the first and second derivatives of the weighted coefficients 

matrices and also criterion to adopt non-uniformly spaced grid points are [19, 20]: 

1) - The first order derivative of the weighting coefficients matrix  

N

i j
j 1, j i

ik N

i k k j
j 1, j k

( )r r

A
( ) ( )r r r r

= ≠

= ≠

−∏

=
− −∏

 i k≠ ,  i, k 1,2,3, , N= L  

N

ii ij
j 1, j i

A A
= =

= − ∑  i k= ,   i 1, 2,3, , N= L   

 (24) 

2) - The second-order derivative of the weighting coefficients matrix  

(2) ik
ii ikik

i k

A
2A A A

r r

 
= − − 

 i k≠ ,  i, k 1, 2,3, , N= L  

N
(2) (2)
ii ij

j 1, j i
A A

= =

= − ∑  i k= ,   i 1, 2,3, , N= L

 (25) 

3) - The Chebyshev-Gauss-Lobatto criterion  

( )i

1 (i 1)
1 cos( ) a b br

2 N 1

− π 
= − − + − 

 i 1, 2,3, , N= L  (26) 

The partial derivatives of the unknown displacements U , V , W with respect to ηappeared in Eq. 

(10) after applying the DQ rule at an arbitrary sample point 
iη  can be expressed as:  

( )
N

ij j
i j 1

,U UA
η =

=η ∑       (27-a) ( )
N

ij j
i j 1

,V VA
η =

=η ∑  (27-b)  

( )
N

ij j
i j 1

,W WA
η =

=η ∑   (27-c) ( )
N

(2)
jij

i j 1
,U UA

η =

=ηη ∑  (27-d)  

( )
N

(2)
jij

i j 1
,V VA

η =

=ηη ∑  (27-e) ( )
N

(2)
jij

i j 1
,W WA

η =

=ηη ∑  (27-f)  

( )
N

ij , ji j 1
, UU A ζη =

=ηζ ∑  (27-g)                ( )
N

ij , ji j 1
, VV A ζη =

=ηζ ∑  (27-h)  

( )
N

ij , j
i j 1

,W WA ζ
η =

=ηζ ∑  (27-i) 

The associated edge conditions in discretized points can be written as follows: 

 Clamped edge (C): 

 N N
0 , 0N 0, WU V= ==                                                                                           at  1η=  (28) 

 Simply- supported edge (S): 

  N N N0 , 0 , 0V Wη = = =σ                     at   1η=  (29) 

 Free edge (F): 

 N N N0 , 0 , 0η ηΘ ηξ= = =σ τ τ  at   1η=  (30) 
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 Regularity conditions on the center of the plate: 

   1 0 ,U = 1 0 ,V =  
N

1j
1 j

j 2 11
)21

A
W W

( A=

= −∑
+β

                       at   0η=   (31) 

 Clamped – clamped edges (C-C): 

 1 1 1
0 , 0 , 0WU V= = =        at    b aη =  (32-a) 

   N N N
0 , 0 , 0WU V= = =   at    1η =  (32-b) 

  Simply – simply supported edges (S-S): 

 1 1 10 , 0, 0V Wη = = =σ     at  b aη =    (33-a) 

 N N N0 , 0, 0V Wη = = =σ     at  1η =    (33-b) 

  Simply supported – clamped edges (S-C): 

 1 1 10 , 0, 0V Wη = = =σ      at  b aη =    (34-a) 

 N N N
0 , 0 , 0WU V= = =       at 1η =  (34-b) 

  Clamped – free edges (C-F): 

 1 1 1
0 , 0 , 0WU V= = =         at  b aη =  (35-a) 

 N N N0 , 0 , 0η ηΘ ηξ= = =σ τ τ   at  1η =    (35-b) 

The discretized forms of the boundary conditions at the lower and upper surfaces of the plate, 

Eqs.(21) and (22) can be written as 

At 0ζ = ,, 

 

( )
N

ij j i1i 2i
i j 1

s 0U W WA,
=

 
+ + =  

 
β β∑ζ  (36-a) 

( ) ( )
1i

i
i

i

cot g
s 0V W,

θ
− =

β
ζ η

 (36-b) 

( )
N

ij j i i1i 2i
i j 1 i i

N N
(2) 4i

ij bjij4i 2i 4i 5ibj
j 1 j 1i

4i1i
1 2bi 2i 5i 3i4i

ii
2

s 1 tg( )

1

cos( ) 2 cos( )

cos( )
b a

exp
1 b a

W U U VA,

W WA A

Wk k

n

=

= =

  ν θ
 + + + + = 

  − ν   

 
θ + + + θ + 

 
 

 
+ +θ −  

   −  
    −  

β β∑ζ η η

β
β β β β∑ ∑

η

ββ
β ββ

ηη
4i

bi

2 2

4i 2

i

cos( )

1

W

cos( ) sin( )

  
  
  
  
  
    
     θ +

        
   
     
   −           

β β

θ θβ
η

 

  

 ),,3,2,1( Ni K=          (36-c)  
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where  
wb0

1

b

(1 )(1 2 )hk
k

2(1 ) E

+ ν − ν
=

− ν
    ,    

pbo
2

b

(1 )(1 2 ) sk
k

2(1 ) aE

+ ν − ν
=

− ν
 are the dimensionless coefficients 

of the elastic foundation and ( ) ( )2
1 2 1 2i4i i 5i i

1 , 2f f f f= + + = +ηβ η β η . 

At  1ζ = , 

( )
N

i
ij j i1i 2i

i j 1
i

1 2

2(1 )
s

b a
exp

1 b a

q
U W WA,

n n
=

− + ν 
+ + =     − 

+    −  

β β∑ζ
η

 (37-a) 

( ) ( )
1i

i
i

i

cot g
s 0V W,

θ
− =

β
ζ η

 (37-b) 

( )
N

i
ij j i i1i 2i

i j 1 i i i
1 2

(1 )(1 2 )s 1 tg( )

(1 ) b a
(1 ) exp

1 b a

P
W U U VA,

n n
=

   − + ν − νν θ
 + + + + = 

  − ν   −   − ν +    −  

β β∑ζ η η η
 (37-c) 

 ),,3,2,1( Ni K=  

 

3.2 The state space method 

 By taking the elements of state vector as
T

, , ,U V W U V Wδ = ζ ζ ζ 
  , the global 

state space notation of equations (10) in discretized points can be written as 

{ }
,i( )
ζ

=ζδ  { }i i( )D ζ   δ    (38) 

Here, [ ] [ ] [ ]
T

i i i i , i , i , i( ) U V W U V W= ζ ζ ζ
      ζδ        

 is the global state vector along 

the plate thickness at the level of ζ and iD  is the coefficient matrix at the sample points. The 

elements of matrix iD are expressed in appendix 1. 

 By considering all edge conditions the Eq. (38) can be denoted as follow; 

[ ]
,ei( )
ζ

=ζδ  ei ei( )D    ζ   δ    (39) 

where the subscript ‘e’ denotes the modified matrix or unknown vector taking account of the 

edge conditions. 

 According to the rules of matrix operation, the general solution to Eq. (39) is: 

( )ei ei( ) (0)exp Deiζ = ζδ δ  (40) 

 Eq. (40) establishes the transfer relations from the state vector on the bottom surface to that at 

an arbitrary plane ζ of the plate by the exponential matrix of ( )exp Deiζ . Setting 1ζ =  in  

Eq. (40) gives    

( )eiei ei
(1) exp (0)D=δ δ  (41) 

where ( )exp Dei is the global transfer matrix and  ei (1)δ  , ei (0)δ  are the values of the state 

variables at the upper and lower planes of the plate, respectively. 
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 By substituting the boundary conditions presented in Eqs.(36) and (37) in to Eq.(41), the 

following algebraic equations for bending analysis can be obtained 

MT Q=       (42) 

where M is a 6(N-2)×6(N-2) matrix, Q is a traction force vector and T is: 

T

T (0) (0) (0) (1) (1) (1)U V W U V Wi i i i i i=                           ,( i  = 2, 3,L , 1−N ) (43) 

 

 By solving Eq. (42), all state parameters at 0ζ = , 1ζ = are obtained. We can use Eqs. (40) and 

(8) to calculate the displacements and the stresses through the thickness of the FGMs circular 

plate. 

 4. The numerical results and discussions 

  

 In this section, firstly, the foregoing analysis is verified by comparing numerical results 

available for a uniform thickness FG circular plate subjected to axisymmetric transverse load has 

been considered by Li et al. [10], then the convergence of the current solution procedure is 

conducted to illustrate the efficiency of the present method for a complicated problem and is 

used as an evaluation criterion. The numerical results are derived for non-uniform thickness2D- 

FG clamped-clamped annular and clamped circular plates under described loading. The number 

of non-uniformly spaced discrete points in the radial direction is nine. Finally, effects of the 

material heterogeneity indices, loads ratio and foundation parameters (e.g., Winkler-Pasternak 

coefficients and foundation gradient indices) on static behavior of the plates are intensively 

discussed in the following text. The numerical results are shown in Figs.2-9.  

  

4.1 Validation of the code 

  

 Since there are no results available in the open literature for static response of variable 

thickness 2D-FGMs circular plate to non-uniform boundary conditions, there for the validity of 

the prepared computer code is investigated by computing the dimensionless transverse shear 

stress distribution along the plate thickness to a simply- supported FG circular plate under an 

axisymmetric distributed transverse load without elastic foundation previously considered by Li 

et al. [10]. The structural parameters and boundary conditions on the bottom and the top surfaces 

of the plate are considered same as given by reference [10]. Non-dimensional transverse shear 

stress of the mentioned plate is determined and the results are presented in Fig. 2. It is evident 

from Fig. 2 that the present results are in good agreement with those are given by Li et al. [10].  

 In order to extract the new numerical results, non-uniform 2D-FG clamped-clamped annular 

and clamped circular plates consisting of Titanium T 110.25GPaE =  and Zirconium 

z 278.41GPaE =  as the metal and ceramic constituents of the plate has been studied earlier by 
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Yun et al. [12] are considered. The plate structural data and the boundary conditions on the 

lower and the upper surfaces of the plate are: 

b o t(b, 2) 110.25GPa , (a,h 2) 278.41GPa , 0.3E h E− = = ν = , a 1.0m= , s 0.02= , b 0.1m=  

1 2 0.1= =α α , 1 2 0.1f f= = , 1 2 0.1k k= = , 
1 2 1 2

0.1p p q q= = = =  

rz 0=τ , 
z z b

p=σ  , 
z 0θ =τ     at oz 2h= −  

rz 1GPa= −τ , GPaz 1−=σ  , 
z 0θ =τ   at oz 2h=   (44) 
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Fig.2 Distribution of dimensionless transverse shear stress across the plate thickness at 0.5η =  

 Fig.3 depicts the dimensionless transverse deflection bW  versus the number of discrete points 

N  at a location o0.55, 45η = θ =  for clamped-clamped  supported plate with structural data and 

boundary conditions shown in Eq. (44), and 1 2 0.5,1,1.5n n= = for convex thickness 

( 1 2 0.1= = −α α ), uniform thickness ( 1 2 0= =α α ) and concave thickness ( 1 2 0.1= =α α ) 

respectively. It can be seen from Fig.3 that the dimensionless deflection of the plate approaches 

to a specific value with an increase in the number of the discretization points. This figure 

confirms that the convergence of the present method is great.  
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 a) Convex thickness                     b) Uniform thickness              c) Concave thickness    

Fig.3 Convergence of non-dimensional deflection of the plate at a location ( 0.55 , 45
°η = θ = ) 

 

 Fig.4 illustrates distribution of the displacement and stress components along the thickness of 

the plate (C-C supported) at o0.55, 45η = θ =  due to conditions discussed in Eq. (44) and 

gradient indices 1 2 0.25,0.5,1,1.5n n= = . It can be found from Fig.4 that the U and V  

displacements decrease, ησ  increases, Θσ firstly decreases and then increases, ξσ , ηξτ decrease 

and θξτ , ηθτ  increase along the thickness of the plate as 1n , 2n increase. The transverse 

displacement has complicated behavior it increases with increasing graded indices and decreases 
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as heterogeneity indices increase for small and large values of 1n and 2n respectively. The 

distribution of ηξτ  and θξτ  stresses through the thickness of the plate converges to the horizontal 

line with decreasing the graded indices, which is the characteristic of thin and homogeneous 

plate. Decrease of displacements indicates that increasing the material heterogeneity indices will 

certainly enhance the deformation rigidity of the plate. 

 Fig.5 plots the effect of loads ratio on static response of the plate(C-C supported) at 
o0.55, 45η = θ = with structural parameters discussed in Eq. (44), 1 2 T zln( )n n E E= =  

and
o o

2, 4,6,8q p = . It is observed from Fig.5 that all displacements and stress components 

increase as the loads ratio increases. The radial and hoop stresses have increased by additional 

compression of the layers in the radial direction due to in plane shear interaction, consequently, 

these stress components through the thickness direction is more affected by the loads ratio 

variations at both surfaces especially at the upper surface. As Fig.5 (h) shows the stress θξτ  

satisfies the boundary conditions. 

 Effect of the foundation stiffnesses on static behavior of the plate(C-C supported) whit above 

mentioned conditions and 1 2 T zln( )n n E E= = at o0.97, 45η = θ =   is depicted in Fig.6. It can be 

found from Fig.6 that U , ησ , Θσ , θξτ  increase and V , W , ξσ , ηξτ , ηθτ  decrease when 1k , 2k  

increase.  

 In the next stage, effect of foundation gradient indices and various patterns of the stiffness 

variations on mechanical entities along the thickness direction are studied. For this purpose, a 

clamped circular plate with the geometric and material data discussed in Eq. (44) and 

1 2 0.01k k= =  is considered. The through-the-thickness distributions of the dimensionless 

displacement and stress components are determined at mid-radius point and o
60θ = for various 

foundation gradient indices and are shown in Fig.7. It is seen from this figure that the radial 

displacement has compressed more than the other displacement components due to exerting the 

shear traction on the upper surface of the plate and normal interaction by the supporting 

foundation at the lower surface of the plate. The displacement U and stress ξσ (compression 

stress) increase and V , W , Θσ , ηθτ , the maximum point of θξτ decrease through the thickness 

of the plate as 1 2,f f increase. Variation of stress ησ along the plate thickness is compression and 

tension for small and large values of foundation gradient indices respectively and increases with 

increasing of 1 2,f f . The stress ηξτ is independent from Variations of foundation gradient indices. 

 Finally, influence of the various patterns of the stiffness variations on the static behavior of 

the plate (clamped supported) is investigated and the achieved results are presented in Fig.8. The 

foundation coefficients variation patterns are: uniform 1 2 0f f= = , linear 1 20 , 0f f≠ = , 

parabolic 1 20 , 0f f= ≠  and quadratic 1 20 , 0f f≠ ≠ . It can be found from Fig.8 that the linear 

stiffness variation lead to smaller U , ξσ  and for other displacement and stress components the 

quadratic type of stiffness variation lead to smaller values, therefore this pattern has a higher 

load carrying contribution.   

Fig.9 displays the effect of various parameters on clamped-clamped annular plate deflection.  It 

is evident from Fig. 9 that the plate deflection decreases as gradient indices ( 1 2,n n ), foundation 
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coefficients ( 1 2,k k ), geometry non-uniformity coefficients ( 1 2,α α ) and foundation non-

uniformity coefficients ( 1 2,f f ) increase. 
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Fig.4 Effect of the material heterogeneity indices on physical quantities across the plate thickness 
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a) Radial displacement b) Circumferential displacement  c) Transverse displacement 
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Fig.5 Effect of the loads ratio on variation of mechanical entities across the plate thickness 
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Fig.6 Effect of the foundation coefficients on variation of mechanical entities across the plate 
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Fig.7 Effect of foundation gradient indices on variation of mechanical entities across the plate 

thickness for a clamped circular plate 
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Fig.8 Effect of various foundation patterns on variation of mechanical entities across the thickness 

direction for a clamped circular plate 
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Fig.9 Effect of various parameters on plate deflection at a location ( 45
°θ = )  

 

5. Conclusions 

 In the present paper, the static behavior of variable thickness two directional functionally 

graded circular plates under non-uniform asymmetric boundary conditions is investigated based 

on three dimensional theory of elasticity. The material properties are assumed to vary 

exponentially in both thickness and radial directions. The solution is obtained by employing the 

semi-analytical method. The results confirm the high rate convergence and accuracy of the 

present method. Based on the results and discussions presented in this paper, the following 

important conclusions may be drawn. 

• The presented method is especially useful to analysis the behavior of multi directional 

heterogeneous plates with a more complicated geometry and boundary conditions. 

• The additional compression of the layers in the radial direction of the plate due to shear 

traction increases the radial and circumferential stresses. 

• The rigidity of the plate increases with the increasing of elastic foundation coefficients. 

• The additional compression of the radial displacement due to shear traction increases the 

surface buckling of the plate. 

• Distribution of ηξτ along the plate thickness direction is independent from variations of 

foundation graded indices and stiffness gradient patterns. 
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• Load carrying contribution of quadratic type stiffness variation foundation is higher than the 

other stiffness variation patterns. 

• The three dimensional theory presents an accurate prediction of three-axes Von-Misses stress, 

and as a result, it can accurately estimate the structure strength.  
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