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Abstract 

In this paper, free vibration characteristics of an axially functionally graded (AFG) cantilever beam subject to 

temperature rising are studied with the effect of material-temperature dependent properties. Material properties 

of the beam are temperature-dependent and change in the axial direction of the beam according to a power-law 

function. The considered problem is solved within the Euler-Bernoulli beam theory by using finite element 

method. The system of equations of motion is derived by using Lagrange’s equations. The effects of material 

distributions and temperature rising on the first three natural frequencies and mode shapes are investigated.  
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1. Introduction 
 
Functionally graded materials (FGMs), a novel class of composites whose composition varies 
continuously as a function of position along thickness of a structure to achieve a required 
function. Functionally graded  structures have been an area of intensive research overthe last 
decade. Because of the wide material variations and applications of FGMs, it is important to 
study the static and dynamic analysis of FG structures, such as beams and plates. Therefore, 
an intensive study has been conducted recently on vibration of structures made of FGMs (i.e., 
[1–37]). In recent years, the mechanical behavior of axially functionally graded (AFG) 
materials has been a topic of active research. Wu et al. [38] used the semi-inverse method to 
find the solutions to the dynamic equation of axially functionally graded simply supported 
beams. Aydogdu [39] analyzed the vibration and buckling of axially functionally graded 
simply-supported beam by using semi-inverse method. Huang and Li [40] presented a new 
approach for free vibration of axially functionally non-uniform graded beams. Alshorbgy et 
al. [41] have investigated the dynamic characteristics of non-uniform graded beams with 
material graduation in axially or transversally thorough the thickness. Shahba et al. [42] 
studied free vibration and stability analysis of AFG tapered Timoshenko beams by using 
finite element method. Hein and Feklistova [43] investigated free vibrations of non-uniform 
and AFG beams using Haar wavelets. Şimşek et al. [44] studied dynamic behavior of an AFG 
beam under action of a moving harmonic load. Shahba and Rajasekaran [45] studied free 
vibration and stability of AFG tapered Euler-Bernoulli beams. Huang et al. [46] presented a 
new approach for investigating the vibration behaviors of AFG Timoshenko beams with non-
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uniform cross-section. Free vibration of axially inhomogeneous beams is analyzed by Li et al. 
[47]. Rajasekaran [48,49] investiagted the free bending vibration of AFG tapered and non-
uniform beams by using Differential Transformation method and differential quadrature 
element method. Akgöz and Civalek [50] studied vibration response of AFG tapered 
microbeams in conjunction with Bernoulli-Euler beam and modified couple stress theory by 
using Rayleigh-Ritz solution method. Nguyen [51] investigated large displacement analysis of 
tapered an AFG cantilever beam by using finite element method. Babilio [52] presented the 
dynamics of an AFG simply supported beam under axial time-dependent load. Rajasekaran 
and Norouzzadeh Tochaei [53] presented free vibration characteristics of tapered and AFG 
Timoshenko beams by using differential transformation element method and differential 
quadrature element method of lowest-order. 
 
In this study, free vibration characteristics of an AFG cantilever beam subject to uniform 
temperature rising  are studied with the effect of material-temperature dependent properties. 
The considered problem is investigated within the Bernoulli-Euler beam theory by using 
energy based finite element method. Material properties of the beam change in the axial 
direction according to a power-law function. In the study, the effects of the material 
distributions and temperature rising on the first three natural frequencies and mode shapes are 
presented for AFG beam.  
 
2. Theory and Formulations 

 
A cantilever beam of length L, width b, thickness h, made of AFG elastic material, as shown 
in Figure 1. 
 

                  

 
 

Fig. 1  A cantilever axially functionally graded (AFG) beam under uniform temperature rising 
DT.  

 
In this study, the material properties are both temperature-dependent and position-dependent. 
The effective material properties of the functionally graded beam, P, i.e., Young’s modulus E,  
and mass density r vary continuously in the axial direction (X axis) according to a power-law 
function and a function of temperature T (see Touloukian [54]) as follows; 
 

                     
                                  (1a) 
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                                         (1b) 
 

 
where PL  and PR  are the material properties of the left and the right surfaces of the beam that 
depends on temperature (T), T=T0+DT, where T0 is installation temperature and DT is the 
uniform temperature rise, It is clear from Eq. (1a) that when X=-L/2, P=PL, and when X=L/2, 
P=PR. Where n  is the non-negative power-law exponent which dictates the material variation 
profile through the axial direction of the beam. In Eq. (1b), P-1, P0, P1, P2 and P3 indicate the 
coefficients of temperature T  and are unique to the constituent materials. In this study, the 
unit of the temperature is Kelvin (K), the unit of the Young’s modulus E is Pascal (Pa) and 
the unit of the mass density r is kg/m3. The beams considered in numerical examples are 
made of Zirconia and Aluminum Oxide. The right surface of the functionally graded beam is 
Zirconia and the left surface of the functionally graded beam is Aluminum Oxide. The 
coefficients of temperature T for Zirconia and Aluminum Oxide are listed in Table 1 and 2 
(from Reddy and Chin [55]). 
 

Table 1 The coefficients of temperature T for Zirconia (from Reddy and Chin [55]) 

The material properties P0 P-1 P1 P2 P3 

Thermal expansion 
coefficient αX (1/K) 

12.766×10-6 0 -1.491×10-3 1.0006×10-

5 -6.778×10-11 

Young’s modulus E (Pa) 244.27×109  
0 

-1.371×10-3 1.214×10-6 -3.681×10-10 

Poisson’s ratio n  0.2882 0 1.133×10-4 0 0 

Mass density r (kg/m3) 5700 0 0 0 0 

 
 
Table 2 The coefficients of temperature T for Aluminum Oxide (from Reddy and Chin [55]) 

The material properties P0 P-1 P1 P2 P3 

Thermal expansion 
coefficient αX (1/K) 

6.8269×10-6 0 1.838×10-4 0 0 

Young’s modulus E (Pa) 349.55×109  
0 

-3.853×10-4 4.027×10-7 -1.673×10-10 

Poisson’s ratio n  0.26 0 0 0 0 

Mass density r (kg/m3) 2700 0 0 0 0 

 
 
Acoording to the coordinate system (X,Y,Z) shown in figure 1, based on Euler-Bernoulli beam 
theory, the axial and the transverse displacement field are expressed as   
 

                                                                      (2) 
 

                                                                                                    (3) 
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Where u0 and v0 are the axial and the transverse displacements in the mid-plane, t indicates 
time. Using Eq. (2) and (3), the linear strain- displacement relation can be obtained: 
 

                                                                        (4) 
 
According to Hooke’s law, constitutive equations of the AFG beam are as follows: 
 

                                            (5) 
 
Where sxx andv are normal stresses and normal strains in the X direction, respectively. Based 
on Euler-Bernoulli beam theory, the elastic strain energy (Ui) of the beam is expressed as 
                                                       

                                                                                                      (6) 
 
By substituting equations (4) and (5) into Eq. (6), elastic strain energy (Ui) can be rewritten as 
follows: 
 

                           (7) 
 
Where A and I are respectively the cross-sectional area and moment of inertia. Kinetic energy 
(V) of the FGM beam are expressed as follows: 
                             

                                                                        (8) 
 
By substituting equations (2) and (3) into Eq. (8), Kinetic energy (V) can be rewritten as 
follows: 
               

                               (9) 
 
 
Lagrangian functional of the problem is given as follows: 

 

                                                                                                                      (10) 
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Total nodal displacements q which is written for a two-node beam element, each node has 
three degrees of freedom, shown in Fig. 2 are defined as follows:                   
                  

                              (11) 
 

 

 
Figure 2.  A two-node beam element. 

 
 
The displacement field of the finite element is expressed in terms of nodal displacements as 
follows: 
 

                                                                          (12) 
 
 

                                        (13) 
 
where ui, vi and θi are axial displacements, transverse displacements and slopes at the two end 
nodes of the beam element, respectively. ϕi

(U) and ϕi
(V)  are Hermitian shape functions for axial 

and transverse degrees of freedom, respectively, which are given in Appendix.  
 
After substituting Equation (11) into Equation (10) and then using the Lagrange’s equations 
gives the following equation; 
 

                                                           (14) 
 
Where (e)

kq&  indicates the time derivatives of nodal displacements q.  
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The Lagrange’s equations yield the system of equations of motion for the finite element and 
by use of usual assemblage procedure the following system of equations of motion for the 
whole system can be obtained as follows: 
 

                                                                                       (15) 
 
where, [K] is the stiffness matrix and [M] is  mass matrix. The components of the stiffness 
matrix [K] : 
 

                                                                                      (16) 
 
Where 

                                                                (17a) 

                                                              (17b) 
 
 
Where Le indicates the length of the finite beam element. The mass matrix [M] can be 
expressed as a sum of four sub-matrices as shown below: 
 

                                                                                              (18) 
 
Where 
 

                                                        (19a) 

                                                        (19b) 

                                                         (19c) 
 
If the global nodal displacement vector {q} is assumed to be harmonic in time with circular 
frequency w, i.e {q}={ q

)
}e

iwt becomes, after imposing the appropriate end conditions, an 
eigenvalue problem of the form: 
 

                                                                                                 (20) 
 
Where { q

)
} is a vector of displacement amplitudes of the vibration. 
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3. Numerical Results 

 
In the numerical examples, the natural frequencies and the mode shapes of the AFG beams 
are calculated and presented in figures for different material distributions and temperature 
rising. The beams considered in numerical examples are made of Zirconia and Aluminum 
Oxide. The right surface of the AFG beam is Zirconia and the left surface of the AFG beam is 
Aluminum Oxide. When the power index n=0, the beam material is reduced to full Aluminum 
Oxide (homogeneous Aluminum Oxide). The coefficients of temperature T for Zirconia and 
Aluminum Oxide are listed in Table 1 and 2 (from Reddy and Chin [55]). In this study, the 
unit of the temperature is Kelvin (K). In numerical examples, the initial temperature 
(installation temperature) of the beam is assumed to be T0= 300 K. In numerical calculations, 
the number of finite elements is taken as 100 elements. Unless otherwise stated, it is assumed 
that the width of the beam is b=0.1m, height of the beam is h=0.1m and length of the beam is 
L=3m in the numerical results. 
 
In order to establish the accuracy of the present formulation and the computer program 
developed by the author, the results obtained from the present study are compared with the 
available results in the literature. For this purpose, the dimensionless fundamental frequency 
(

1XXD I
ω

ω = ) of a FG cantilever beam according to the exponential distribution are calculated 

for different exponential ratios PR for L/h=20 compared with those of Yang and Chen [2008] 
and Ke et al. [2009]. As seen from Table 3, the present results are in good agreement with that 
the results of Yang and Chen [8] and Ke et al. [15]. 
 

Table 3. Comparison of the dimensionless fundamental frequency 
1

w  of intact 
FG beams. 

PR Present Yang and Chen 
[2008] 

Ke et al. 
[2009] 

0.2 0.8283  0.83 0.8235 
1 0.8786  0.88 0.8752 
5 0.8283  0.83 0.8235 

 
 
In figure 3, the effect of the temperature rising on the first three lower natural frequencies w 
of the AFG beam is shown for different the material distributions n. 
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Figure 3. The effect of Temperature (T) on the first three lower natural frequencies w 

  for different the material distributions n. a) First natural frequency (w1),  b) Second natural 
frequency (w2) and c) Third natural frequency (w3). 
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It is seen from figure 3, with increase in temperature, the fundamental frequency decreases, as 
expected. This is because; with the temperature increase, the intermolecular distances of the 
material increase and intermolecular forces decrease according to temperature-dependent 
physical properties and the beam pile becomes flexible. As a result, the frequencies of the 
AFG beam decreases. Also it is observed from figure 3 that there are significant different of 
the material distributions.  

 

In figure 4, the effect of the material distributions n on the first three lower natural frequencies 
w of the AFG beam is shown for different the temperature (T) . 
 

 

 
 

  
 



 46 

 
Figure 4. The effect material distributions (n) on the first three lower natural frequencies w 

  for different the Temperature (T). a) First natural frequency (w1),  b) Second natural 
frequency (w2) and c) Third natural frequency (w3). 

 
 

It is seen from figure 4, with increase in the material power law index n causes decrease in the 
fundamental frequency for all values of the temoerature (T): Because when the material 
power law index n increase, the material of the beam get close to Zirconia (right side material) 
according to Eq. 1 and it is known from the physical properties of the Aluminum Oxide (left 
side material)  and Zirconia (right side material) that the Young modulus of of Aluminum 
Oxide is greater than that of Zirconia. As a result, the strength of the material increases and 
the fundamental frequency of the AFG beam decraeses. It is observed from figure 4 that 
increase in the material power law index n, the curve has an asymptote. In the case of n=∞, 
the AFG beam is reduced to the homogeneous Zirconia (Right side material) beam according 
to Eq. 1. Also, it is seen from figure 4 that with increase the material power law index n, the 
differences of the different temperature (T) increase considerably on the fundamental 
frequency.  

 

Figure 5 displays the effect of the material distributions n on the first, second and third 
vibration mode shapes for T=400 K . 
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Figure 5. The effect material distributions (n) on the first three lower vibration modes for 

Temperature T=400 K. a) First mode shape,  b) Second mode shape and c) Third mode shape. 
 
 

It is seen from figure 5 that the material distributions n play important role on the vibration 
mode shapes.  

 
 

4. Conclusions  

 
Free vibration analysis of an AFG cantilever beam subjected to temperature rising is 
investigated under with the effect of material-temperature dependent properties. Material 
properties of the beam are temperature-dependent and change in the axial direction of the 
beam according to a power-law function. The considered problem is solved within the Euler-
Bernoulli beam theory by using finite element method. The system of equations of motion is 
derived by using Lagrange’s equations. It is observed from the investigations that temperature 
rising have a great influence on the vibration characteristics of the AFG beam. With increase 
in the temperature, the vibration characteristics of the AFG beam change considerably. The 
distribution of the AFG material plays an important role on the vibration frequency and mode 
of the beam. 
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Appendix 

 
The interpolation functions for axial degrees of freedom are                       

                                                                            (A.1) 
Where 

                                                                  (A.2) 

                                                                                         (A.3) 
 
The interpolation functions for transverse degrees of freedom are 
 

                                         (A.4) 
Where 

                                                                        (A.5) 

                                                                                       (A.6) 

                                                                                      (A.7) 

                                                                           (A.8) 
 
Where Le indicates the length of the finite beam element.  
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