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Abstract 

Modal analysis of tapered piles embedded in elastic foundations is investigated. The pile is modeled via 

Bernoulli-Euler beam theory and discrete singular convolution is used for modeling. Some parametric results 

have been presented for tapered pile in elastic foundation. 
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1. Introduction 

There are different type problems related to soil-structure interaction can be modeled by 

means of a beam or a beam-column on an elastic foundation. Winkler foundation model is 

extensively used by engineers and researchers because of its simplicity. The analysis of beam-

columns on elastic foundations have been carried out in the literature, namely by Zhaohua and 

Cook [1], Yankelevsky and Eisenberger [2], Doyle and Pavlovic [3], Yokoyama [4], 

Valsangkar and Pradhanang [5], De Rosa and Maurizi [6], Halabe and Jain [7], West and 

Mafi [8], Matsunaga [9] and Kameswara et al. [10]. In this paper, discrete singular 

convolution method technique is presented for computation of the free vibration analysis of a 

pile embedded in elastic foundation. The method of DSC is used for vibration response of 

tapered piles in elastic foundation [29]. 

2. Discrete Singular Convolution (DSC) 

Discrete singular convolution (DSC) method is a recently proposed numerical method in 

science and applied mechanics [11-14]. The method of discrete singular convolution (DSC) 

was proposed to solve linear and nonlinear differential equations by Wei [15, 16], and later it 

was introduced to solid and fluid [17-19]. It has been also successfully employed for different 

vibration problems of structural members such as plates and shells [20–23].  For more details 

of the mathematical background and application of the DSC method in solving problems in 

engineering, the readers may refer to some recently published reference [24-38]. In the 

context of distribution theory, a singular convolution can be defined by [11] 
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where T is a kind of singular kernel such as Hilbert, Abel and delta type, and )(t is an 

element of the space of the given test functions. In the present approach, only singular kernels 

of delta type are chosen. This type of kernel is defined by [12] 

 

)()( )( xδxT r ; (r =0,1,2,...,).     (2) 

 

where subscript r denotes the rth-order derivative of distribution with respect to parameter x. 

In order to illustrate the DSC approximation, consider a function F(x). In the method of DSC, 

numerical approximations of a function and its derivatives can be treated as convolutions with 

some kernels. According to DSC method, the rth derivative of a function F(x) can be 

approximated as [13] 
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where  is the grid spacing, xk are the set of discrete grid points which are centered around x, 

and 2M+1 is the effective kernel, or computational bandwidth. It is also known, the 

regularized Shannon kernel (RSK) delivers very small truncation errors when it use the above 

convolution algorithm. The regularized Shannon kernel (RSK) is given by [14] 
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The researchers is generally used the regularized delta Shannon kernel by this time. The 

required derivatives of the DSC kernels can be easily obtained using the below formulation 

[15] 
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3. Fundamental Equations 

 

The governing equations for free vibration of tapered beam-column embedded in Winkler 

foundation (Fig. 1) using the Euler-Bernoulli beam theory can be written as: 
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The transverse displacement w is assumed to be 
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Substituting expression (8) into equations (6-7) and normalizing the equation yields 
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in which EI is the flexural rigidity of beam-column, w is the transverse deflection, p is the 

applied axial load,  k is the Winkler parameter,  is the mass density, A is the cross-sectional 

area, I  the second moment of area of cross-section, E the Young’s modulus,  and  is the 

circular frequency.  

 

Non-dimensional variables are given below: 

 

X=x/L, W=w/L and =Ls/L 

 

By using these non-dimensional quantities, Eqs. (9-10) can be written as 
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Figure 1: Tapered piles and cross-section embedded in elastic foundation 

 

The taper ratios are given as 

 

01 / hhα   and 01 /bbβ       (13) 

 

Using DSC discretization the Eq. (8) takes the form 
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Pinned boundary conditions are considered for both edges. Related equations are given as 
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After implementation of the given boundary conditions in Eqs. (14a) and (14b) can be 

expressed by 

 

    ,2
UUR ω      (16) 

 

where U is the displacements vector, R  is the stiffness matrix.  

4. Numerical Examples 

Some results for mode shapes are provided in Figs. 2-5 and Table 1. In these results the value 

Pcr is the critical buckling load. In order to comparison with the results calculated by SAP 
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2000 structural analysis program, the results provided in dimensional form in this last 

example.  The dimensions of the beam-column embedded in Winkler foundation studied in 

this example are: the length is L=4 m; the mass density is  = 7849 kg/m
3
; the elasticity 

modulus is E=210
8
 kN/m

2
. 41-Node frame elements are used for modeling of beam-column 

via SAP 2000 [28].  

 
Table 1. Comparison study of circular frequency parameters (rad/sec) of Euler-Bernoulli beam 

column embedded in Winkler foundation (=0.75; P=Pcr; ==1.0)  

 

k 

SAP-2000 

(41 nodes) 

Frame element 

Present DSC 

N=9 

Present DSC 

N=11 

Present DSC 

N=15 

 Mode 1 (1) 

1 89.81 89.826 89.818 89.818 

10 90.45 90.472 90.459 90.459 

100 96.04 96.069 96.042 96.042 

1000 140.02 140.102 140.023 140.023 

                     Mode 2 ( 2) 

1 358.40 358.429 358.421 358.421 

10 358.53 358.568 358.56 358.56 

100 359.73 359.749 359.746 359.746 

1000 371.49 371.501 371.495 371.495 

                   Mode 3 (3) 

1 803.18 803.189 803.182 803.182 

10 803.23 803.240 803.232 803.231 

100 803.73 803.744 803.735 803.734 

1000 808.71 808.733 808.728 808.726 
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Figure 2: Variation of modal displacements with the length of beam-column 

 (==1; =0.75; k=10000) 
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Figure 3: Variation of modal displacements with the length of beam-column for different 

Winkler parameters  (==1; =0.75; Mode 1) 
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Figure 4: Variation of modal displacements with the length of beam-column for different 

Winkler parameters  (==1; =0.75; Mode 2) 
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Figure 5: Variation of modal displacements with the length of beam-column for different 

Winkler parameters  (==1; =0.75; Mode 3) 
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Figure  6: Variation of modal displacements with the length of beam-column for different 

ratio of supported length to total length of beam-column (k =10000; ==1; Mode 1) 
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Figure  7: Variation of modal displacements with the length of beam-column for different 

ratio of supported length to total length of beam-column (k =10000;==1; Mode 2) 
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Figure 8: Variation of modal displacements with the length of beam-column for different 

ratio of supported length to total length of beam-column (k =10000; ==1; Mode 3) 
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Figure 9: The variation of errors with grid numbers 

It is concluded from these figures that, the effect of k is significant for first three mode shapes.  

It is clearly shown in Table 1 that, the DSC results are very good. The reasonable accurate 

results can be obtained for N=11 in DSC analysis. It is also shown from these figures (Figs. 2-

8), the mode shapes have a less effect for small Winkler parameter (k 1000) and then rapidly 

changes with increasing value of k. The effect of  on mode shapes has also been investigated 

and results presented in Figs. 6-8. It is concluded that, with the increase of mode numbers the 

effect of the  on the mode shapes is insignificant. The effect of supported length to total 

length  is more effective for the first two modes. Fig. 9 depicted the variation of errors with 

grid numbers for first three modes. In general, the errors are decreased with increasing value 

of N. The accurate results are obtained for N=9 for first second mode. For higher modes 

however, the accurate results are obtained for N=11. 

5. Concluding remarks 

Modal analysis of tapered piles embedded in Winkler foundation is the investigated. The 

efficiency and accuracy of the present method have been demonstrated on the basis of 

presented numerical examples.  
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