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Abstract 

In this paper, the mathematically correct solution to more general physical situation such as magnetohydrodynamic 
Veronis’s [17] thermohaline convection problem for the case of dynamically free, thermally insulating and electrically 
perfectly conducting boundaries is obtained. Some important results pertaining to the validity of principle of exchange of 
stabilities has been derived and discussed in detail. 

Keywords: Convection; magnetohydrodynamic; principle of exchange of stability; viscosity. 

1. Introduction 

The principle of thermal convection is an important phenomenon that has applications to different 
areas such as geophysics, food processing, oil reservoir modelling and thermal insulator design etc. 
The classical theory of Bénard convection in horizontal layers of fluids heated from below has been 
treated both experimentally and theoretically by Pellew and Southwell [12]. The thermal convection 
of Newtonian fluid under various assumptions of hydrodynamics and hydromagnetics was discussed 
in detail by Thompson [15], Linhert and Little [9] and Chandrasekhar [4]. 

In the past few decades, considerable interest has been evinced in the study of magnetohydrodynamic 
thermohaline convection because it has various applications in oceanography, astrophysics, 
limnology and chemical engineering etc. A good account of thermohaline convection problems is as 
studied by Gupta et al. [6, 7, 8], Banerjee et al. [1, 2, 3] and Mohan [10]. For the 
magnetohydrodynamic Bénard convection problem, Banerjee et al. [3] noticed some shortcomings in 
the solution of problem as derived by Chandrasekhar [4]. These shortcomings have been removed 
and the correct solution has been constructed for the problem by Banerjee et al. [3] for the case of 
dynamically free, thermally insulating and electrically perfectly conducting boundaries. 

In the present paper, the method of Banerjee et al. [3] is followed and mathematically correct solution 
is obtained to more general physical situation such as magnetohydrodynamic Veronis’s [17] 
thermohaline convection problem for dynamically free, thermally insulating and electrically perfectly 
conducting boundaries. 

2. The Physical System and the problem 
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Consider an electrically conducting viscous Boussinesq fluid confined between two boundaries  
  and   of infinite horizontal extension in the presence of uniform vertical magnetic 

field, acting parallel but opposite to the force field of gravity, and being acted upon by a uniform 
vertical adverse temperature gradient. Then under appropriate conditions, a phenomenon of more 
general convective motions, an outcome of hydrodynamic instability, is realised which is termed as 
magnetohydrodynamic Veronis’s thermohaline convection (Veronis [17], [18]), Shirtcliffe [14], 
Turner [16], Normand et al. [11], Chen and Johnson [5], Rudraih and Shivkumara [13]) 

2. Governing equations and boundary conditions 

The governing equations and boundary conditions in their non-dimensional forms for the 
magnetohydrodynamic Veronis’s [17] thermohaline convection problem wherein dynamically free 
boundaries are thermally insulating and electrically perfectly conducting  are given by (c.f. Gupta et 
al. [6], Banerjee et al. [3]) 

,                   (1) 

,                  (2) 

,                 (3) 

,                 (4) 

      at    and ,                    (5) 

 at    and ,                   (6) 

    at    and ,                    (7) 

      at    and ,                    (8) 

     at    and ,                    (9) 

wherein the symbols used have the same meanings as given in Banerjee et al. [3] with the difference 
that the solute concentration ϕ  and the relevant solute concentration equation (3) are also 
incorporated here (  and  for this problem). 

Combining equations (1)-(4) and boundary conditions (5)-(9) in an appropriate manner we derive the 
following system of equations and the associated boundary conditions in terms of w alone (similarly 
for θ and hz alone can be obtained), namely 

Lw = 0.                              (10) 

      at    and ,                                    (11) 

 where 
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                 (12) 

                 (13) 

                 (14) 

                 (15) 

3. Mathematical analysis and results 

The equations (2), (4)-(7) and (9) are the same as in Banerjee et al. [3], so the solutions for hz, w and 
θ  are the same which are given, respectively, by the following equations 

                 (16) 

                 (17) 

and 

               
                                                                                     (18) 

With w given by equation (18), equation (3) becomes 

                 (19) 

Solving equation (19) by making use of boundary conditions (8), we get 
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                 (20) 

Equation (20) gives the mathematical correct solution for the solute concentration variable  by 
making use of the solution of Banerjee et al. [3]. 

With w given by equation (17), equation (10) becomes 

       (21) 

which can be written in the form 

                   (22) 

where 

                                         (23) 

                                         (24) 

                                                                                                       (25) 

and  
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                 (26) 

Multiplying equation (22) by   (since the first order derivative with respect to z of the 
left hand side of equation (22) vanishes at ) and integrating the resulting equation over the 

range of z, we obtain 

 ,      (m =0, 1, 2, 3…),                     (27) 

where  is the Kronecker’s delta. 

Equations (27) provide a set of linear homogenous equations for the constants Cn and the requirement 
that the determinant of this system of equations must vanish provides the characteristic equation for 
the determination of R and pi when . We thus obtain 

.                          (28) 

The nth approximation to the characteristic values of R and pi is obtained by setting the nth order 
determinant consisting of the first n rows and columns in the left hand side of equation (28) equal to 
zero, and this corresponds to the retention of the first n terms only in the Fourier expansion of the 
form  

 .   (c. f. Banerjee et al. [3]) 

The corresponding result for Veronis’s thermohaline convection is 
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           (29) 

from which it follows uniquely that the lowest characteristic value of R and the associated value of 

ip  are given by the equation 

 S0  = 0,                                                                                (30) 
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since αn  and βn  are non-zero numbers for every permissible value of n except for n = 2 and n = 1 
respectively while  γn  does not vanish for any permissible value of n. Further, since equation (30) is 
valid whatever be the value of n, it follows that it is the unique solution that provides the lowest 
characteristic value of R and the associated value of pi as given by the characteristic equation (28). 

We complete the solution of the problem by demonstrating that  and  which are respectively 
given by equations by (16) – (18) and (20) and satisfy equations (2) – (4) along with boundary 
conditions (5) – (9) also satisfy equation (1). 

To prove this we consider equation (10) which can be written in an alternative form as 

,                                    (31) 

where          and 

, 

while the boundary conditions on E are given by  

 at   and ,                            (32) 

which follows from equation (20). 

Multiplying equation (31) by E* (the complex conjugate of E) throughout and integrating the 
resulting equation over the range of z by making use of boundary equations (32), we get upon 
equating imaginary part of this latter equation 

.                         (33) 

But, since , it follows from equation (33) that E = 0 for all z in , which can be written 

in the form as 

  for all z in ,                                           (34) 

where  , 

    at   and ,                                       (35) 

Similarly, multiplying equation (34) by F* (the complex conjugate of F) throughout and integrating 
over the range of z by making use of boundary conditions (35), we get upon equating the imaginary 
parts of this latter equation 

.                                                                                                         (36) 

But, since  it follows from equation (36) that F = 0 for all z in  which is in turn implies 

that equation (1) is also satisfied. 



H. S. Jamwal and G. C. Rana 

7 
 

4. Results and Discussions 

The above analysis leads to the following results: 

Result 1. An exact solution of differential equations (1) – (4) and boundary conditions (5) – (9) is 
given by equations (16) – (18) and (20).  
together with the characteristic equation (30)  i. e. S0 = 0, which reads 

  
                                                    (37) 
Now, letting  

 (pi is real),   and  in equation (37), we get from the 

resulting equation after some simple arrangements 

       (38)   
Assuming , we get upon equating the real and imaginary parts of equation (39), respectively, 
as 

,                                     (39) 

and 

.                                  (40) 

Eliminating R1 from equations (39) and (40) and then making some simple arrangements, we get 

.                                              (41) 

From equation (41) it follows that it cannot be satisfied if  and , for, pi would then be 
purely imaginary which contradicts the hypothesis that ip  is real. We arrive at this contradiction on 

the assumption that . This leads to the following result: 

Result 2: If  and  then  i. e. if  and  then the ‘principle of exchange 
of stabilities’ is valid or equivalently if  then the Thompson-Chandrasekhar sufficient condition 
for the validity of this ‘principle’ is true. Writing equation (41) in an alternative form as 

 .                                   (42) 

From equation (42) it follows that if  and , then 
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. 

This leads to the following result: 

Result 3. If  and  and  then  i. e. if  and  and 

, then the ‘principle of exchange of stabilities’ is valid or equivalently if  and 

 then the Gupta et al. [8] sufficient condition for the validity of this ‘principle’ is true. 
Also, from equation (42) it follows that if  and  then  

 

This leads to the following result: 

Result 4. If  and  and   then   i. e. if  and  

and    then the ‘principle of exchange of stabilities’ is valid. 

Nomenclature 
p Complex growth rate 

d Depth of fluid layer     

g Gravitational acceleration vector 

D Linear differential operator 

  Temperature 

a Wave number 

H Magnetic field 

Greek Symbols 

� Kinematic viscosity    

η Coefficient of magnetic diffusivity    

 Thermal diffusivity 

 Solute diffusivity 

 Coefficient of volume expansion  

 Coefficient volume of expansion due to solute gradient 

 Adverse temperature gradient 

 Non-adverse solute gradient      

 Magnetic permeability 
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  Thermal Rayleigh number 

   Chandrasekhar number 

   Thermal Prandtl number 

    Magnetic Prandtl number 

    Lewis number 
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