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Abstract

In this paper, the mathematically correct solutimnmore general physical situation such as magnataidynamic
Veronis’s [17] thermohaline convection problem foe case of dynamically free, thermally insulatard electrically
perfectly conducting boundaries is obtained. Soamgortant results pertaining to the validity of priple of exchange of
stabilities has been derived and discussed in Hetai
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1. Introduction

The principle of thermal convection is an importphienomenon that has applications to different
areas such as geophysics, food processing, oiivasenodelling and thermal insulator design etc.
The classical theory of Bénard convection in hartablayers of fluids heated from below has been
treated both experimentally and theoretically bilddeand Southwell [12]. The thermal convection
of Newtonian fluid under various assumptions ofreglynamics and hydromagnetics was discussed
in detail by Thompson [15], Linhert and Little [@hd Chandrasekhar [4].

In the past few decades, considerable interesbd@s evinced in the study of magnetohydrodynamic
thermohaline convection because it has various iGimns in oceanography, astrophysics,
limnology and chemical engineering etc. A good actaf thermohaline convection problems is as
studied by Gupta et al. [6, 7, 8], Banerjee et [, 2, 3] and Mohan [10]. For the
magnetohydrodynamic Bénard convection problem, Beaet al. [3] noticed some shortcomings in
the solution of problem as derived by ChandrasekarThese shortcomings have been removed
and the correct solution has been constructednmptoblem by Banerjee et al. [3] for the case of
dynamically free, thermally insulating and eleaitig perfectly conducting boundaries.

In the present paper, the method of Banerjee g]ak followed and mathematically correct solutio
is obtained to more general physical situation sash magnetohydrodynamic Veronis's [17]
thermohaline convection problem for dynamicallyefrehermally insulating and electrically perfectly
conducting boundaries.

2. The Physical System and the problem
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Consider an electrically conducting viscous Boussin fluid confined between two boundaries
1 1 . e s . . . . . .
z=—= andz = += of infinite horizontal extension in the presemfeuniform vertical magnetic

&

field, acting parallel but opposite to the forceldi of gravity, and being acted upon by a uniform
vertical adverse temperature gradient. Then ungpropriate conditions, a phenomenon of more
general convective motions, an outcome of hydrodyoanstability, is realised which is termed as
magnetohydrodynamic Veronis’'s thermohaline conwect{Veronis [17], [18]), Shirtcliffe [14],
Turner [16], Normand et al. [11], Chen and Johr{&pnRudraih and Shivkumara [13])

2. Governing equations and boundary conditions

The governing equations and boundary conditionsthair non-dimensional forms for the

magnetohydrodynamic Veronis’s [17] thermohaline vamtion problem wherein dynamically free

boundaries are thermally insulating and electrycp#rfectly conducting are given by (c.f. Gupta et
al. [6], Banerjee et al. [3])

(D*—a?) (D*— &> —E)w =Ra’ —¢ — QD(D? —a?)h,, (1)
(D? —a® —p)f = —w, (2)
(o7 e =)o =~ 5w ®
(p?- & —2%)h, = —Dw, (4)
w=0 atz=—§ andz=+§, (5)
Dzw=l]atz=—§ andz = —I-E (6)
D8 =0 atz=—% andz=+%, (7)
@ =0 atz=—% andz=+%, (8)
h,=0 atz=—% andz = —I—E 9)

wherein the symbols used have the same meaningjgeasin Banerjee et al. [3] with the difference
that the solute concentratiop and the relevant solute concentration equation a® also

incorporated herer, = 0 andt = 0 for this problem).

Combining equations (1)-(4) and boundary conditi(d)s(9) in an appropriate manner we derive the
following system of equations and the associatachtary conditions in terms of w alone (similarly
for 6 andh; alone can be obtained), namely

Lw = 0. (10)
w=0=Dw=Lw=L,w=L,w atz=—- andz=+3, (11)
where
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L=(D?—a®)(D?— a—p)(ﬂ‘—a ——j{(ﬂ‘ a——)(D‘ a® - 2%) -

T 3

o) 50 (5 —2)~2E 01— -2 .
=007 (0 —2) 07t (r )0 0 22
%]JF{P(%‘%]_“:}DZJFW] (13)
L,=D3D*—a?) (p?—a? -2)(D?—a* -2) + Ra?D {p (1-1) + D2} -

5203 +Qp(a? +22){a? +2-22(a? +22)} + {02 + 2 2% (22 ¢
ot +{a +p(2-2)p J(07-a*-2) (14)

(15)

3. Mathematical analysis and results

The equations (2), (4)-(7) and (9) are the sama Banerjee et al. [3], so the solutions fgrw and
@ are the same which are given, respectively, byfdhowing equations

I R pey | | 3l2n +1)%-521
hz_le - —m D [(En-i- 1)*n*+a* + ][—-{EHH i }00531?24—
Lﬂ_a}cos.ﬁﬁz] + ¥ C.cos(2n+ 1)nz
(s7m® +a7 +E22] (16)
1 woo Ln oy 2 27
W = 1o, &m= ﬁm[(zﬂ—l' 1)*n? + a’ —I-p ][E[En-l— 1)* — 5%}sin3mz +
(2n + 1)? — 3%}cos5nz] + En 05 +1} [[En +1)x2 4+ a2 +E ]sm(En—F 1)z 17)
and
1 - Ch (- poy Im+1) -
g = lom “=n= .}ﬁ [(ET’L"‘ 1] ']'1' + CI + ] [{m} sin3mz +
(2mn+1)2-3% c, m+1}“n“+a +%} .
{551r5+ﬁ ip }COSEHZ] + Z” =0z n+1:'{ (Zn+1):n* +a®+p sin(2n + 1)z
(18)
With w given by equation (18), equation (3) becomes
(D‘ —a’ ——)cp ==} ﬂ'.n +1} [[ER—F 1)t + a? -I-FJ ]sm[Zn-I— 1wz —
20 J,LTI}[EEH 1?2 + a +2%] [{(2n + 1)* — 5%} sin3mz +
{(2n+1)? — 3%}cos5nz] (19)

Solving equation (19) by making use of boundarydiions (8), we get
3
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Bl g GDTT [ Pﬂ] (Zn+1)%-57]
99_16.‘“_ n=0" (2p31) (Eﬂ-l-lj e +f1 + [{m sindmz +

{(zn+1}5—3

o,
e (Zm+1)%n® 2" +2
Blmltalsl

}cos.‘:’mz] + En E'I"nli} i o }sin[:zn-i- 1)mz
( ; -

(20)

Equation (20) gives the mathematical correct sotufior the solute concentration variakéeby
making use of the solution of Banerjee et al. [3].

With w given by equation (17), equation (10) beceme

1em <=0 (an+1)

L5, =0 ((an+ 1)%% + a? + 22 }[[(En-i- 1)2 — 52) {(397:9 +
)3 +a* +p) (Pt + @@ +2) (2 + 0 +2) (37 + 0 +22) +
32?:2@) + (32?:2 +a?+22 (R'S—:E(Ezﬂ'z + a® +p) — Ra? (32?:2 +a+
E))}siﬂEﬁz +((2n+1)?2— 39 {(5%:9 +a?)(sn% + a® +p) (577 + o +
—)[(5 n* +a? +2)(5%n% +a® +22) + 5% Q)

(52?12 +a’+ E (RS—E(E:H2 + a* +p) — Ra® (52112 + a? +$))}sin5ﬁz] +

e +ﬂ{(2n+ 1)1+ a* +“}[([2n+1}2n2+a23((3n+ 1)1 +a? +
p][[szr 1) +a® +2){((2n+ )20 +a? + 2) (2n + 1)2n? +a? +E2) 4
Q(2n + 1]2?rz}+ ((Zn-i- 1)?n? + a? +%) {T((2n+ 1)+ a®*+p) —

Ra®((2n+ 1)%n% +a® +2)}|sin(2n + Dnz= 0, (21)

which can be written in the form

o Cola, S sin3nz + §,5,5in5mz) + X, C,. ¥, 5,.5in(2n + 1)z = 0, (22)
where
(- 2 z 2, 2 2 T
@ = Lempn@nt D7 =5} {(2n + 1) +a® + 72 (23)

(-7 2 z 2, 2 2 o

(Zn+1)%n® +a2 +225

= = (25)

(In+ilm

and
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5.= {((2n+ 1?2+ a®)((2n+ 1%+ a® +p) ((2n+ )7 + 0 +
HH(n+ 10222+ & +2) ((2n+ )27 +a? +22) + 9 (2n+ 1)n 2} +

(@r+ 12 +a? + 22) B (an + 1)%02 + @ +p) — Ra* ((2n+ 1Pr +

a? +%)} 26)

Multiplying equation (22) bsin(2m 4+ 1)mz (since the first order derivative with respecttof the
left hand side of equation (22) vanishes at i%) and integrating the resulting equation over the

range of z, we obtain
= oC (5,6, +85.5,0,, +v5.0..)=0  (m=0,1,23..), 27)
whered,,,,, is the Kronecker’s delta.

Equations (27) provide a set of linear homogenausgons for the constan®, and the requirement
that the determinant of this system of equationstraanish provides the characteristic equation for
the determination of R ang wherp,. = 0. We thus obtain

"ansl'ﬁlm + J@nsz Szm + Tnsngnm” =0. (28)

The nth approximation to the characteristic valoE® andp; is obtained by setting the nth order

determinant consisting of the first n rows and outs in the left hand side of equation (28) equal to
zero, and this corresponds to the retention offitesen terms only in the Fourier expansion of the
form

h, —d,cos3z —d,cos5z = X7_,C, cos(2n + 1)mz. (c. f. Banerjee et al. [3])

The corresponding result for Veronis’s thermohatoavection is

VoS, 0 0 o 0 o0 0
0,8 @S+yS 0 aS aS @S a,.8,
BoS, 0 B:S: V.S, BsS, BiS, BsS BsS
0 0 0 v:S, 0 0 0
0 0 0 0 S 0 0
y4 4 - O, (29)
0 0 0 o o0 0 V.S

from which it follows uniquely that the lowest chateristic value of R and the associated value of
p, are given by the equation

S =0, (30)
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sincea, andp, are non-zero numbers for every permissible vafue except fom = 2 andn =1
respectively whiley, does not vanish for any permissible value ofurtlter, since equation (30) is
valid whatever be the value of n, it follows thaid the unique solution that provides the lowest
characteristic value of R and the associated vaflpeas given by the characteristic equation (28).

We complete the solution of the problem by dematisiy thath_. w, 8 and¢ which are respectively
given by equations by (16) — (18) and (20) andsbatequations (2) — (4) along with boundary
conditions (5) — (9) also satisfy equation (1).

To prove this we consider equation (10) which canvitten in an alternative form as
z_ 7 2 _ 2 poy —
(D? — a? —p) (D o? — 22 )E 0, (31)
where p=ip,.p, #0 and
E = (Dz —a’ —?j{[ﬂz —a?) (Dz —a® —E]w— Ra*6 + ¢ +QD(D? —azjhz},
while the boundary conditions on E are given by

DE=0=D atz=—1 andz = +1, (32)

=

which follows from equation (20).

Multiplying equation (31) bye" (the complex conjugate dE) throughout and integrating the

resulting equation over the range of z by making as boundary equations (32), we get upon
equating imaginary part of this latter equation

p, (=) [ (IDEP® + a*|EI®) dz = 0. (33)

But, sincep; = 0, it follows from equation (33) that E = 0 for allin —3,3] which can be written
in the form as

@ﬂ—a?—ﬁjﬁzufmanuﬂ—gﬂ, (34)

where F = (D? — a?) (Dz—az _ij_gg29+¢;+qp[p:—q2]hz,

1 1
DF =0=D atz=-=> andz= +-, (35)

=

Similarly, multiplying equation (34) bg" (the complex conjugate of F) throughout and integga
over the range of z by making use of boundary dandi (35), we get upon equating the imaginary
parts of this latter equation

B [TIFI2dz = 0. (36)

But, sincep; # 0 it follows from equation (36) that F = O for alirz [—3%] which is in turn implies
that equation (1) is also satisfied.
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4. Results and Discussions
The above analysis leads to the following results:

Result 1. An exact solution of differential equations (1)4) @nd boundary conditions (5) — (9) is
given by equations (16) — (18) and (20).

together with the characteristic equation (303. & = 0, which reads

(2 +a%)(n? + a® +p) (% +a° + ) [(H2+a2 +2) (7% + a? + 22) + gn? ] =

POy

[RQE(TIE'FEI:+§)—#[HE+QE+PJ]( 2+t e 2 -

(37)
Now, Iettlng
x = Ez,ipi- == £ (pi is real), R, = w‘“R—"- =% and @, = —z in equation (37), we get from the
resulting equatlon after some simple arrangements
1+x 1+ ﬁ _ 2,0 _
[( [1+ 1oz B ?3 E-I‘l‘ - [1 —. remye sl -:.rg H (1 + j{,1+x}n+,p
R, { . R,
(14x)%+ :} R e e (38)

Assumingp, + 0, we get upon equating the real and imaginary paresquation (39), respectively,
as

R, _ R, 14 2.
(tx) 4™ ru:1+x:|=+£+( * )[1 " (142)24EL 7 I )
and

R, = Rs, 1#x Qo —
(14+x)%4p; " o i 14x) % 4p T ( o J{I:l_l__x}z_i_ﬁn'i‘_n 11 (40)
EliminatingR; from equations (39) and (40) and then making ssim@le arrangements, we get

R, (t—-1) 1+x Q, ey
'I.""‘I:1-|-Jt’:'z-|",‘.:ll:z o ( FX ) |1+x}5+“ zI:l' z (1 + ﬂ]] (41)
g2

From equation (41) it follows that it cannot beisad if T = 1 and o, < o, for, p; would then be
purely imaginary which contradicts the hypothebat tp, is real. We arrive at this contradiction on

the assumption that, # 0. This leads to the following result:

Result 2:If T = 1andgy, < o thenp, =01. e. if T = 1 andg; < o then the ‘principle of exchange
of stabilities’ is valid or equivalently if = 1 then the Thompson-Chandrasekhar sufficient canditi
for the validity of this ‘principle’ is true. Writig equation (41) in an alternative form as

1+o=—2Ed () ( Fale ) (42)

. iFoy 2 242
,~1+I]z+ﬂg—z 1+ o214 +p;

From equation (42) it follows thatif < 1 andg; = o, then

Q1(oy — ) x Rs._ﬂ
- (1+x)? +—t—L+(1+x)(rf(1+x]2+pf)
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R, ox
{1+ x)3
R, ox

< @yoy +

= Qlal + 3"5_2.'-?[
R o
< Qigi + 21_2
=@ wi~ + zfi:*'

This leads to the following result:

Result 3.1f z<1ando; >0 and Q=+ == <1 thenp;=0 i e ifr<1ando; >o and

0=+ fj—:: < 1 then the ‘principle of exchange of stabilities'vialid or equivalently ifr = 1 and

o, = g then the Gupta et al. [8] sufficient condition the validity of this ‘principle’ is true.
Also, from equation (42) it follows thatif < 1 anda, = g then

R,(-9 Qo) RG-D

-

317 m? 31im
This leads to the following result:

Result 4.1f r < 1 ande, > o and 2%=2) 4 Fs(-7)
_— = Jrigt

= 1+ g then the ‘principle of exchange of stabilitiesvalid.

=1+othenp;=0 i.e.ifft=1ande =0

R (1-7)
riat

and 22 4
=

Nomenclature
Complex growth rate
Depth of fluid layer
Gravitational acceleration vector

p

d

g

D Linear differential operator
T Temperature

a Wave number

H Magnetic field

Greek Symbols

v Kinematic viscosity

n Coefficient of magnetic diffusivity

Kk Thermal diffusivity

k. Solute diffusivity

a Coefficient of volume expansion

ez, Coefficient volume of expansion due to solute grat
£ Adverse temperature gradient

£. Non-adverse solute gradient

L, Magnetic permeability
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]
R =224 Thermal Rayleigh number
Q= % Chandrasekhar number

o, =~ Thermal Prandtl number

g =2 Magnetic Prandtl number

!
i

T= % Lewis number
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