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Abstract:  

In the present manuscript, we developed a systematic formulation for some type graphene sheets having annular 

sector, sector shaped or curvilinear side graphene located on a silicone matrix via nonlocal elasticity theory for 

numerical solution. An eight-node curvilinear element is used for transformation of the governing equation of 

motion of annular sector graphene from physical region to computational region in conjunctions with the thin 

plate theory. Silicone matrix is modeled by using the Winkler-Pasternak elastic foundations. The formulation is 

usefully for different shaped graphene sheets. 
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1. Introduction 

After invitation of carbon nanotubes, micro scaled mechanical systems had been widely used 

in microcomputers, biomedical, micro electromechanical purposes and modern industries. For 

examples; thin films, nano-sheet resonators, biomedical devices, nano electro mechanical 

applications, micro props, paddle-like resonators, atomic force microscopy, mechanical 

actuators and nano sensors. Graphene based structures have been also widely used in micro-

electro-mechanical systems (MEMS) for high frequency and high sensitive purposes for 

example molecular gas detectors, solar cells, integrated circuits and nano ribbons due to their 

ultra mechanical, thermal, optical and electrical properties [1-6]. Mechanical properties are 

widely investigated of the graphene sheets by researchers [7-12] in the past ten years.  

It is known that the analysis based on the classical elasticity theory does not take into 

consider the internal length scale effect of nanostructure. To introduce the size effect to the 

governing equations, material length scale parameters must be taken into account. Atomistic 

simulation model or hybrid atomistic-continuum model are computationally expensive.  So, 

some higher-order continuum theories have been proposed by this time. In the early of 1970s, 

nonlocal elasticity theory is proposed by Eringen [13] for modeling of the length-scale 

problems in continuum mechanics. By this time, this theory is widely used by researchers for 

modeling of micro- or nano-scaled structures [14-28]. In the literature, mechanical 

characteristics of rectangular and circular nano/micro plates have been investigated via 

nonlocal elasticity. The effects of elastic matrix on frequency had been investigated just for 

rectangular and circular micro plates or graphene, by this time. In the present study, however, 

free vibration analysis of micro-scaled annular sector and sector graphene resting on an elastic 

matrix is firstly investigated using the geometric transformation based on the nonlocal 

continuum theory in conjunction with the discrete singular convolution method.  
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2. Discrete singular convolution (DSC) 
 

The method of discrete singular convolution has recently been proposed for engineering and 

mathematical physics problems by Wei [29] in 1999 via theory of distributions. After this, 

Wei [30,31] first introduced this method for solving mechanical problems. By this time, a 

variety of structural mechanics problems have been analyzed using the method of DSC [32-

40] in successfully. In the present paper, details of the DSC method are not given in detail; 

interested readers may refer to the works of [41-53]. Consider a distribution, T and )(tη as an 

element of the space of test function. A singular convolution can be defined by [32] 

 

 




dxxηxtTtηTtF )()())(()( ,       (1) 

 

where )( xtT  is a singular kernel. For example, singular kernels of delta type [33] 

 

)()( )( xδxT n ;    (n =0,1,2,...,).       (2) 

 

Kernel )()( xδxT  is important for interpolation of surfaces and curves, and )()( )( xδxT n  

for n>1 are essential for numerically solving differential equations. With a sufficiently smooth 

approximation, it is more effective to consider a discrete singular convolution [34] 

 

)()()( xfxtTtF kk

k
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where F (t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on 

which the DSC is well defined [32-35]. Note that, the original test function (x) has been 

replaced by f(x). This new discrete expression is suitable for computer realization. The 

mathematical property or requirement of f(x) is determined by the approximate kernel T α .  

Recently, the use of some new kernels and regularizer such as delta regularized was proposed 

to solve applied mechanics problem. The researchers is generally used the regularized delta 

Shannon kernel by this time [30-37]. The Shannon’s kernel is regularized as [34] 
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where  is the grid spacing. It is also known that the truncation error is very small due to the 

use of the Gaussian regularizer, the above formulation given by Eq. (4) is practical, and has an 

essentially compact support for numerical interpolation. Equation (4) can also be used to 

provide discrete approximations to the singular convolution kernels of the delta type [35] 
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where )()( xxδxxδ kk α   and superscript (n) denotes the nth-order derivative. The 

2M+1 is the computational bandwidth which is centred around x, and is usually smaller than 

the whole computational domain.  In the DSC method, the function f (x) and its derivatives 

with respect to the x coordinate at a grid point xi are approximated by a linear sum of discrete 

values f (xk) in a narrow bandwidth [x-xM, x+xM ]. This can be expressed as [36] 
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where superscript n denotes the nth-order derivative with respect to x. The xk is a set of 

discrete sampling points centred around the point x,   is a regularization parameter,  is the 

grid spacing, and 2M+1 is the computational bandwidth which is usually smaller than the size 

of the computational domain [36,37]. For example, the second order derivative at x=xi of the 

DSC kernels for directly given [38] 
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The discretized forms of Eq. (7) can then be expressed as 
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3. Geometric mapping 

 

By using the transformation rule, a non-rectangular physical domain (Figs. 1-7) can be 

easily transformed into a normalized computational domain via geometric mapping. This 

technique has been widely used in the finite elements and differential quadrature methods by 

this time. In order to transformation from physical domain to computational domain, let 

consider an eight-node curvilinear quadrilateral domain as shown in Fig. 1(a). Thus, the 

following equations are used for the coordinate transformation [43,44]  
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Hence, first-order, and second order derivatives of a function are given via chain rule 
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where i  and  i  are the coordinates of Node i in the - plane, and ijJ are the elements of the 

Jacobian matrix. These are expressed as follows; 
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Thus, an arbitrary-shaped quadrilateral plate may be represented by the mapping of a square 

plate defined in terms of its natural coordinates in different numerical applications [43-48]. 

Shape functions for related points are given as follows 
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4. Nonlocal elasticity theory 

After the invention of carbon nanotubes, scaled-based continuum approaches are being 

popular in modeling of the micro or nano sized structures. As stated by Eringen [13] the linear 

theory of nonlocal elasticity leads to a set of integro-partial differential equations for the 

displacements field for homogeneous, isotropic bodies. According to the nonlocal elasticity 

theory of Eringen’s, the stress at any reference point in the body depends not only on the 

strains at this point but also on strains at all points of the body. This definition of the 

Eringen’s nonlocal elasticity is based on the atomic theory of lattice dynamics and some 

experimental observations on phonon dispersion. In this theory, the fundamental equations 

involve spatial integrals which represent weighted averages of the contributions of related 

strain tensor at the related point in the body. For homogenous and isotropic elastic solids, the 

linear theory of nonlocal elasticity is described by the following equations [13]:  
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where klσ is the nonlocal stress tensor, ρ is the mass density of the body, lf  is the body (or 

applied) force density, lu is the displacement vector at a reference point x in the body, 

)(xτkl
 is the classical (Cauchy) or local stress tensor at any point x in the body, )(xεkl

 is the 

linear strain tensor at point x  in the body, t is denoted the time, V is the volume occupied by 

the elastic body, xxα   is the distance in Euclidean form, λ and μ are the Lame constants. 

The non-local kernel xxα   defines as the impact of the strain at the point x  on the stress at 

the point x in the elastic body. The value of   depends on the ratio ( lae /0 ) which is material 

constant. The value a depends on the internal (granular distance, lattice parameter, distance 

between C-C bonds as molecular diameters) and external characteristics lengths (crack length 

or wave length) and 0e is a constant appropriate to each material for adjusting the model to 

match reliable results by experiments or some other theories. If  xα  takes on a Green 

function of a linear differential operator given as [13] 
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the nonlocal constitutive relation given by Eq.(20) is reduced to the differential equation 
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Furthermore the integro-partial differential equation given by Eq. (19) is also reduced to the 

following partial differential equation 
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Eringen (3) proposed a nonlocal model for this linear differential operator given as 
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where 2 is the Laplacian. Consequently, the constitutive relations can be written as 
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5. Fundamental equations 

 

Let us consider a single graphene in Cartesian coordinate systems. The displacement fields 

are given as 
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where vu,  and w are the displacement functions of the middle surface of the graphene. The 

strain components are then given below: 
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by using the Eq. (27), the non-local constitutive equations can be written as 
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Similarly, the stress-strain relations write 
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Stress resultants of the micro graphene can be given as 
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Fig. 1 Sector shaped graphene 

 

 

Fig. 2 Triangle shaped graphene 

 

 

Fig. 3 Annular sector shaped graphene 
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Fig. 4 Square shaped graphene 

 

 

 

 

 

 

 

 

Fig. 5 Graphene with curvilinear coordinates 
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Fig. 6 Circular shaped graphene  

 

 

 

Fig. 7 Annular shaped graphene 

 

 

The equations of motion for isotropic plate via Hamilton’s principle are given 
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By using the Eqs. (33-35) and Eqs. (36-40), the nonlocal forces can be obtained as 
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Similarly, moment resultants and shear forces are obtained as 
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By using the Eqs. (48-50) and Eq. (44), governing equation for free vibration of a graphene 

sheet on elastic matrix via nonlocal thin plate theory can be given by  
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We assume a harmonic solution for free vibration in the form 

 
tieyxWtyxw ),(),,(          (48) 

 



Kadir Mercan, Çiğdem Demir, Bekir Akgöz, Ömer Civalek 

 

 

66 
 

Substituting the Eq. (48) into the governing equation of motion (Eq.47) can be expressed  
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Eq. (49) can also be written in compact form as  

 

 ),()(),(),( 222

0
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where D  is the coefficient of bending rigidity for plate, h is the plate thickness, ρ  is the 

density, x and y are the midplane Cartesian coordinates. Consider the following differential 

operators before discretizing the governing differential equations  
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Thus, the fourth-order derivatives can be given in terms of the second order derivatives, that 
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After the transformation process, the following form can be given for the first- and second- 

order derivatives respectively 
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Similarly, the fourth-order derivatives 
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Using the differential operators in Eqs. (53-55), the governing equation, i.e., Eq. (50), takes 

the following form  
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Employing the transformation rule, the governing equation (49) becomes, 
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DSC rules from Eq. (6) in Eq. (65), one obtains the DSC analog of the governing equations as  
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For convenience and simplicity, the following new variables are introduced [49] 
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Such that the governing equations of annular sector graphene on elastic matrix for free 

vibration can be expressed 
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To obtain the discretized form of Eq. (61) in its natural coordinate, we use the following form 

 

)()( 224

 WW          (62) 

 

Substituting the first and last line of Eq. (61) into Eq. (62) the governing equation can now be 

given by  
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7. Concluding remarks 

 

  The formulation for free vibration of micro or nano-scaled non-rectangular graphene has 

been presented by the nonlocal elasticity theory. The method of discrete singular convolution 

is used for numerical simulation and geometric transformation. The elastic matrix under the 

graphene is modeled via Winkler-Pasternak two-parameter elastic foundations. A general 

formulation has obtained for graphene including the curvilinear coordinates. So, the resulting 

equation is capable to obtain frequency for rectangular, square, circular, annular and sector 

shaped graphene under size effect. 
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