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Abstract 

Bending of microtubules due to a point load has been investigated by using Euler Bernoulli beam theory. The 
governing equations are derived based on Hamilton’s principle. The size effect is taken into consideration using 
the Eringen’s nonlocal elasticity theory. Some parametric results have been presented for nonlocal beam. 
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1. Introduction 

MTs are proteins which are organized in a network that is interconnected with microfilaments 
and intermediate filaments to form the cytoskeleton structures [8]. The main investigation 
areas are determining material, physical, chemical properties [7]-[16]-[17]. 
In nano and micro-sized structures which the size effect is important, for instance carbon 
nanotubes, microtubules, Nano electromechanical systems and micro electromechanical 
systems, and mathematical modeling of cancer cells etc., the nonlocal elasticity theory 
(Eringen) is commonly used. Applying first the nonlocal elasticity theories to nanotechnology 
is by Peddieson et al [2]. Then, many researchers have been interested in the static and 
dynamic analysis of the CNTs [9]-[10-14]-[18-25]. The mechanical response of microtubules 
is first investigated by Gao and Lei [15]. Currently is still done a lot of work on this subject 
[4-6], [26-38]. 

2. Nonlocal Elasticity 

According to the nonlocal elasticity theory of Eringen [1], the stress at any reference point is 
effecting the whole body which not depends only on the strains at this point but also on strains 
at all points of the body. This definition of the Eringen’s nonlocal elasticity is based on the 
atomic theory of lattice dynamics, and some experimental observations on phonon dispersion. 
The simplified version of the Eringen nonlocal elasticity theory is as followed, 
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where e0 is a material constant, and a is the internal characteristic lengths, respectively. 
The specific form of the Eq. (1) for beams [11]-[12] 
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3. Bending analysis under point load  

A typical structure of protein microtubules and continuum model subjected to point load 

are shown in Figs.(1) and (2). In order to calculate the deflection of microtubules, Nonlocal 

Euler-Bernoulli Beam theory will be used. For modeling, L is the length of microtubules, Rout 

and Rin outer and inner radius, t thickness, E Young’s modulus, e0a nonlocal parameter. 

 

Fig. 1. A typical protein microtubules  

Fig. 2. Continuum model of microtubules with variable loadings  

    In case of the effect of the point bending moment or point load is applied on structure, 
Dirac-  function can be used. Dirac-  function is generally used for mathematical modeling 
of the loads which are applied for very short time. Heaviside Step Function is used to express 
the effects which start and continue at any time. There are a derivative relationship between 
Dirac-  function and Heaviside Step Function. [13-14] 
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   The definition of Dirac-  function and Heaviside Step Function for specific value range is 
as follows [13-14]: 
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The general equation of nonlocal Euler-Bernoulli Beam under uniform distributed and point 
load is as followed: 
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    Where Pi is point load at i, ai is the location of the loads at i, q is the uniform distributed 
loads on the structure. The deflection of the beam which is under P point load on any ‘ l ’ 
location (q=0); 
 

 
)(

6
)(

26
)()(

3

43

2

2

3

1 lxHlxPcxcxcxclxHlxPEIw 


   (6) 

 
3.1. Case study for cantilever beam 
 
The boundary conditions for this case are, 
 

at x=0: 0
dx
dww    at x=L: 0 MV .        (7)   

 
 Using boundary conditions, the deflection is given by, [13-14] 

 

 












26
)(

6
)()()(1)(

233 PlxPxlxHlxPlxHlxP
EI

xw   (8) 

 

The deflection occurring at x=l, 
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4. Numerical Examples 
 

In this study, the beam deflection under point load applied to various locations is 
investigated. Some of the results which are showing the deflection are presented in Figure (3). 
This result in ratio of deflection shows the local deflection up to nonlocal deflection. 
w(x)/(PL^3/EI) is used for non-dimensional deflection. Nonlocal parameter is used e0a/L. The 
parameters used in this study are: the length to average radius (L/Ravg)=10; the elasticity 
modulus is E=0.1 Gpa; point load is P=1 Nn; the moment of inertia is I=πtRavg

3. 
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Fig.3. The effect of the small scale parameter on the non-dimensional length with respect to 
the ratio of deflection and non-dimensional deflection for cantilever beam. 

The load in (a) is at the middle of beam, in (b) at the x/L=1 and in (c) on the support. 
 
 

The influences of the small scale parameter on the non-dimensional length against the 
deflection ratio and non-dimensional deflection for cantilever microtubules subjected to a 
concentrated load are illustrated in Figs. 3(a, b, c), respectively. As seen in Figs. 2 (a,b,c), the 
location of the applied point load is considered as at the middle, at the free end and at the 
fixed end of the microtubules, respectively. Figs. (2a) and (2b) show that the effect of 
nonlocal parameters after the location of point loads. This situation has been also mentioned a 
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previous work by Wang and Liew [14]. An interesting behavior is observed in Fig.(3c) that an 
unexpected displacement occurred at the support due to the loading in this point. In case of 
the load is on the support, there will be no deflection on the beam according to local elasticity 
theory but according to nonlocal elasticity theory the beam can capable to deflection shown in 
Fig. (3c). This situation can be explained by the aforementioned definition of the nonlocal 
elasticity theory. 

5. Concluding remarks 

Bending analysis of microtubules is the investigated for cantilever case. Present equations 
from literature are used in a new perspective. The deflection is occurred in case the load on 
the support for nonlocal elasticity. 
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