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Abstract 
 
In this study, a new 5-node discrete Kirchhoff flat shell element with 30 degrees of freedom (dof), called DKP30, 
was proposed. This element was developed by superposing the15-dof membrane element and the 15-dof plate 
bending element at the element level. In developing procedure Allmansi interpolation function was utilized for 
drilling dof of the membrane element while the plate bending element was derived via discrete Kirchhoff plate 
formulation. In order to test its performance the patch test was first applied to the DKP30 element and it was 
then subjected to the standard test problems and compared with the shell elements available in the literature. 
The numerical results showed that the proposed 5-node thin flat shell element, DKP30, passed the patch test and 
presented moderate accuracy and high performance while its usage as a transition element with a 4-node 
DKQ24 thin flat shell element was also found to be possible.  
 
Key Words: 5-node Membrane Element, 5-node Plate Bending Element, 5-node Flat Shell Element, Discrete 
Kirchhoff Formulation. 
 
 
1. Introduction 
 
Because the formulation of the plate/shell finite elements is an important and relatively 
difficult subject, finite element analysis of plate/shell has been receiving continuous attention 
since the early days of the development of this method. In the literature, a great number of 
papers dealing with shell elements have been published for linear and non-linear analysis. 
Recently, a detailed review of shell elements available in the literature has been given in [1]. 
Generally, shell elements can be classified into three categories: curved elements, 
isoparametric curved elements (degenerated elements) and flat plate/shell elements [2, 3]. The 
important models for shell elements were developed since last 40 years and they were applied 
to the practical problems. Unfortunately, among all these models there would not be a model 
which was general and wide enough to simulate every individual problem. Therefore, the 
most closely and correctly simulating one are chosen to be used to simulate the real problems. 
The flat shell element type was the first finite element shell analysis to approximate the true 
shell shape. In this method, the membrane and bending stiffness are superposed at the element 
level and the coupling between them was provided by transforming the local degree of 
freedom (dof) to the global ones. The flat shell elements are widely used in engineering 
practice due to the simplicity of the formulation, the effectiveness of the computation and the 
flexibility in applications. T12 [4] element obtained by superposition of the constant strain 
triangle (CST) and the Morley [5] triangular flat shell element. During the years, many flat 
shell triangular elements have been presented, such as DKT12 ve DKT15 [6], DKT18 [7, 8], 
DLR18 [9], DKT27 [10,11,12], DKT24 [13], HCT18 [14], HSM18 [15], TRUNC [16] and 
TRIC [17]. Moreover, 4-node quadrilateral DKQ16 element was also proposed by Batoz and 
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his co-workers [3] as well as triangular flat shell element. This quadrilateral plate/shell 
element has been presented by combination of the quadrilateral membrane element, RQ4, [18] 
and a quadrilateral discrete Kirchhoff plate bending element, DKQ8. Later on, 5-node 
(pentagonal) discrete Kirchhoff flat shell element with 20 dof, DKP20, was obtained directly 
by the superposition of the membrane element (RP5) with 10 dof and the discrete Kirchhoff 
plate bending element (DKP10) with 10 dof by Batoz and coworkers [6].  
 
A similar 5-node flat shell element with 30 dof has not been developed so far to our 
knowledge. The purpose of this research work is, therefore, to present a 5-node plate/shell 
element named DKP30 by combination of the 5-node membrane element (RP15) with drilling 
dof and the refined 5-node discrete Kirchhoff plate bending element (DKP15) with 15 dof 
(Fig.1) [1]. In the following sections the details of the formulation of the DKP30 flat shell 
element were presented. 
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Fig.1. Five-node DKP30 flat shell element. a) membrane b) discrete Kirchhoff plate 

 
2. The formulation of shell element  
 
Figure 1 shows 5-node shell element with the combination of the membrane (Fig. 1.a) and the 
plate (Fig. 1.b) elements. In these figures, general coordinate axes are denoted by  ZY, X,  
with )θ ,θ ,θ  w, v,(u, zyx degrees of freedom while  z y,  x, show the local coordinate frame. In 
these definitions u, v and w are the displacements defined on the X, Y and Z axes while 

zyx θ and θ,θ  are the positive rotations about the same axes, respectively.  
 
2.1 The formulation of membrane element with drilling degree of freedom 
 
The Lagrangian shape functions of 5-node membrane element in the natural coordinates can 
be written as  
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where )5,4,3,2,1i ,(N i =  is the shape function of the 5-node element 
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From virtual work equation the following classical formulations are obtained. 
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and E is modulus of elasticity, t  is the shell thickness, ν  is the poisson ratio, [ ]Q  is the 
transformation matrix between the global and local cartesian coordinates, [ ]dD is the elastic 

material constants matrix for plane stress case, [ ]dK  is the local stiffness matrix, and 

{ }ije (i,j=1,2,3) are the direction cosines between two coordinate frames. Moreover, iG is 
valid for only 1,2,3,4,5i =  whereas the other indices take the values of 1 3, 2, 5, 4,j = , 

2 1, 4, 3, 5,k = , 6 9, 8, 7, 10,l =  and 7 10, 9, 8, 6,m = .  
 
2.2 The formulation of discrete Kirchhoff Plate Bending Element  
 
Because of the C0-continuity requirement, compatible displacement 5-node elements based on 
the Kirchhoff thin plate theory are very difficult to formulate. In order to develop a 5-node 
discrete Kirchhoff plate bending element, DKP, an alternative expansion of discrete Kirchhoff 
element approach are used here. The elements obtained by this method satisfies C1 continuity 
requirement on the element boundary and applied to triangular [DKT6, DKT9, IDKT, DKT-
BK, RDKT, DKTP, DKL, DKTL, etc] and quadrilateral plate elements [DKQ, SLICK, 
DKQ8, IDKQ, RDKQ, DKQP, Semiloof, etc]. 
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The functional in deriving the element stiffness matrix of a Kirchhoff plate can be given as  
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whereκ and bD are the matrix of curvatures of the element and the elasticity matrix, 
respectively and can be defined as 
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Let us now define the rotations xθ and yθ in order to obtain the formulas for a new Kirchhoff 
plate element as  
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where iN are the shape functions of the 5-node element in the natural coordinates. In order to 
derive 5-node element as shown in Fig. 2-a, the additional parameters xjθ  and yjθ at the mid-
node of the element boundary as shown in Fig. 2-b can be eliminated by the use of the 
interpolation functions of the boundary displacements.  
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                                               (a)                                            (b) 
                 Fig. 2. Plate bending element. a) 5-node element, b) 10-node element 
 
For example, the interpolations of displacements, nθ

~ and sθ
~ , along the boundary 5-2, which 

are linear and quadratic, respectively, are derived by using the parameters niθ , siθ , and 

iw )2,5( =i . They can then be expressed as,  
 

2255
~

nnn LL θθθ +=       (10) 
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( ) ( ) ( ) ( ) 25222255255525 2/62/6~
sss LLLwLLLLLLwLLL θθθ −++−+−=   (11) 

 
where njθ  and sjθ are the slopes at nodes )2,5( =jj for the normal and tangential directions, 

respectively. Moreover, sθ
~ is based on the fact that the deflection iw on the same boundary 

should be cubic. 52L , is the length of 5–2 boundary and 525 /1 LsL −=  and 522 / LsL =  in 
which s is the coordinate along the boundary (Fig. 2-a). 7nθ  and 7sθ  at the mid-node 7 on the 
element boundary 5-2 are determined by substituting the values 5.025 == LL into Eqs. (10) 
and (11) as 
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At any point on the boundary, the relation between sjnj θθ ,   and yjxj θθ ,  can be given as 
follows: 
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in which l and m are the direction cosines of the boundary. The expression for the mid-node 7  
on the boundary can be calculated by substituting Eq. (14) at 2,7,5=j  into Eqs. (12) and (13) 
as 
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where [ ]2

7
1

77 TTT =  is called cyclic permutation matrix and given as 
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The expressions for the rotations of the rest of the mid-nodes at 10,9,8,6=j  are obtained in a 
similar fashion by using cyclic permutation matrix ( )10,9,8,6=jT j  and given in terms of the 
nodal parameters ( )yjxjjw θθ ,,  for 5,4,3,2,1=j as follows: 
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The complete formulations of the element rotations for bending strain of the 5-node plate 
element DKP are determined by substituting Eqs. (17)– (24) into Eq. (9) as follows:  
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Next thing is now to form the element stiffness matrix. This can be achieved from the element 
displacement matrix shown in Eq. (25) by using the well known displacement finite element 
method and can then be expressed as follows:  
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where [ ]eD  is the elastic bending stiffness matrix and the values for functions x(y)ndf,

indm,
K A  are 

given in reference 1. The relation between the force and displacement is given as follows.  
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3. The stiffness matrix of 5-node shell element 
 
The stiffness matrix for 5-node shell element in global coordinates was obtained by 
superposing the stiffness matrices of membrane and bending elements. 3x3 Gauss integration 
points are used for the solutions of the all equations.  
 
 
4. Numerical examples 
 
The derived element formulation has then been implemented in an extended version of the 
general purpose finite element program FEAP [19] to develop 30-dof DKP30 element for the 
finite element analysis of plate/shell problems. In order to test the robustness, accuracy and 
efficiency of the DKP30 flat shell element, a number of well-known benchmark tests [20,21] 
are applied to a set of plate and shell problems and some of them are given in the following 
sections.  
 

4.1. Membrane and bending patch test 
 
A rectangular plate under membrane forces and bending moments was investigated according 
to [20]. Fig. 3 shows the mesh, geometry and the material properties of the plate element. The 
coordinates of nodal points for the element are given in Table 1 while the loading and 
boundary conditions are tabulated in Table 2. The numerical results obtained for the patch test 
are also tabulated in Table 3 while Fig. 4 illustrates the rotation distribution about Y axis at 
constant bending loading. The results showed that the present element passed the patch test 
under both the membrane and bending loading conditions.  
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Fig. 3. Meshing for the Patch test of the DKP30 flat shell element 
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 Table 1. Nodal coordinates for nodes of the DKP30 flat shell element 
 

Node X Y 

1 0.00 0.00 

2 0.24 0.00 

3 0.24 0.12 

4 0.00 0.12 

5 0.04 0.02 

6 0.18 0.03 

7 0.16 0.08 

8 0.08 0.08 

9 0.11 0.025 

 
 

Table 2. Boundary and loading conditions for the Patch test 
 

 BCs 
(1: fixed, 0: free) Loads 

Constant strain in  
X-direction 

1: 1,1,1,0,0,1 
2: 0,1,1,0,0,0 
4: 1,0,1,0,0,0 

2: Fx = 0.06 ; Mz = -0.0012 
3: Fx = 0.06 ; Mz =  0.0012    

Constant strain in  
Y-direction 

1: 1,1,1,0,0,1 
2: 0,1,1,0,0,0 
4: 1,0,1,0,0,0 

3: Fy = 0.12 ; Mz = -0.0048 
4: Fy = 0.12 ; Mz =  0.0048 
2: Mz =  0.0048 

Constant shear in  
X-Y plane 

1: 1,1,1,0,1,1 
4: 1,0,1,0,0,0 
 

2: Fx = - 0.048 ; Fy  =  0.024 
3: Fx =   0.048 ; Fy  =  0.024 
 4:  Fy = - 0.024 

Constant bending, 
My=8.889e-8 

1: 1,1,1,1,1,1 
2: 0,0,0,1,0,0 
3: 0,0,0,1,0,0 
4: 1,0,1,1,1,1 

2: My = 5.33 10-9 
3: My = 5.33 10-9 
 

Constant biaxial bending, 
My=3.333e-8 

1: 1,1,1,1,1,1 
2: 0,1,1,0,1,0 
4: 1,0,1,1,0,1 

2: Mx = 2. 10-9 
3: Mx = 2. 10-9 
3: My = -4. 10-9 
4: My = -4. 10-9 
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Table 3. Patch test results obtained for the DKP30 flat shell element 
 

 

Constant 
strain in X-
direction 
[x10-4] 

Constant 
strain in Y-
direction 
 [x10-4] 

Constant shear 
in X-Y plane 
[x10-4] 

Constant 
Bending, 
[x10-4] 

Constant 
Biaxial 
Bending, 
 [x10-4] 

DKQ24 u2 = 2.8932 
u3 = 2.811 

v3 = 1.2 
v4 = 1.2 v3 = 2.4 θ3y = 2.3985 θ3x = 1.2057 

w3 = 0.144 

DKP30 u2 = 2.8514 
u3 = 2.8109 

v3 = 1.2 
v4 = 1.2 v3 = 2.4 θ3y = 2.3985 θ3x = 1.2064 

w3 = 0.144 

ANSYS 
(Shell 63) 

u2 = 2.43614 
u3 = 2.36386 

v3 = 1.2 
v4 = 1.2 v3 = 2.4 θ3y = 2.3985 θ3x = 1.2285 

w3 = 0.144 

 
 

 
 

Fig. 4. Rotation ( )yθ  distribution for the DKP30 flat shell element 
 
4.2. Scordelis-Lo roof problem 
 
The Scordelis-Lo roof problem provides a rigorous test of an element’s ability to represent 
inextensional bending and complex states of membrane strains. Fig.5 represents a cylindrical 
roof supported by rigid diaphragms and loaded by its own weight. The material and 
geometrical data of the problem are also shown in Fig.5. Because of the double symmetry, 
only one quarter of the cylindrical roof is discretized and modeled with DKP30 elements. The 
displacement at the midside of the free edge, normalized with respect to the theoretical 
solution (w=0.3024) obtained by MacNeal and Harder [20], by taking the ratios of the 
deflections in Y-direction to the theoretical ones, was compared to the solutions of the other 
elements such as DKQ24 [1], SRI [22], MITCA4 [23], TRIC [17], Mixed [24], and QPH [25].   
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Fig. 5. Scordelis-Lo roof problem 

 
The results of comparison were tabulated in Table 4 and showed that the DKP30 flat shell 
element had a better solution than that of TRIC element. The deflection distribution of DKP30 
elements was presented in Fig. 6. 
 
 

 
 
Fig. 6. Deflection distribution respect to Y-direction for the DKP30 flat shell element 
 
 
               Table 4. Deflection ratios in the Y-direction for Scordelis-Lo roof problem 
 

Element type vfem/vexact 
SRI 0.964 
MITCA4 0.940 
Mixed 1.083 
QPH 0.940 
TRIC 0.697 
DKQ24 1.128 
DKP30 1.190 
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4.3. Pinched cylinder problem 
 
Fig. 7 illustrates the benchmark problem of a cylindrical shell supported by two rigid 
diaphragms under the load of two opposing concentrated forces. In the pinched cylinder 
problem, shear locking is more severe than membrane locking. Due to the symmetry, one-
eighth of the cylinder is modeled with 4x4 mesh. 
 

L/2 L/2

Fy

R

Fy

Sym

Sym

Sym

 
6L=600, R=300; t=3; E=3.0x10 ; υ=0.3  

Fig.7. Pinched cylinder roof problem 
 

 
The deflection ratios obtained in Y-direction by using DKP30 elements for cylindrical shell 
problem are compared with the other elements available in the literature and given in the 
Table 5. It is clearly seen from the table that the closest solution to the theoretical one is 
obtained from the DKP30 elements. The deflection distributions of the DKP30 elements are 
shown in Fig. 8. 
 
                Table 5. Deflection ratios in the Y-direction for cylinder problem 
 

Element type vfem/vexact 

SRI 0.373 

RSDS 0.469 

MITCA4 0.370 
Mixed 0.399 
QPH 0.370 
TRIC 0.412 
ANS6S 0.502 
DKQ24 0.644 
DKP30 0.650 
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Fig. 8. Deflection distribution in the Y-direction for cylinder problem using the DKP30 
element 

 
4.4. Hemispherical shell problem 
 
This problem consists of a thin hemisphere with four alternating point loads applied around 
the equator. The problem is illustrated in Fig. 9 with geometrical and material properties. 
Symmetry boundary conditions were applied to the appropriate outer edges of the quarter 
hemisphere model for simulation.  

P

P
P

R

Z
X

 

7R=10; t=0.04; E=6.825x10 ; υ=0.3; P=2.0  

Fig. 9. Hemishperical shell problem 
 
 

The displacements in the X-direction are obtained and shown in Fig. 10 for hemispherical 
problem modeled by using DKP30 elements. The results are compared with the other 
elements available in the literature and given in the Table 6. This table clearly showed that the 
third best solution was obtained from the DKP30 elements by giving better solution from SRI, 
MITCA4, Mixed, QPH, and DKQ24 elements. 
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Fig. 10. Displacement distribution in the X-direction for hemisphere problem using DKP30 
element 

 
 Table 6. Displacement ratio in the X-direction for hemisphere problem 
 

Element type ufem/uexact 
SRI 0.412 

RSDS 0.965 
MITCA4 0.390 

Mixed 0.651 
QPH 0.280 
TRIC 1.022 

DKQ24 0.777 
DKP30 0.961 

 
 
4.5. Skew plate 
 
Fig. 11 shows a uniformly loaded skew plate with its dimensions, material properties and the 
skew angle of β=40°. Mesh refinement was performed by starting from upper right end point 
(point A) where the maximum deflection occurs to the center of the plate. The results 
obtained for the deflection at point A using the both elements, DKQ24 and DKP30, are shown 
in Figure 12 and in Table 7. It is clearly seen from this table that the results are getting closer 
to the exact solution when both DKQ24 and DKP30 elements are used together than the 
results obtained from DKQ24 elements alone.  
 

L

β

AB

 
o 9L=10; t=0.2; β=40 ; E=200x10 ; υ=0.3, q=-1.0  

 
Fig. 11. Skew cantilever plate with 4x4 mesh 
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Fig.12. Deflection distribution for skew plate 
 
 
 Table 7. Deflection values for skew plate  
 

Total 
element 
number 

Deflection, wA/(Et3/qL4) Error (%) Exact 

4 1.4437 (DKQ24) 46.42 
16 1.2284 (DKQ24) 24.16 
64 1.1778 (DKQ24) 19.04 
28 1.1141 (DKQ24/DKP30) 12.64 
40 1.1125 (DKQ24/DKP30) 12.44 

0.9894 

 
 
5. Conclusion 
 
In the present study, a derivation was pursued in order to develop the 5-node DKP30 flat shell 
element and an investigation was taken place to determine its accuracy and performance as 
well as its applicability as a transition element along with 4-node DKQ24 flat shell element. 
The results showed that DKP30 passed the patch test. The proposed element was then 
subjected to the known benchmark test problems and the results were compared to those of 
the different elements available in the literature. It is clearly seen from the comparison results 
that the acceptable convergence ratios and accuracies are obtained from the proposed element. 
Finally, it can be concluded from the skew plate examples that the proposed 5-node DKP30 
element can be used along with the 4-node DKQ24 as a transition element where mesh 
refinement is necessary. 
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