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Abstract

We generalize the lower bound estimates for eigenvalues of the twisted Dirac operator on
compact Riemannian Spin“—submanifold obtained by Roger Nakad and Julien Roth in
(Archiv der Mathematik 104(5), 453-461, 2015).
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1. Introduction

The Dirac operator, is the fundamental part of the Seiberg—Witten equations, has
been investigated since more than three decades by both mathematicians and physicists
[2,6,10,19,20]. Since the Schrodinger—Lichnerowicz formula is expressed depending on
both the Dirac operator and the scalar curvature of the manifold, it allows to obtain a
lower bound for the eigenvalue of the Dirac operator, and depending on the minimum value
of the lower bound basic information about the topology and geometry of the manifold
can be obtained [3,4,12-14,21]. Accordingly, the first lower bound corresponding to the
eigenvalue of the Dirac operator was given by A. Lichnerowicz in 1963 as follows [16]:

. )

Here R denotes scalar curvature of the manifold. The above estimation is obtained by us-

ing the classical spinorial Levi—Civita connection defined on Spin—manifolds. T. Friedrich

improved (1.1) by summing the classical spinorial Levi—Civita connection with an asso-

ciated spinor field which is multiplying with a scalar function defined on manifold. T.
Friedrich’s estimation is given as follows [5]:
n

N>_—— R, 1.2

“4(n—-1) (12)

where n denotes dimension of the manifold. Equality case is characterized by a non—trivial

real—Killing spinor and the manifold is an Einstein. At this stage, O. Hijazi improved

(1.2) based on the first eigenvalue of the Yamabe operator as follows [10]:

9 n
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ATz 4(n — 1)“1’ (1.3)
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where n > 3 and p; is an eigenvalue of the Yamabe operator defined as:

Y =4

n—1

— 2A + R. (1.4)
Here A is a Laplacian acting on functions. Afterwards, these estimates were investigated
on the Hypersurface manifolds and submanifolds endowed with Spin—structure and new
estimates were obtained in [12,13]. The lower bound estimation for a first eigenvalue of
the twisted Dirac operator defined on a submanifold endowed with a Spin—structure is
given by N. Ginoux and B. Morel [7].

Throughout this paper, we deal with the eigenvalues of the twisted Dirac operator

defined on the compact Riemannian Spin®—submanifold. Accordingly, first estimation is
given by M. Herzlich and A.Moroianu as follows [9]:

> 1.
= An—nM" (1.5)

where p1 denotes the first eigenvalue of the perturbed Yamabe operator Y given as:

Y = Y —¢,Q, (1.6)

here ¢, = 2 [%]% and |Q] is a norm of 2 curvature form defined on a line bundle of a given
manifold. Later, some estimates are obtained by adding some geometric invariant such as
Energy—Momentum tensor [4,8,17].

Just like in the Spin—submanifolds, R. Nakad and J. Roth applied N. Ginoux and B.
Morel’s method to obtain estimates on the compact Riemannian Spin®—submanifold in
[18]. The lower bound for the first eigenvalue of the twisted Dirac operator defined on an
r—dimensional Riemannian Spin®—submanifold M isometrically embedded into an (r+s)

dimensional Riemannian Spin® manifold M is as follows: If

-1
R+ Ry = |0 > —=||H|* > 0 (L.7)
and Mg = {x € M|®(x) # 0} then
1 T 2
o> i N - : :
= it (R RY el - ) (18)

Here RY is a spinorial curvature of the normal bundle NM and @ is a spinorfield [18].

In this paper, by defining modified spinorial Levi—Civita connections we give two es-
timates containing all inequalities obtained by R. Nakad and J. Roth as special cases.
In doing so, we will consider the modified scalar curvature in terms of the scalar curva-
ture of the submanifolds, its normal scalar curvature of the submanifold and arbitrary
real—valued functions which are defined as in the following section.

2. Twisted Dirac operator on the Spin°—submanifolds

Assume that (M,3) is an (r + s)—dimensional compact Riemannian Spin®—manifold
and (M, g) is an r—dimensional submanifold isometrically immersed into M. Here M
is endowed with Spin®—structure. Also, N is an s—dimensional normal bundle of M.
Recall that M and M defines a unique Spin¢—structure on the normal bundle N for more
information see [18]. The curvature 2—form of the corresponding auxiliary line bundle are
denoted by i€ and €. The spinor bundles over the manifolds M, N, M defined on I'(S)

are denoted by Sy, Sy and Sy, respectively and S := S 1\71| 1y 18 defined as follows:

(2.1)

S - Sym ® Sy, if r or s is even,
" )Sy @Sy © Sy ® Sw, otherwise.
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The spinorial Levi—Civita connection on S I and the induced spinorial Levi—Civita connection

on Sy are denoted by V and V, respectively. Accordingly, V is defined as follows

o (VSM ®Id+1d® VSN) & (VSM ®Id+1d® VSN), if r and s are odd,
B (VSM ®Id+1d® VSN), otherwise.

Consider {eq, ..., €., v1,...,v5} positively oriented local orthonormal basis of ™ | At a fixed
point p € M. Here {ey,...,e.} and {v1,...,vs} are positively oriented local orthonormal basis of
TM and N M, respectively.

For any spinor field ¢ = \Il’M,\I/ € I'(Sy;), the Clifford multiplication between I'(Sys) and

F(Sﬂ)‘M is defined by

Vud = (V~wL-\IJ)M, (2.2)
where w, is given by
ws, for s even,
wi= {—iws, for s odd, (2:3)

here w, denotes the complex volume form:

we = i[sgllvl C Vg, (2.4)

and w? = (—1)°. On the spinor bundle S one can define a Hermitian inner product denoted by
( , ) and satisfies the following properties:

(Vow-9,8) = —(w, -0,V-0)
(1) (,w. -V - @)
= —(®,V-w.-®), (2.5)
where V € TM and ® € T'(S) [15,16]. The spinorial Gauss formula is defined as [1] :
~ 1 <
Vv =Vyd+ o > ej-B(Vie)) - @, (2.6)
j=1

where ® € T'(S) and B is the component of the second fundamental form at p. Locally, Dirac
operators are defined as follows:

D® = Ze .V;®, D® = Z e; - Vi, (2.7)
=1 =1

and the twisted Dirac operator Dy is defined by

~ 1
Dy® .= (—1)SWL'D¢:(—1)SOJJ_'D®+§H'UJJ_'¢7 (2.8)

where H = 3" h(e;, e;) denotes the mean curvature vector field. On the submanifold (M, g) the
i=1
well—known formula twisted Schrédinger—Lichnerowicz formula is descibed by

(D*®,®) = (V'V®,9)+ i(RJr Ry )|®[ + %(Q - D, D), (2.9)

™
where V* denotes adjoint of V and RY :=2 (ei cej - Ig® Ré\i”ej(I), %) on Mg :={z e M:
ij=1
®(z) # 0}, and RY ., Stands for spinorial normal curvature tensor [7]. Integrating over M one
gets:

1 1
[Vl = [ [Nlof & [IHIPIRE + Ay Re(o - @.H - 8) - {(R+ RY)[0P
M M 4 4

—%(Q . @,)]v,.
(2.10)
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3. Estimating lower bounds

For any real—valued functions 7, w on M the modified scalar curvature is defined as [6,12,13]:
1
Ryue =R+ Ry —4yVu+4VyVu —4(1 - ;)72|du|2. (3.1)

In case v and u are vanished identically (3.1) induced to R, e = R+ RY. This means that all
estimates obtained in this paper coincides with R.Nakad and J.Roth estimates given in [18].

Proposition 3.1. The following inequality is satisfied for any ® € I'(S),
(i2-@,2) > -Z|alof, (3:2)
where || is the norm of Q with respect to g given on M [18].

Theorem 3.2. Assume that (M, g) is a compact (r > 2)—dimensional Riemannian Spin®—submanifold
isometrically immersed into (r + s)—dimensional Riemannian Spin®—manifold (M,q) and g is
the first nonzero eigenvalue of Dy associated with the eigenspinorfield ® € T'(S). If

Qe = {(7,u, P)r (Rywe — cmlQ) > (r = D] H|* > 0}, (3-3)

where v,u are real—valued functions, then one has

1 T 2
2 > - . _ B . .
Al 2 4Qi‘ffﬁ£(\/r — (Ryue = er|Q) HHII) (3.4)

Proof. For any real—valued functions u,y and ® € I'(S), consider the following modified spinorial
Levi—Civita connection defined on T'(S) by

1
VI = Vb + e, H &+ pdge; - wi - +Viud + LV, ue; - e; - D, (3.5)
2(rp—1) r

Here p in nowhere equals to % Accordingly, the norm of (3.5) is obtained as follows:

Vid]? = |v¢|2—%Re(D¢,H-q>)—zAHuRe(D@,wl@)

~v, | Bl PTEIPAE
+27§V1uRe(V1¢>,¢))+r[2(Tﬂ1)} 1H|12|®|

pol . gy ML
—&—r{(TH - 1):|M)\HR€(H P,w, (I>) = 1)

p—171v 242 2
—H‘Lﬂ_ 1};R6(H-<I>,du~¢>) + ru g | @
—ZMWAHRe(wl - O, du - <I>) + QM’Y)\HRB((UJ_ - D du - <I>) + 72| dul?|®|?

'yRe(H -® du - (I>)

72 72
2 |dul? @ + L-|duf?| 0], (3.6)

Using the equality obtained in (2.10) and (3.2), we get

N
- 1
/ (1 + T’uQ - 2,[14))\%[|(I)|2vg Z / [M _ g|Q| + (1 — 7)72|du|2 _ fyAU
M M 4 2 r
r2u? —2rp —rp? +2p —1)
_ H2] |,
+VyVu — ( A — 1) )IHII? |20,
(3.7)
Making use of (3.1) in (3.7), one has
1 Royva — ¢ |Q 1
NG > fsupinf( 7P > e« _ _(r=1) ||H|\2) (3.8)
yap M N T +rp? =20 (rp—1)2
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Suppose that 7(Ry e — ¢|Q]) > (r — 1)||H|[?> > 0 on Mg. Then by taking the following equality
on Mg

- D||H
(1 ry? — (- = DIA] | 59)
Ve (Boe — e 1)) — 1H]
and inserting (3.9) into (3.8), we get the desired result given in (3.4). O
Let 71 be the lowest eigenvalue of the self—adjoint operator RY defined by
RV T(S) — TI(S)
m
N
® — 2) ei-¢-Ido R, ®. (3.10)
i,j=1
Then R, .3 can be rewritten as:
~ 1
R=R+m —4Vu+4VyVu —4(1 — ;)72|du\2, (3.11)
This gives us the following corollary.
Corollary 3.3. Under the same conditions given in Theorem (3.2), if r > 2 and
Q’Yﬂhmﬁ’ = {(’Yvnl’uvq)”m(R%m-,u@ - CT‘QD > (T - 1)||H||2 > 0}
on M, then
2> L inf( L (R-e0|) - |\H||)2. (3.12)
- 4~ My r—1

Q%m yu, P

Under the conformal change of the Riemannian metric and using the classic arguments given
in [11-13] we can improve our estimates as in the following. Before doing this, let’s recall some of
the identities and definitions that will be used in our proofs.

Let S and S be the spinor bundles constructed on M with respect to the metric g and g = e2ug,
respectively. Here g is a conformal change of the metric defined on M with a real—valued function u.

Accordingly, the following relations are satisfied between the defined Hermitian metrics (, ) = ( , )E

on S and S , respectively:
(¥,9) = (T,3), and ViT = V-7, D(e”“5"T) = ¢ 5D,
(3.13)

where V = e %V, U, ® € I'(S), V € I'(TM) and D denotes the Dirac operator with respect to g.
The corresponding mean curvature vector field with respect to g = e?%g is

H=¢2 (H - rgradNu), (3.14)
and if we consider grad™u = 0, twisted Dirac operator Dy is described as:
_ (=1, — _(r+1)
DH(G 2 u\:[/) =e 2 uDH\I/ (315)
Finally, the curvature operator R is transformed to
= —1
R = R+m +4(TT — ) Au + 4V Vu
1
—((r—l)(r—Q)+4(2—7")'y+4(1— ;)72)|du|2. (3.16)

In the rest of this paper, by considering the regular conformal change of the metric § with grad™u =
0, on M we get the following estimates.

Theorem 3.4. Assume that (M, g) is an (r > 3)—dimensional compact Riemannian Spin®— submanifold

which is isometrically immersed into (r+ s)— dimensional Riemannian Spin®—manifold (M,q) and
Mg is the first nonzero eigenvalue of Dy associated with the eigenspinor field ® € T'(S). Under the
conformal change of the metric § = e2*g on M, assume that

Q= {(y,m,u,®)r(R - c[Q) > (r — V| H|? > 0}
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on Mg. Then we have

2 1 . r = 2
A2 45?}\%(\/7«1(R—CT|Q|)—|HII)- (3.17)

Proof. Con51der a non—trivial eigenvalue Ay of Dy associated with the eigenspinor field ®. Here
U= e T 1. Taking into account Dy V¥ = A\ye "W, H=e" v“H, R\I, = e 2“RY by applying ®
o (3.7), we get

_ 1 /=
/ (14 rp® —2p)e A5 [V 2oy > / f(R—cT|Q|
M M4

202 —2rp —rp? 4+ 2u—1 —
o TH— TR+ 20 ))||H||2)6_2u|‘1/|2’0§

(i — 12
(3.18)
Applying
- 1||H
(1—rp)? = (l JIH] , defined on Mg, (3.19)
5 (R = ) — [1H]|
into (3.18) one can obtained the estimates given in (3.17). O

In the following we improve our estimation in terms of the Energy—Momentum tensor.
Theorem 3.5. Assume that (M, g) is a compact r—dimensional Riemannian Spin®—submanifold
isometrically immersed into (r + s)—dimensional Riemannian Spin®—manifold (M,q) and g is

the first nonzero eigenvalue of Dy associated with the eigenspinor field ® € T'(S). Under the
conformal change of the metric g = e?“g on M, assume that r > 3 and

Q9 = {(v,m,u, ®)|(R — cr|Q +4|Qe*) > [ H|* > 0}, (3.20)

on Mg and where Q% defined on Mg as follows:

1 0]
f;, — 2(62 wi-V;®+e-wi - VP, |q)2> (3.21)
Then we have
1
M 2 s it (VR a9l + aigel — 1) (3.22)
(9108

Proof. For any real—valued functions p, v and ® € I'(S), consider the following modified spinorial
Levi—Civita connection on I'(S):

1
Ve = Vfb—%e CH-®+ phpe; - wi - ®+yViud + vuez ej- @
+(Q¢»)ilj6]‘ cwy D, (3.23)

where 7, p are real—valued functions and p nonzero for any point on M.
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By using the fact that trQs = Ag + Re (H D, | <I>|2 ), one can easily obtained the norm of
above modified spinorial Levi—Civita connectlon as follows:

1 1
Ve o2 = |V<I>|2+EAHRe(wL<I>,H-<I>)+m||H||2|<I>|272)\§,u\<I>|2
~AupRe(H - ®,w) - ®) + 27> Re(V;®, Vud) — 2|Qo|*|®[>
=1

|H|2|0 A Re(H - .0, - @) + miﬂRem @, du- D)

drp?
OV Re(H-®.du-®) — —AgRe(H - &,w, - @)
U i

1 Re(H%I),oJL'(I))
2rp @
+2ypAg Re(wy - @, du - ®) + 273 M\CI)|2+>\H;LR6(H P,w, - )

1@ + rAf 12 |®12 — 2AgpyRe(wy - @, du - @)

08
+9°[dul*| @[ — 2~ |dul*|®|* + 7|du|2|‘1>\2 +1Qaf*| 2.
Using the equality obtained in (2.10), we get
1
/ VOrd|2, = / ((1 + rp®) A5 @[ — (R+RN)|<I>|2 +(1- ;)p2|du|2\<b|2
M M

+(YA, — VAVu) D] — |Qq>|2|‘1>|2

2
2 +1 Re(H - ®,w, - ®
(L g R Bos ) g
4rp? 2rp| P4
—5(w-2,@))v,. (3.24)
e s Re(How o)’
By the definition given in (3.11) and | H||* — T\tﬂ > 0, one has
Rifcrm\) 14 rp?
1+ rp?) A5 @0, > / = elf) P o
| Gemtiape, = [T eR - (S e
2
1 9 Re(H~<I>,wl-<I>) 9 5 10
- - @ ) o
s (1] a2+ IQePIef v,
This give us
1 ((R=c |0 +4]Qq?) |H|?
Xy > sinf( -5 2
H = g 14+ rp? 2 (3:25)
In case (E — ¢ | +4|Qs[?) > [[H||? > 0 on Mg, p1 can be defined as:
- ]
(ry/ (R = 012 +41Qu ) ~ 121
(3.26)
on Mg. O

Under the conformal change of the metric § = e**g and grad™u = 0 on M one can obtained
the following theorem:

Theorem 3.6. Under the same conditions given in Theorem 3.4, If r > 3 and
ﬁQ(I)
on Mg, then we have

{71, ®)| (R — || + 41Qa?) > |[H|[> > 0}

]_ =3 2
¥ = sup int(V (R - el +41Qal) — ) (3.27)

M
Q@e Ve
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for some v, u real—valued functions.

Proof. Applying ¥ to (3.25),

_ 1r=
[ @t gy = [ G[R-alol+ et
M M4

1 + TIU‘Q) —2u |\,
— (g ) HIP €2 T g,
T
(3.28)
and making use the following defined real—valued function
H
. 1 5.29)
r(VR= el +a1Qul - 1)
one can easily obtained the desired result given in (3.27). g

1]
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