
Proceedings of International Mathematical Sciences

ISSN:2717-6355, URL:https://dergipark.org.tr/tr/pub/pims

Volume III Issue 2 (2021), Pages 98-108

Doi:

THE HASSE-MINKOWSKI THEOREM AND LEGENDRE’S

THEOREM FOR QUADRATIC FORMS IN TWO AND THREE

VARIABLES

PHUC NGO*, MEHMET DIK**

*BELOIT COLLEGE, BELOIT, WI 53511, U.S.A ORCID NUMBER: 0000-0002-9658-4877

**BELOIT COLLEGE, BELOIT, WI 53511, U.S.A. ORCID NUMBER: 0000-0003-0643-2771

Abstract. Determining the solvability of equations has been an extended

and fundamental study in Mathematics. The local-global principle states two
objects are equivalent globally if and only if they are equivalent locally at all

places. By applying this principle, the Hasse - Minkowski theorem is able to

identify the existence of rational solutions of an equation. This paper explores
the applications of the Hasse-Minkowski theorem to homogeneous quadratic

forms in two and three variables. After providing some of the necessary proofs

and definitions, we have been able to introduce some complete computer pro-
grams implementing the Hasse-Minkowski theorems and Legendre theorem

with some supporting functions like the Eratosthenes sieve.

Reasons for Retraction. Our paper was hugely inspired by Dr. Hohner’s
master thesis, “The Hasse-Minkowski Theorem in Two and Three Variables.” More
than half the length of our paper is our original programming implementation of
various theorems, like the Hasse-Minkowski theorem and Legendre’s theorem, and
many supporting concepts, along with the algorithm analysis. We also shorten
many proofs from Dr. Hohner’s paper by either providing an alternative shorter
version or summarizing them. We credit him in section 1 on the binary and ternary
quadratic form and the bibliography. However, the location of the credit section 1
was supposed to be before section 1, and this is a formatting mistake. Even though
we made an effort to credit Dr. Hohner’s work, it could still be insufficient. We
think it would be best to retract the paper for those listed reasons.

1. binary and ternary quadratic form

What follows has been inspired by The Hasse-Minkowski Theorem in Two and
Three Variables by Hoehner, S [1].
A quadratic form is a polynomial with all the terms of degree two. The 2-variable
quadratic form, which is also called binary form, has the following general form:

q(x, y) = ax2 + bxy + cy2. (1.1)

2020 Mathematics Subject Classification. Primary: 11C04; Secondaries: 11C00.

Key words and phrases. Hasse-Minkowksi; quadratic form; algorithm.
c©2021 Proceedings of International Mathematical Sciences.

Submitted on Published on Communicated by .

98

Similarly, the 3-variable quadratic form is called the ternary form and has the
general form of:

q(x, y, z) = ax2 + bxy + cy2 + dyz + ez2 + fxz. (1.2)

Theorem 1.1. Every quadratic form q in n variables over a field of characteristic
not equal to 2 is equivalent to a diagonal form:

q(x) = a1x
2
1 + a2x

2
2 + . . . + anx

2
n. (1.3)

Since the general form is equivalent to diagonal form, we only need to consider the
diagonal form to determine the integral solvability. Hence, we just need to look
at the equations of form q(x, y) = ax2 + by2 for the binary case and q(x, y) =
ax2 + by2 + cz2, where a, b and c are integers.
Consider the binary diagonal form. If we have any rational coefficient, by the
homogeneity of the equation g(x, y) = 0, we could clear the denominators to obtain
an equation with integral coefficients. We also claim that the greatest common
divisor of a and b is 1. Given that gcd(a, b) = g and g > 1, we could divide
ax2 + by2 = 0 by g to get q(x, y) = a

gx
2 + b

gy
2 and obtain gcd(ag ,

b
g) = 1.

Also, we assume that a and b are square-free. If a is not square-free, a = a′s2,
where a′ is an integer. Then, we have a = ax2 + by2 = a′(sx)2 + by2 = 0 . We could
repeat the same process to clear all the squares from a and b which eventually leads
to square-free coefficients.
Finally, we claim that ab < 0. If ab = 0, either one or both of the coefficients
is 0 and we could not obtain a non-trivial solution. And, if ab > 0, the equation
f(x, y) = ax2 + by2 will not have any solution since it would be either negative or
positive.
Similarly, following the same reasoning, we get pairwise relatively prime, square-free
coefficients for ternary form.

2. modular arithmetic

Definition 2.1. An integer is called a quadratic residue modulo n if there exists
an integer x such that

x2 ≡ q (mod n). (2.1)

Due to the Legendre symbol, we could speed up the process of determining if
a number is a quadratic residue modulo an odd prime. The Legendre symbol is
defined as below.

Definition 2.2. The Legendre symbol is a function of a and p, where p is an odd
prime, defined as:

(
a

p

)
=

1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

−1 if a is a non-quadratic residue modulo p,

0 if a ≡ 0 (mod p).

(2.2)

In addition, the Legendre symbol has the following properties:

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
99

(2) If a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
(3)

(
−1
p

)
= (−1)

p−1
2

(4)
(

2
p

)
= (−1)

p2−1
8

(5)
(
p
q

)(
q
p

)
= (−1)

1
4 (p−1)·(q−1).

For the proof of above Legendre symbol properties, see pages 99, 100 and 102 in
[3].
Furthermore, if an odd integer n has the prime factorization of pa11 pa22 . . . pakk and
any integer a, we have a generalization of the Legendre symbol called the Jacobi
symbol, stating that: (a

1

)
= 1 (2.3)(a

n

)
=

(
a

p1

)α1
(

a

p2

)α2

· · ·
(

a

pk

)αk

. (2.4)

Similar to the Legendre symbol, the Jacobi symbol also has some properties that
we use to prove the Hasse-Minkowski theorem:

(1)
(
a1a2
n

)
=
(
a1
n

) (
a2
n

)
(2) If a1 ≡ a2 (mod n), then

(
a1
n

)
=
(
a2
n

)
(3)

(−1
n

)
= (−1)

n−1
2

(4)
(
2
b

)
= (−1)

b2−1
8

(5) If gcd(a, n) = 1, then
(
a
n

) (
n
a

)
= (−1)

1
4 (a−1)·(n−1)

3. the hasse-minkowski theorem for binary forms

In order to prove the Hasse-Minkowski theorem for binary forms, we need the
following theorems.

Theorem 3.1. The Chinese Remainder Theorem. Suppose ni are pairwise coprime
and a1, a2,. . . ,ak is any sequence of integers, then there exists an integer x such
that:

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

(3.1)

and the solution x is unique modulo n, where n =
∏k
i=1 ni.

Theorem 3.2. Suppose a is an integer, b is a natural number, and let b =
∏n
i=1 p

εi
i

be the prime factorization of b. Then a is a quadratic residue modulo b if and only
if a is a quadratic residue modulo pεii for i = 1, . . . , n.

Proof for Theorem 3.2. Suppose a is a quadratic residue modulo b. We then
have a ≡ x2 (mod b) for some integer x. Since pεii | b, we also have a ≡ x2 (mod
pεii).
To prove the order direction, if a is a quadratic residue modulo pεii , we have a ≡ x2

100

(mod pεii), if j 6= k, gcd(p
εj
j , pεkk). Thus, we could apply the Chinese Remainder

Theorem to the congruences x ≡ xi (mod pεii) where i = 1, . . . , n. Obtaining
x2 ≡ x2

i ≡ a (mod pεii) from the Chinese Remainder theorem, we thus have x2 ≡ a
(mod

∏n
i=1 p

εi
i) or a is a quadratic residue modulo b.

Theorem 3.3. Dirichlet’s Theorem on Arithmetic Progressions. For any two pos-
itive coprime integers a and d, there are infinitely many primes of the form a+nd,
where n is also a positive integer

Theorem 3.4. The congruence x2 ≡ a (mod p) is solvable for every prime p if
and only if a = b2 for some b ∈ Z.

Proof for Theorem 3.4. Suppose a = b2 for some b, we have x2 ≡ a ≡ b2 (mod
p). Therefore, for all prime p, we have a solution x ≡ b (mod p).
To prove the other direction, we try to prove an equivalent statement “if a 6= b2 for
some b, a is not a quadratic residue modulo for every prime p.”
Suppose a is a positive non-square. Then, if a = 2, we could just choose p = 5

and apply property 4 from the Legendre symbol to get
(
2
5

)
= (−1)

52−1
8 = −1.

Otherwise, a could be factored into p1p2 . . . pk for p1, . . . , pk prime. Also, a has an
odd prime divisor pk. Now we choose a prime such that p ≡ 1 (mod 8), p ≡ 1
(mod pi) for i = 1, 2, . . . , k − 1 and p ≡ a (mod pk). Such a prime number p exists
according to Theorem 3.3. Then, since pk is not a quadratic residue modulo p, a is
not a quadratic non residue modulo p. Thus, we have proved Theorem 3.4 for the
case where a is positive.
If a number is negative, it is not a square. We present all negative numbers in
the form of −a where a is a positive integer. Let p be a prime number and apply

property 1 from the Legendre symbol to get
(
−a
p

)
=
(
−1
p

)(
a
p

)
. We then apply

property 3 to obtain
(
−1
p

)(
a
p

)
= (−1)

p−1
2

(
a
p

)
. If a is a square, we can choose

p = 3 to get (−1)
3−1
2

(
a
p

)
= (−1) · 1 = −1. If a is a non square, we choose p = 5 to

obtain (−1)
5−1
2

(
a
p

)
= 1 · (−1) = −1.

Theorem 3.5. The Hasse-Minkowski Theorem 1. Let a and b be nonzero, square-
free, relatively prime integers of opposite signs. If for each prime p the congruence
ax2 + by2 ≡ 0 (mod p) has a solution in integers (x, y) both not divisible by p, then
ax2 + by2 = 0 has a nontrivial integral solution.

Consider the first case where p - ab, we claim that gcd(x, p) = 1. We can prove
this statement by using contradiction. Suppose gcd(x, p) > 1, then we have p | x.
Hence, ax2 + by2 ≡ by2 ≡ 0 (mod p). Also, we could see that either p | b or
p | y. Since we assume that p - ab, we have p | y. Now that we have p | x and
p | y, this contradicts our assumption that the solution (x, y) to nontrivial modulo
p, establishing our claim that gcd(x, p) = 1. Now, from ax2 + by2 ≡ 0 (mod p),
we have ax2 ≡ −by2 (mod p) and by multiplying the congruence on both sides
by −b, we obtain −bax2 ≡ (by)2 (mod p). Since gcd(x, p) = 1, we could divide

101

−bax2 ≡ (by)2 by x2 to obtain −ba ≡ (byx)2. Thus, −ba is a quadratic residue

modulo p for all p - ab. Now, assume p | ab. We have −ab ≡ 02 (mod p), therefore
−ab is a quadratic residue modulo p for all p | ab.
Thus, −ba is a quadratic residue modulo for all primes p. According to Theorem
3.4, we have −ba = d2 for some integer d. Plugging the pair of integer (b, d) into
f(x, y), we obtain f(b, d) = ab2 + bd2 = ab2 + b(−ab) = 0. Hence, we have found a
nontrivial integral solution to equation f(x, y) = 0.

4. the hasse-minkowski theorem for ternary forms

Theorem 4.1. Legendre’s Theorem. Suppose a, b, c are non-zero square-free,
pairwise relatively prime integers not all of the same sign. Then the equation
ax2 + by2 + cz2 = 0 has a non-trivial solution if and only if the following condi-
tions are satisfied: (i) −bc is a quadratic residue modulo |a|, (ii) −ab is a quadratic
residue modulo |c|, and (iii) −ac is a quadratic residue modulo |b|.

Definition 4.1. Let (x0, y0, z0) be a nontrivial integral solution to the congruence
ax2 + by2 + cz2 ≡ 0 (mod p), and at most one of x0, y0, z0 is divisible by p, then we
call (x0, y0, z0) a p-focused solution.

Theorem 4.2. Hasse-Minkowski 2. Let a, b, c be nonzero, square-free, pairwise
relatively prime integers not all the same sign. If for each odd prime p | abc the
congruence ax2 + by2 + cz2 ≡ 0 (mod m) has a p-focused solution in integers (x, y,
z), then ax2 + by2 + cz2 = 0 has a nontrivial integral solution.

Proof for theorem 4.2. Let p be an odd prime, p | a and f(x, y, z) ≡ 0 (mod p)
has a p-focused solution. According to Theorem 3.2, to prove −bc is a quadratic
residue modulo |a|, it suffices to show −bc is a quadratic residue modulo p for all
p | a.
Suppose (x0, y0, z0) is a p-focused solution to the congruence. Since p | a, we have
by20 + cz20 ≡ 0 (mod p). If p = 2 or p | bc, we have −bc ≡ 0 (mod p) and it is a
quadratic residue modulo p. If p - bc, we obtain gcd(b, p) = gcd(c, p) = 1. We also
know that at most one of x0, y0, z0 is divisible by p. First, suppose p doesn’t divide
x0, y0 or z0. We have

− by20 ≡ cz20 (mod p). (4.1)

Divide both sides by z20 to get

− b(y0z
−1
0)2 ≡ c (mod p). (4.2)

Multiply both sides by −b to obtain

− bc ≡ (by0z
−1
0)2 (mod p). (4.3)

Now suppose p divides exactly one of x0, y0, z0. In the case where p | x0, we are
done. Suppose p | y0 and p - z0, we have

cz20 ≡ 0 (mod p). (4.4)

Divide both sides by z0 to get

c ≡ 0 (mod p). (4.5)
102

Multiply both sides by −b to obtain

− bc ≡ 0 (mod p). (4.6)

So, we have −bc a quadratic modulo p. Hence, −bc is a quadratic residue modulo
p. The case where p | z0 and p - y0 could be proved using a similar procedure. Since
the congruence ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solution for all p | a,
we have −bc a quadratic residue modulo |a|. Similarly, we can determine that −ac
is a quadratic residue modulo |b| and −ab is a quadratic modulo c.
We do not need to consider the case where p is even or p = 2 since −bc, −ac, −ad
are either odd and even. Thus, they are congruent to 0 or 1 modulo 2 and both 0
and 1 are squares.
Finally, we need to show that if ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solu-
tion for all odd p | abc, then f(x, y, z) = 0 has a nontrivial integral solution. Since
ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solution for all odd p | abc, it has a
p-focused solution for all odd p | a, p | b and p | c. We can also determine that
−bc is a quadratic residue modulo |a|, −ac is a quadratic residue modulo |b|, −ab is
a quadratic residue modulo |c|. Hence, according to the Legendre’s Theorem, the
equation ax2 + by2 + cz2 = 0 has a nontrivial integral solution.

5. hasse-minkowski and legendre theorem implementation

Let f(x, y, z) = ax2 + by2 + cz2. Obviously, since checking whether a congruence
f(x, y, z) ≡ 0 (mod p) has a p-focused solution is a tedious task in real life, especially
when abc has a lot of prime factors or when a, b, c are large, we could write a
computer program to check it.
Eratosthenes Sieve
Eratosthenes Sieve is an old algorithm used to rapidly identify all the primes to a
certain limit. The program first gets the integers a, b and c from the keyboard.
Then, it creates the Eratosthenes sieve of primes that are odd and divide abc. The
code below is the modified Eratosthenes sieve function written in C++.
The parameter upperBound is the maximum number which we would check if it is
a prime number. The program always calls the function with upperBound = abc.
Then, we create a bitset, a data structure that stores bits, named flag. Suppose i
is a number from 2 to upperBound, given that flag[i] = 1, then i is prime, and
vice versa. Next, we reset our bitset which would set all the value of flag to 1.
Our first loop iterates from 2 to upperBound and for every number, if flag[i] = 1.
Next, we process the second loop that iterates every multiple of that prime number
to upperBound. For every multiples of that prime, we set the corresponding flag
value to 0 since the multiple of a prime can not be a prime. After the second loop,
we would append our prime to a vector named primes to store it.
Function. sieve(upperBound)
Pseudocode
Input. upperBound, the maximum number to check if it is a prime number.
Determine. Every prime less than or equal to upperBound + 1.

(1) primes ← an empty dynamic array, flag ← an bitset
(2) upperBound← |upperBound|
(3) for i← 0 to 1000009
(4) flagi ← 1

103

(5) for i← 2 to upperBound + 1
(6) if flagi = 1
(7) j ← 2i
(8) while j <= sievesize
(9) flagj ← 0

(10) if i 6= 2 and flagi ≡ 0 (mod upperBound)
(11) append i to primes

C++ Implementation

bitset<10000010> flag;

vector<int> primes;

int a, b, c;

void sieve(long upperBound) {

upperBound = abs(upperBound);

flag.set();

flag[0] = flag[1] = 0;

for (long long i = 2; i <= upperBound; i++)

if (flag[i]) {

for (long long j = i * i; j <= upperBound; j += i) flag[j] = 0;

if(i != 2 && upperBound % i == 0) primes.push_back((int)i);

}

}

The Hasse-Minkowski Theorem 2
Suppose p is a prime that divides abc. To check for p-focused solution, we write
a boolean method, pFocusedCheck, with parameter primes, the prime to check.
pFocusedCheck has three loops that create every combination of x, y, z, where x, y,
z are integer and less than primes. For every combination, if it is a primes-focused
solution we immediately return true. After it finishes three loops, we would haven’t
found a primes-focused solution, thus return false.
Function. pFocusedCheck(prime)
Pseudocode
Input. primes, the prime number to look for a primes-focused solution to the
congruence.
Output. Return true if there is a primes-focused solution, otherwise returns false.

(1) x ← an int, y ← an int, z ← an int
(2) for x← 0 to prime− 1
(3) for y ← 0 to prime− 1
(4) for z ← 0 to prime− 1
(5) if ax2 + by2 + cz2 ≡ 0 (mod primes) and at most one of x, y, z is

divisible by primes.
(6) return true
(7) return false

C++ Implementation

bool pFocusedCheck(int prime){

int x, y, z;

104

for(x = 0; x < prime; ++x){

for(y = 0; y < prime; ++y){

for(z = 0; z < prime; ++z){

if((((a * (x * x)) + (b * (y * y)) + (c * (z * z))) % prime == 0)

&& (((x % prime) == 0) + ((y % prime) == 0) + ((z % prime) == 0) <= 1)){

return true;

}

}

}

}

return false;

}

Then, we create a function named HasseMinkowski2Check that loops through
the sieve vector to check whether the congruence ax2 + by2 + cz2 ≡ 0 (mod p) has
a p-focused solution. The function returns true if the congruence has a p-focused
solution to every p, otherwise, returns false.
Function. HasseMinkowski2Check()
Pseudocode
Output. Returns true if for every p, the congruence ax2 + by2 + cz2 ≡ 0 (mod p)
has a p-focused solution, otherwise, returns false.

(1) for every prime in primes
(2) if not pFocusedCheck(prime)
(3) return false
(4) return true

C++ Implementation

bool HasseMinkowski2Check(){

for(int i = 0; i < primes.size(); ++i){

if(!pFocusedCheck(primes[i])){

return false;

};

}

return true;

}

Legendre’s Theorem.
Initially, we want to implement the Legendre’s symbol. We define LegendreSymbol
function with two parameters, toCheck and modulo. The function returns 0 if
toCheck ≡ 0 (mod modulo) and returns 1 if there exists an x such that x2 ≡
toCheck (mod modulo), elsewise returns -1.
First, if toCheck ≡ 0 (mod modulo), the function immediately returns 0. Next,
if toCheck is negative, applying property 1 and 3 of the Legendre symbol, we can

calculate
(
−1
p

)
and save the result to a variable named offset. Otherwise, offset is

set as 1. We, then, apply property 2 of the Legendre symbol to make toCheck less
than modulo. Now, we make a loop that iterates from 1 to modulo − 1. If there
exists a number i in that range such that i2 ≡ toCheck (mod modulo), we return
1·offset. Otherwise, after finishing the loop, we return −1·offset

105

Function. LegendreSymbol()
Pseudocode
Input. toCheck, the number to check if it is a quadratic residue

modulo, the modulo
Output. Returns 0 if toCheck ≡ 0 (mod modulo) and returns 1 if toCheck is a
quadratic residue modulo modulo, elsewise returns -1.

(1) if toCheck ≡ 0 (mod modulo)
(2) return 0
(3) if toCheck < 0

(4) offset ← −1
modulo−1

2

(5) else offset ← 1
(6) toCheck ← |toCheck|
(7) while toCheck > modulo
(8) toCheck ← toCheck mod modulo
(9) for i← 1 to modulo

(10) if i2 ≡ toCheck (mod modulo)
(11) return 1·offset
(12) return −1·offset

C++ Implementation

int LegendreSymbol(int toCheck, int modulo){

if(toCheck % modulo == 0) return 0;

int offset = (toCheck < 0) ? (int)(pow(-1, (modulo - 1) / 2)) : 1;

toCheck = aflag(toCheck);

while (toCheck > modulo){

toCheck %= modulo;

}

for(int i = 1; i < modulo; ++i){

if((i * i) % modulo == toCheck) return 1 * offset;

}

return -1 * offset;

}

Next, we only need to to write the Legendre theorem function. We will name it
LegendreCheck.
Function. LegendreCheck()
Pseudocode
Output. return true if −bc is a quadratic residue modulo |a|, −ab is a quadratic
residue modulo |c| and −ac is a quadratic residue modulo |b|. Otherwise, return
false.

(1) bool ans
(2) temp ← LegendreSymbol(−b ∗ c, abs(a))
(3) ans← temp = 0 or temp = 1
(4) temp ← LegendreSymbol(−a ∗ b, abs(c))
(5) ans← (temp = 0 or temp = 1) and ans
(6) temp ← LegendreSymbol(−a ∗ c, abs(b))
(7) ans← temp = 0 or temp = 1 and ans

106

(8) reuturn ans

C++ Implementation

bool LegendreCheck(){

int temp = LegendreSymbol(-b * c, abs(a));

bool ans = (temp == 0 || temp == 1);

temp = LegendreSymbol(-a * b, abs(c));

ans &= (temp == 0 || temp == 1);

temp = LegendreSymbol(-a * c, abs(b));

return (ans & ((temp == 0 || temp == 1)));

}

Sample Program Run
We now add a few print functions to the code and try running two inputs in order
to test our program.
Input 1
Input.

a = 1

b = 1

c = -3

Output.

Legendre Theorem Check

-bc is a quadratic residue modulo |a|

-ab is not a quadratic residue modulo |c|

-ac is a quadratic residue modulo |b|

There is no nontrivial integral solution to f(x, y, z) = 0

Hasse-Minkowski Theorem Check

There is no 3-focused solution

There is no nontrivial integral solution to f(x, y, z) = 0

Input 2
Input.

a = -7

b = 15

c = 13

Output.

Legendre Theorem Check

-bc is a quadratic residue modulo |a|

-ab is a quadratic residue modulo |c|

-ac is a quadratic residue modulo |b|

There are nontrivial integral solutions to f(x, y, z) = 0

Hasse-Minkowski Theorem Check

There is a 3-focused solution: x = 1, y = 0, z = 1

There is a 5-focused solution: x = 1, y = 0, z = 2

There is a 7-focused solution: x = 0, y = 1, z = 1

There is a 13-focused solution: x = 1, y = 6, z = 0

107

There are nontrivial integral solutions to f(x, y, z) = 0

We can see that in both cases the result is the same as the Legendre theorem
and the Hasse-Minkowski theorem. We can also modify the program or add more
functions depending on the task we intend to apply them to.

6. conclusion

We have proved two Hasse-Minkowski theorems which facilitate the problem of
determining the integral solvability of quadratic forms. After the Hasse-Minkowski
theorem, in the binary form, we could find a prime p which f(x, y) ≡ 0 (mod p)
does not have a solution (x, y) both not divisible by p to show that f(x, y) = 0 does
not have nontrivial integral solutions. In the ternary form, the Hasse-Minkowski
theorem reduces the problem to determining if there is a p-focused solution to the
congruence f(x, y, z) = 0 (mod p), which p is finite. The crux of this paper is the
introduction of a complete program implementing the Hasse-Minkowski theorems
and Legendre theorem with some supporting functions like the Eratosthenes sieve
and the Legendre symbol.

Acknowledgments. I wish to record my deep sense of gratitude and profound
thanks to Dr. Mehmet Dik for guiding me in every stage of this research paper.
Without his support, guidance, and encouragement, it would have been difficult for
me to complete this paper.

References

[1] S. D. Hoehner, The Hasse-Minkowski Theorem in Two and Three Variables
(2012).
etd.ohiolink.edu/!etd.send file?accession=osu1338317481

[2] G. A. Jones and J. M. Jones, Elementary Number Theory (Springer, 1998).
[3] W. J. LeVeque, Fundamentals of Number Theory (Dover Publications, 1977).

Phuc Ngo,

Beloit College, 700 College St., Beloit, WI 53511, U.S.A, (+1)248-759-0828, Orcid
number:0000-0002-9658-4877

Email address: ngoph@beloit.edu

Mehmet Dik,

Beloit College, 700 College St., Beloit, WI 53511, U.S.A, (+1)815-986-9524, Orcid

number:0000-0003-0643-2771
Email address: dikm@beloit.edu

108

	1. binary and ternary quadratic form
	2. modular arithmetic
	3. the hasse-minkowski theorem for binary forms
	4. the hasse-minkowski theorem for ternary forms
	5. hasse-minkowski and legendre theorem implementation
	6. conclusion
	Acknowledgments

	References

