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Abstract: In this paper, we classify quasi-conformally flat generalized Sasakian-space forms under

the assumption that the characteristic vector field is Killing. Also, we classify quasi-conformally Weyl-

symmetric generalized Sasakian-space forms.
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1. Introduction
In Riemannian geometry, many authors have studied curvature properties and to what extent they

determined the manifold itself. Two important curvature properties are quasi-conformal flatness

and Weyl-symmetry.

In [1], Alegre, Blair and Carriazo introduced and studied generalized Sasakian-space forms.

These spaces are defined as follows: Given an almost contact metric manifold (M,ϕ, ξ, η, g) , they

say that M is a generalized Sasakian-space form if there exist three functions f1, f2 and f3 on

M such that

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }

+f2{g(X,ϕZ)ϕY − g(Y,ϕZ)ϕX + 2g(X,ϕY )ϕZ} (1)

+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},

for any vector fields X,Y,Z on M , where R denotes the curvature tensor of M. In such a case,

we will write M(f1, f2, f3).

Then, Kim studied conformally flat generalized Sasakian space forms [5].

In this paper, we study quasi-conformally flat generalized Sasakian-space forms and quasi-

conformally Weyl-symmetric generalized Sasakian-space forms.
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2. Preliminaries

An odd-dimensional Riemannian manifold (M,g) is said to be an almost contact metric manifold

if it admits a tensor field ϕ of type (1,1) , a vector field ξ and a 1 -form η such that

η(ξ) = 1, (2)

ϕ2X = −X + η(X)ξ, (3)

and

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) (4)

for any vector fields X,Y on M [2]. Also,

ϕξ = 0 (5)

and

η ○ ϕ = 0 (6)

are deducible from these conditions. We define the fundamental 2 -form Φ on M by Φ(X,Y ) =

g(X,ϕY ). An almost contact metric manifold M is said to be a contact metric manifold if

g(X,ϕY ) = dη(X,Y ). If ξ is a Killing vector field, then the contact metric manifold is said

to be a K -contact manifold. The almost contact metric structure of M is said to be normal if
[ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ , for any X,Y, where [ϕ,ϕ] denotes the Nijenhuis torsion tensor of

ϕ . A normal contact metric manifold is called a Sasakian manifold. A normal almost contact

metric manifold M with closed forms η and Φ is called a cosymplectic manifold. Cosymplectic

manifolds are characterized by ∇Xξ = 0 and (∇Xϕ)Y = 0 for any vector fields X,Y on M. Given

an almost contact metric manifold (M,ϕ, ξ, η, g), a ϕ -section of M at p ∈ M is a plane section

π ⊆ TpM spanned by a unit vector Xp orthogonal to ξp and ϕXp . The ϕ -sectional curvature of π

is defined by g(R(X,ϕX)ϕX,X). A cosymplectic space-form, i.e., a cosymplectic manifold with

constant ϕ -sectional curvature c , is a generalized Sasakian space-form with f1 = f2 = f3 = c
4

[6].

It is known that the ϕ -sectional curvature of a generalized Sasakian-space form M(f1, f2, f3) is

f1 + 3f2 [1].

For a (2n+1)-dimensional almost contact metric manifold (M,ϕ, ξ, η, g), n ≥ 1, its Schouten

tensor L is defined by

L = − 1

2n − 1
Q + τ

4n(2n − 1)
I, (7)

where Q denotes the Ricci operator and τ is the scalar curvature of M . The Weyl conformal
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curvature tensor is given by

C(X,Y )Z = R(X,Y )Z (8)

−[g(LX,Z)Y − g(Y,Z)LX − g(LY,Z)X + g(X,Z)LY ].

In dimension > 3, that is n > 1, M is conformally flat if and only if C = 0, and in this case,

L satisfies (∇XL)Y − (∇Y L)X = 0 for any vector fields X,Y on M. In dimension 3 , that is

n = 1, C = 0 is automatically satisfied and M is conformally flat if and only if L satisfies

(∇XL)Y − (∇Y L)X = 0 for any vector fields X,Y on M.

A symmetric tensor field T of type (1,1) is a Codazzi tensor if it satisfies

(▽XT )Y − (▽Y T )X = 0.

For the later use, we give the following lemma which was proved Derdzinski.

Lemma 2.1 [3, 4] Let T be a Codazzi tensor on a Riemannian manifold M . Then, we have the

following:

If T has more than one eigenvalue, then the eigenspaces for each eigenvalue v form an

integrable subbundle Vv of constant multiplicity on open sets: If the multiplicity is greater than 1 ,

then the integral submanifolds are umbilical submanifolds and each eigenfunction is constant along

the integral submanifolds of its subbundle. Moreover, if v is constant on M , then the integral

submanifolds of Vv are totally geodesic.

Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian-space form. Then, the

curvature tensor R of M is given by (1). From (1), we can easily see that

QX = {2nf1 + 3f2 − f3}X − {3f2 + (2n − 1)f3}η(X)ξ, (9)

τ = 2n(2n + 1)f1 + 6nf2 − 4nf3. (10)

Moreover, we can see that

LX = {−1
2
f1 −

3

2(2n − 1)
f2}X + {

3

2n − 1
f2 + f3}η(X)ξ. (11)

Therefore, the Weyl conformal curvature tensor C can be written as

C(X,Y )Z = −3
2n − 1

f2{g(Y,Z)X − g(X,Z)Y }

+f2{g(ϕY,Z)ϕX − g(ϕX,Z)ϕY + 2g(X,ϕY )ϕZ} (12)

− 3

2n − 1
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.
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The notion of the quasi-conformal curvature tensor was defined by Yano and Sawaki [8]. According

to them a quasi-conformal curvature tensor is defined by

C̃(X,Y )Z = aR(X,Y )Z

+b[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ] (13)

− τ

2n + 1
[ a
2n
+ 2b][g(Y,Z)X − g(X,Z)Y ],

where a and b are constants, S is the Ricci tensor, Q is the Ricci operator and τ is the scalar

curvature of the manifold M2n+1. A Riemannian manifold (M2n+1, g), (n > 1), is called quasi-

conformally flat if the quasi-conformal curvature tensor C̃ = 0. If a = 1 and b = −1
2n−1 , then the

quasi-conformal curvature tensor is reduced to the Weyl conformal curvature tensor.

A Riemannian manifold is said to be quasi-conformally Weyl-symmetric manifold if

R(X,Y ) ⋅ C̃ = 0,

where C̃ is the quasi-conformal curvature tensor.

On the other hand, from (1), we have

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y } (14)

and
R(ξ,X)Y = (f1 − f3){g(X,Y )ξ − η(Y )X}. (15)

3. Quasi-Conformally Flat Generalized Sasakian-Space Forms

Theorem 3.1 Let M(f1, f2, f3) be a (2n+1)-dimensional generalized Sasakian-space form. Then,

we have the following: (i) If n > 1 , then M is quasi-conformally flat if and only if f2 =

− (a+(2n−1)b)
3(an+b) f3, (ii) If M is quasi-conformally flat and ξ is a Killing vector field, then it is flat,

or of constant curvature, or locally the product N1 ×N2n , where N1 is a 1-dimensional manifold

and N2n is a 2n-dimensional almost Hermitian manifold of constant curvature. In any case, M

is locally symmetric and has constant ϕ-sectional curvature.

Proof Assume that M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian−space form.

Using (1), (9), (10) and equation S(X,Y ) = g(QX,Y ) in (13), we obtain

C̃(X,Y )Z = 1

2n + 1
[(−3a + 6b)f2 + (2a + 2(2n − 1)b)f3]{g(Y,Z)X − g(X,Z)Y }

+af2{g(X,ϕZ)ϕY − g(Y,ϕZ)ϕX + 2g(X,ϕY )ϕZ} (16)

+[(a + (2n − 1)b)f3 + 3bf2]{η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.
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If a = 1 and b = − 1
2n−1 , then we obtain (13), that is, the quasi-conformal curvature tensor is

reduced to the conformal curvature tensor.

Suppose that M(f1, f2, f3) is quasi-conformally flat and n > 1 . Then, we have C̃ = 0.

If we put X = ϕY in (16), then we find

1

2n + 1
[3(2b − a)f2 + 2(a + (2n − 1)b)f3]{g(Y,Z)ϕY − g(ϕY,Z)Y }

+af2{g(ϕY,ϕZ)ϕY − g(Y,ϕZ)ϕ2Y + 2g(ϕY,ϕY )ϕZ}

+[(a + (2n − 1)b)f3 + 3bf2]{η(ϕY )η(Z)Y − η(Y )η(Z)ϕY (17)

+g(ϕY,Z)η(Y )ξ − g(Y,Z)η(ϕY )ξ} = 0

or using (3) and (4) in (17), we obtain

1

2n + 1
[3(2b − a)f2 + a(2n + 1)f2

+2(a + (2n − 1)b)f3]{g(Y,Z)ϕY − g(ϕY,Z)Y } (18)

+[af2 + (a + (2n − 1)b)f3 + 3bf2]{−η(Y )η(Z)ϕY − g(Y,ϕZ)η(Y )ξ}

+af2{2g(Y,Y )ϕZ − 2η(Y )η(Y )ϕZ} = 0.

If we choose a unit vector U such that g(U, ξ) = 0 and put Y = U in (18), then we have

1

2n + 1
[{(2(n−1)a+6b)f2+2(a+(2n−1)b)f3}{g(U,Z)ϕU−g(ϕU,Z)U}+2(2n+1)af2ϕZ] = 0. (19)

Putting Z = U in (19), we get

{(2(n − 1)a + 6b + 2(2n + 1)a)f2 + 2(a + (2n − 1)b)f3}ϕU = 0.

Thus, we have

(2(n − 1)a + 6b + 2(2n + 1)a)f2 + 2(a + (2n − 1)b)f3 = 0.

From this equation, we get

f2 = −
(a + (2n − 1)b)

3(an + b)
f3. (20)

Conversely, if f2 = − (a+(2n−1)b)3(an+b) f3, then from (16), we have C̃(X,Y )Z = 0 and hence, M(f1, f2, f3)

is quasi-conformally flat. Therefore, when n > 1, M(f1, f2, f3) is conformally flat if and only if

f2 = − (a+(2n−1)b)3(an+b) f3. Thus, the first part (i) of the Theorem 3.1 is proved.

For the proof of the second part (ii), we assume that M(f1, f2, f3) is quasi-conformally flat

and ξ is Killing. Then, the Schouten tensor L of the manifold is a Codazzi tensor, that is,

(∇XL)Y − (∇Y L)X = 0 (21)
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for any vector fields X,Y on M. Also, if n > 1, then we have f2 = − (a+(2n−1)b)3(an+b) f3 by the first part

(i) and hence from (12), we obtain

LX = [−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]X

+[ (2n + 1)(n − 1)
(2n − 1)(na + b)

]af3η(X)ξ. (22)

Using (7), from (13), we get

C̃(X,Y )Z = aR(X,Y )Z − (2n − 1)b[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (23)

− τ

2n(2n + 1)
(a + (2n − 1)b)[g(Y,Z)X − g(X,Z)Y ].

If n = 1, then from (23), we get

C̃(X,Y )Z = aR(X,Y )Z − b[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (24)

−τ
6
(a + b)[g(Y,Z)X − g(X,Z)Y ].

Since M(f1, f2, f3) is quasi-conformally flat, we can write C̃(X,Y )Z = 0, then we get

R(X,Y )Z = b

a
[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (25)

+τ
6

(a + b)
a
[g(Y,Z)X − g(X,Z)Y ]

for any vector fields X,Y,Z . In the 3 -dimensional manifold M(f1, f2, f3) , the Schouten tensor is

given by (11),

LX = −1
2
(f1 + 3f2)X + (3f2 + f3)η(X)ξ. (26)

From (25) and (26), we obtain

R(X,Y )Z = [f1 + (
a − 2b
a
)f2 −

2

3
(a + b

a
)f3]{g(Y,Z)X − g(X,Z)Y }

+ b
a
(3f2 + f3){η(Y )η(Z)X − η(X)η(Z)Y (27)

+g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ}.
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If we take
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f∗1 = f1 + (a−2ba
)f2 − 2

3
(a+b

a
)f3,

f∗3 = b
a
(3f2 + f3),

(28)

then we can write

R(X,Y )Z = f∗1 {g(Y,Z)X − g(X,Z)Y }

+f∗3 {η(Y )η(Z)X − η(X)η(Z)Y

+g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ}.

Equation (26) gives

Lξ = (−1
2
f1 +

3

2
f2 + f3)ξ. (29)

If X is a vector orthogonal to ξ , then we get

LX = −1
2
(f1 + 3f2)X. (30)

For n > 1, then from (22), we get

Lξ = −1
2
[f1 − {

1

na + b
[(4n

2 − 2n − 1
2n − 1

)a + b]}f3]ξ. (31)

If X is a vector orthogonal to ξ , then we have

LX = [−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]X. (32)

Let ξ,E1,E2, ...,E2n be local orthonormal vector fields on M(f1, f2, f3) . Then from (21), (22)

and (32), we get

(▽EiL)Ej − (▽EjL)Ei = −1
2
(Eif1)Ej +

1

2
(Ejf1)Ei

+ 1

2(na + b)
( a

2n − 1
+ b)[(Eif3)Ej − (Ejf3)Ei]

+ (2n + 1)(n − 1)
(2n − 1)(na + b)

af3η(▽EiEj −▽EjEi)ξ = 0. (33)

Taking inner product with Ej in (33), we have

(Ejf1) =
1

(na + b)
( a

2n − 1
+ b)(Ejf3). (34)
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Using (31), we obtain

(▽EjL)ξ +L▽Ej ξ = −1
2
{f1 −

1

(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b]f3}▽Ej ξ

−1
2
(Ejf1)ξ +

1

2(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b](Ejf3)ξ. (35)

If we use (34) in (35), then we get

(▽EjL)ξ +L▽Ej ξ = −1
2
{f1 −

1

(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b]f3}▽Ej ξ

+ (2n + 1)(n − 1)
(2n − 1)(na + b)

a(Ejf3)ξ. (36)

Since ▽Ejξ is orthogonal to ξ , using (32), we get

L(▽Ejξ) = [−
1

2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]▽Ej ξ. (37)

Thus from (36), we obtain

(▽EjL)ξ = [
(2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ). (38)

Since ξ is Killing, then we get

(▽ξL)Ej +L(▽ξEj) = [−1
2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej

+[−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]▽ξ Ej , (39)

where

L(▽ξEj) = −
1

2
f1▽ξ Ej +

1

2(na + b)
( a

2n − 1
+ b)f3▽ξ Ej . (40)

Thus from (36), we have

(▽ξL)Ej = [−
1

2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej . (41)

Since (▽EjL)ξ = (▽ξL)Ej , from (38) and (41), we get

[ (2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ) (42)

= [−1
2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej .
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Taking inner product with Ej in (42), we obtain

ξ(f1) =
1

(na + b)
( a

2n − 1
+ b)ξ(f3). (43)

Taking inner product with ξ, from (42), we get

[ (2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ) = 0, (44)

this gives Ejf3 = 0 and f3▽Ej ξ = 0 (j = 1,2, ..., 2n). Combining this with ▽ξξ = 0 gives

f3(▽Xξ) = 0 (45)

for any vector field X . From (45), we get

(Y f3)(▽Xξ) + f3▽Y ▽Xξ = 0.

This equation and (45) give

(Xf3)▽Y ξ − (Y f3)▽X ξ + f3[▽X ▽Y ξ −▽Y ▽X ξ −▽[X,Y ]ξ] = 0.

Multiplying this equation with f3 and using (45), we get

f2
3R(X,Y )ξ = 0.

This equation and (14) give

f2
3 (f1 − f3)[η(Y )X − η(X)Y ] = 0

from which we obtain f3(f1 − f3) = 0.

Consider the case f1 = 0. In this case, we have f3 = 0 on M and hence, f2 = 0 . Thus, M

is flat.

Next consider the case f1 ≠ 0 . Differentiating f3(f1−f3) = 0 with ξ gives {f1+[ 1
(na+b)(

a
2n−1+

b) − 2]f3}ξ(f3) = 0. If f3(p) = 0 at a point p ∈ M , then f1(p)ξ(f3)(p) = 0 , where since f1 ≠ 0,

we get ξ(f3) = 0 at p . If f3(p) ≠ 0 , then f3 = f1 in an open neighborhood U of p . Thus,

{ a(1+n−2n2)
(na+b)(2n−1)f3}ξ(f3) = 0. For n > 1 , since 1 + n − 2n2 ≠ 0 , we get ξ(f3) = 0 on U. Thus, we have

ξ(f3) = 0 on M. Since Ejf3 = 0 (j = 1,2, ..., 2n), f3 is constant on M . Hence, we have:

(a) If f3 = 0 , then M is of constant curvature f1 .

(b) If f3 ≠ 0 , then we have f1 = f3 and ▽Xξ = 0 for any vector X on M . Hence, the

Schouten tensor L has two distinct constant eigenvalues 1
2
f1 with multiplicity 1 and −1

2
f1 with

multiplicity 2n . Therefore, we have the decomposition D⊕[ξ], where D is the distribution defined
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by η = 0 and [ξ] is the distribution spanned by the vector ξ. By Lemma 2.1, D is integrable.

Hence, M is locally product of an integral submanifold N1 of [ξ] and an integral submanifold

N2n of D . Since the eigenvalue is constant on M, N2n is a totally geodesic submanifold of M

by Lemma 2.1. If we denote the restriction of ϕ in D by J , then

J2X = ϕ2X = −X + η(X)ξ = −X

for any X ∈ D. Hence, J defines an almost complex structure on N2n.

Also, g′(JX,JY ) = g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) = g′(X,Y ) for any X,Y ∈ D , where

g′ is the induced metric on N2n from g . Hence, (N2n, J, g′) is an almost Hermitian manifold.

Since N2n is a totally geodesic hypersurface of M , the equation of Gauss is given by

R(X,Y )Z = R′(X,Y )Z

for any vector fields X,Y and Z tangent to N2n , where R′ is the curvature tensor of N2n . Thus,

we get

R′(X,Y )Z = f1[g′(Y,Z)X − g′(X,Z)Y ]

and hence, N2n is a space of constant curvature f1 . In any case, from the above arguments, we

can easily see that M(f1, f2, f3) is locally symmetric. Since f1 and f3 are constants, we can see

that M is of constant ϕ -sectional curvature. This completes the proof of the Theorem 3.1. ◻

The above theorem was proved in another ways by Kim [5] and Sarkar and De [7].

Remark 3.2 In the Theorem 1, the condition ”ξ is Killing vector field” cannot be removed.

For example, given (N,J, g) with constant curvature c , say, a 6-dimensional sphere with nearly

Kaehler structure [6], the warped product M = R ×f N, where f > 0 is a nonconstant function on

R , can be endowed with an almost contact metric structure (ϕ, ξ, η, gf).

4. Quasi-Conformally Weyl-Symmetric Generalized Sasakian-Space Forms

Let us consider a quasi-conformally Weyl-symmetric generalized Sasakian-space form M(f1, f2, f3) .

Then, the condition

R(X,Y ) ⋅ C̃ = 0

holds on M(f1, f2, f3) for every vector fields X,Y . Hence, we have

(R(X,Y ) ⋅ C̃)(U,V )W = R(X,Y )C̃(U,V )W − C̃(R(X,Y )U,V )W

−C̃(U,R(X,Y )V )W − C̃(U,V )R(X,Y )W = 0. (46)
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So, for X = ξ in (46), we have

R(ξ, Y )C̃(U,V )W − C̃(R(ξ, Y )U,V )W

−C̃(U,R(ξ, Y )V )W − C̃(U,V )R(ξ, Y )W = 0. (47)

From (15), we get

(f1 − f3){g(Y, C̃(U,V )W )ξ − η(C̃(U,V )W )Y − g(Y,U)C̃(ξ, V )W

+η(U)C̃(Y,V )W − g(Y,V )C̃(U, ξ)W + η(V )C̃(U,Y )W

−g(Y,W )C̃(U,V )ξ + η(W )C̃(U,V )Y } = 0. (48)

Taking the inner product of (48) with ξ, we obtain

(f1 − f3){g(Y, C̃(U,V )W ) − η(C̃(U,V )W )η(Y ) − g(Y,U)η(C̃(ξ, V )W )

+η(U)η(C̃(Y,V )W ) − g(Y,V )η(C̃(U, ξ)W ) + η(V )η(C̃(U,Y )W )

+η(W )η(C̃(U,V )Y )} = 0. (49)

Putting Y = U in (49), we have

(f1 − f3){g(U, C̃(U,V )W ) − η(C̃(U,V )W )η(U) − g(U,U)η(C̃(ξ, V )W )

+η(U)η(C̃(U,V )W ) − g(U,V )η(C̃(U, ξ)W ) + η(V )η(C̃(U,U)W )

+η(W )η(C̃(U,V )U} = 0. (50)

From (16), we get

η(C̃(X,Y )Z) = (a + (2n − 1)b
2n + 1

)[−3f2 + (1 − 2n)f3]{g(Y,Z)η(X) − g(X,Z)η(Y )}. (51)

Putting Z = ξ , the equation (51) turns into the form

η(C̃(X,Y )ξ) = 0. (52)

Thus, using (52) in (50), we obtain

(f1 − f3){g(U, C̃(U,V )W ) − g(U,U)η(C̃(ξ, V )W )

−g(U,V )η(C̃(U, ξ)W ) + η(W )η(C̃(U,V )U)} = 0. (53)

Let {ei}, 1 ≤ i ≤ 2n + 1, (e2n+1 = ξ) be an orthonormal basis of the tangent space at any point.

Then, the sum for U = ei, 1 ≤ i ≤ 2n + 1, of the relation (53) give us

(f1 − f3){g(ei, C̃(ei, V )W ) − g(ei, ei)η(C̃(ξ, V )W )

−g(ei, V )η(C̃(ei, ξ)W ) + η(W )η(C̃(ei, V )ei)} = 0. (54)
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On the other hand, from (51), we have

η(C̃(ξ, V )W ) = (a + (2n − 1)b
2n + 1

)[−3f2 + (1 − 2n)f3]{g(W,V ) − η(W )η(V )}. (55)

Using (55) in (54), we get

(f1 − f3){g(ei, C̃(ei, V )W ) + 2n(
a + (2n − 1)b

2n + 1
)[3f2 + (1 − 2n)f3]g(W,V )} = 0. (56)

Also, from (16), we have

C̃(ei, V )W = 1

2n + 1
[(−3a + 6b)f2 + (2a + 2(2n − 1)b)f3][g(W,V )ei − g(W,ei)V ]

+af2[g(ei, ϕW )ϕV − g(V,ϕW )ϕei + 2g(ei, ϕV )ϕW ] (57)

+[(a + (2n − 1)b)f3 + 3bf2][η(ei)η(W )V − η(V )η(W )ei

+g(ei,W )η(V )ξ − g(V,W )η(ei)ξ].

Taking the inner product of (57) with ei , we get

g(C̃(ei, V )W,ei) = (
a + (2n − 1)b

2n + 1
)(3f2 + (2n − 1)f3)[g(W,V ) − (2n + 1)η(W )η(V )]. (58)

If we use (58) in (56), we get

(f1 − f3)(a + (2n − 1)b)(3f2 + (2n − 1)f3)[g(W,V ) − η(W )η(V )] = 0. (59)

If f1 ≠ f3 and a ≠ (2n − 1)b , then 3f2 + (2n − 1)f3 = 0 , that is,

f2 = −
(2n − 1)

3
f3. (60)

Hence, using (60) in (10), we obtain

τ = 2n(2n + 1)(f1 − f3) (61)

and using (60) in (9), we get

QX = 2n(f1 − f3)X. (62)

So, we have the following result:

Theorem 4.1 Let M(f1, f2, f3) be a generalized Sasakian-space form. Then, M2n+1 (n > 1) is

quasi-conformally Weyl-symmetric if and only if either f1 = f3 or f2 = − (2n−1)3
f3 (when f1 ≠ f3 ),

where a ≠ (2n − 1)b.
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