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Abstract: In this paper, we classify quasi-conformally flat generalized Sasakian-space forms under
the assumption that the characteristic vector field is Killing. Also, we classify quasi-conformally Weyl-

symmetric generalized Sasakian-space forms.

Keywords: Generalized Sasakian-space forms, quasi-conformally flat, quasi-conformally Weyl-symmetric.

1. Introduction

In Riemannian geometry, many authors have studied curvature properties and to what extent they
determined the manifold itself. Two important curvature properties are quasi-conformal flatness
and Weyl-symmetry.

In [1], Alegre, Blair and Carriazo introduced and studied generalized Sasakian-space forms.
These spaces are defined as follows: Given an almost contact metric manifold (M, ¢,&,1,g), they
say that M is a generalized Sasakian-space form if there exist three functions fi, fo and fs on

M such that

R(X,Y)Z = f{g(Y,2)X -g(X,2)Y}
+fo{9(X,0Z)Y - g(Y,0Z)$pX +29(X, ¢Y)pZ} (1)
+f3{n(X)n(2)Y = n(Y)n(Z2)X +g(X, Z)n(Y)§ - g(Y, Z)n(X)E},
for any vector fields X,Y,Z on M, where R denotes the curvature tensor of M. In such a case,
we will write M (f1, fo, f3)-
Then, Kim studied conformally flat generalized Sasakian space forms [5].

In this paper, we study quasi-conformally flat generalized Sasakian-space forms and quasi-

conformally Weyl-symmetric generalized Sasakian-space forms.
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2. Preliminaries

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold

if it admits a tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 such that

n(§) =1, (2)
¢’ X = X +n(X)¢, (3)

and
9(¢X,9Y) = g(X,Y) = n(X)n(Y) (4)

for any vector fields X, Y on M [2]. Also,

€ =0 (5)

and
nod=0 (6)

are deducible from these conditions. We define the fundamental 2-form ® on M by ®(X,Y) =
g(X,9Y). An almost contact metric manifold M is said to be a contact metric manifold if
9(X,9Y) = dn(X,Y). If £ is a Killing vector field, then the contact metric manifold is said

to be a K -contact manifold. The almost contact metric structure of M is said to be normal if
[0,0](X,Y) = =2dn(X,Y)E, for any X,Y, where [¢,¢] denotes the Nijenhuis torsion tensor of
¢. A normal contact metric manifold is called a Sasakian manifold. A normal almost contact
metric manifold M with closed forms n and @ is called a cosymplectic manifold. Cosymplectic
manifolds are characterized by Vx§ =0 and (Vx¢)Y =0 for any vector fields X,Y on M. Given
an almost contact metric manifold (M, ®,&,7,9), a ¢-section of M at pe M is a plane section
m €T, M spanned by a unit vector X, orthogonal to &, and ¢X,. The ¢-sectional curvature of 7
is defined by g(R(X,¢$X)¢X,X). A cosymplectic space-form, i.e., a cosymplectic manifold with

constant ¢-sectional curvature c, is a generalized Sasakian space-form with f; = fo = f3 = § [6].

It is known that the ¢-sectional curvature of a generalized Sasakian-space form M (f1, fa, f3) is
fi+3f2 [1].

For a (2n+1)-dimensional almost contact metric manifold (M, ¢,&,n,g), n > 1, its Schouten
tensor L is defined by

1 T

L-- I
2n—1Q+4n(2n—1) ’

(7)

where @) denotes the Ricci operator and 7 is the scalar curvature of M. The Weyl conformal
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curvature tensor is given by

C(X,Y)Z = R(X,Y)Z

-[9(LX,Z)Y —-g(Y,Z)LX - g(LY,Z)X + g(X,Z)LY].

In dimension > 3, that is n > 1, M is conformally flat if and only if C' = 0, and in this case,

L satisfies (VxL)Y — (VyL)X =0 for any vector fields X,Y on M. In dimension 3, that is

n =1, C =0 is automatically satisfied and M is conformally flat if and only if L satisfies

(VxL)Y - (Vy L)X =0 for any vector fields X,Y on M.

A symmetric tensor field T of type (1,1) is a Codazzi tensor if it satisfies

(vxT)Y - (vyT)X =0.

For the later use, we give the following lemma which was proved Derdzinski.

Lemma 2.1 [3, 4] Let T be a Codazzi tensor on a Riemannian manifold M . Then, we have the

following:

If T has more than one eigenvalue, then the eigenspaces for each eigenvalue v form an

integrable subbundle V,, of constant multiplicity on open sets: If the multiplicity is greater than 1,

then the integral submanifolds are umbilical submanifolds and each eigenfunction is constant along

the integral submanifolds of its subbundle. Moreover, if v is constant on M , then the integral

submanifolds of V,, are totally geodesic.

Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian-space form. Then, the

curvature tensor R of M is given by (1). From (1), we can easily see that

QX = {2nf1 + 3f2 - fg}X - {3f2 + (2TL - ].)fg}’l?(X)g,

T=2n(2n+1)f1 +6nfo—4nfs.
Moreover, we can see that

1 3 3
LX = {~5/i- me}X + {mfz + fa3n(X)E.

Therefore, the Weyl conformal curvature tensor C' can be written as

CZ = bV, D)X - (X, 2)Y)

+f2{9(0Y, 2)¢X - g(¢X, Z)9Y +29(X,9Y)pZ}

2n

5 O = n(V ()X + 90X, 2V )6 - g (¥, Zn(X)E.

(12)
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The notion of the quasi-conformal curvature tensor was defined by Yano and Sawaki [8]. According

to them a quasi-conformal curvature tensor is defined by
C(X,Y)Z = aR(X,Y)Z
+[S(Y, 2)X - S(X, 2)Y +g(Y, 2)QX - g(X, Z)QY] (13)

“Tnrilan t B DX - g(X.2)Y],

where a and b are constants, S is the Ricci tensor, @) is the Ricci operator and 7 is the scalar
curvature of the manifold M?"*1. A Riemannian manifold (M?"*! g), (n > 1), is called quasi-
conformally flat if the quasi-conformal curvature tensor C = 0. If a =1 and b = %, then the
quasi-conformal curvature tensor is reduced to the Weyl conformal curvature tensor.

A Riemannian manifold is said to be quasi-conformally Weyl-symmetric manifold if

R(X,Y)-C =0,

where C' is the quasi-conformal curvature tensor.

On the other hand, from (1), we have

R(X,Y)E = (f1 - f3){n(Y)X -n(X)Y} (14)

and

R(&,X)Y = (fr = f3){g(X, V) -n(Y) X} (15)

3. Quasi-Conformally Flat Generalized Sasakian-Space Forms

Theorem 3.1 Let M(f1, fo, f3) be a (2n+1)-dimensional generalized Sasakian-space form. Then,

we have the following: (i) If n > 1, then M is quasi-conformally flat if and only if fo =

—%fg, (it) If M is quasi-conformally flat and & is a Killing vector field, then it is flat,
or of constant curvature, or locally the product N' x N?" , where N is a 1-dimensional manifold

and N?" is a 2n-dimensional almost Hermitian manifold of constant curvature. In any case, M

is locally symmetric and has constant ¢-sectional curvature.

Proof Assume that M(f1, fo, f3) be a (2n + 1)-dimensional generalized Sasakian-space form.

Using (1), (9), (10) and equation S(X,Y) =¢(QX,Y) in (13), we obtain

COCY)Z = o [(-Bav D)o+ (2a+ 220~ DD fs){9(Y, 2)X ~g(X, 2)Y)
+afolg(X,02)6Y - g(Y,62)6X +29(X,6Y )62} (16)

+[(a+ (2n-1)b) f3+ 3bf2 {n(X)n(2)Y —n(Y)n(Z2)X

+9(X, Z)n(Y)E - g(Y, Z)n(X)E}.
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If a=1 and b = —Qn%l, then we obtain (13), that is, the quasi-conformal curvature tensor is

reduced to the conformal curvature tensor.
Suppose that M(f1, fa2, f3) is quasi-conformally flat and n > 1. Then, we have C =0.

If we put X =¢Y in (16), then we find

ﬁm(?b —a)fy+2(a+ (2n-1)b) f3){g(Y, Z2)¢Y - g(¢Y, Z)Y}

+afa{g(9Y,02)0Y - g(Y,0Z) %Y +2g(pY,6Y )pZ}
+[(a+(2n-1)b) f3+ 3bf2{n(6Y)n(Z)Y - n(Y)n(Z)¢Y (17)
+9(¢Y, Z)n(Y)§ - g(Y, Z)n(9Y )&} = 0

or using (3) and (4) in (17), we obtain

1
2n+1

+2(a+ (2n-1)b) f3{g(Y, Z2)9Y - g(¢Y, Z)Y'} (18)
+lafa+ (a+ (2n-1)b) fs + 3bfa {-n(Y)n(2)¢Y - g(Y,¢Z)n(Y )¢}

+afo{29(Y,Y)0Z = 2n(Y)n(Y)$Z} = 0.

[3(2b-a)fa+a(2n+1)fs

If we choose a unit vector U such that g(U,&) =0 and put Y =U in (18), then we have

1
2n+1

[{(2(n-1)a+6b) fa+2(a+(2n-1)b) f3}{g(U, Z)pU - g(pU, Z)U } +2(2n+1)afoZ] = 0. (19)
Putting Z =U in (19), we get
{(2(n-1)a+6b+2(2n+1)a)fa +2(a+ (2n-1)b) f3}oU = 0.

Thus, we have

(2(n—-1)a+6b+2(2n+1)a)fo+2(a+ (2n-1)b)f3=0.

From this equation, we get

B (a+(2n-1)b)

f2= 3(an +b)

fs. (20)

Conversely, if fo = —%ﬁ;, then from (16), we have C(X,Y)Z =0 and hence, M(f1, fa, f3)

is quasi-conformally flat. Therefore, when n > 1, M(f1, fo, f3) is conformally flat if and only if

fa= —%fg. Thus, the first part (i) of the Theorem 3.1 is proved.

For the proof of the second part (ii), we assume that M (fy, f2, f3) is quasi-conformally flat

and ¢ is Killing. Then, the Schouten tensor L of the manifold is a Codazzi tensor, that is,

(VxL)Y —(VyL)X =0 (21)
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_ (a+(2n-1)b)

for any vector fields X,Y on M. Also, if n > 1, then we have f5 = f3 by the first part

3(an+b)
(i) and hence from (12), we obtain
Lx = [_%fl i 2(ncj+ b)(2na— [ HOfslX
e Db g, 0. (22)

(2n-1)(na+b)
Using (7), from (13), we get

C(X,Y)Z = aR(X,Y)Z-(2n-1)b[g(LY,Z)X - g(LX,Z)Y
+g(Y, Z)LX - g(X, Z)LY] (23)

_m(a +(2n-1)b)[g(Y, 2)X - g(X, Z)Y].

If n =1, then from (23), we get

C(X,Y)Z = aR(X,Y)Z-b[g(LY,Z)X - g(LX,2)Y

+9(Y,Z)LX - g(X,Z)LY ] (24)

.
—5 @+ )Y, 2)X - 9(X, 2)Y].
Since M (f1, fo, f3) is quasi-conformally flat, we can write C'(X, Y)Z =0, then we get

R(X,Y)Z = g[g(LY, )X - g(LX, 2)Y

+9(Y,Z2)LX - g(X,Z)LY] (25)

+z(owrb)

L2 g(V. D)X - (X, 2)Y]

for any vector fields X,Y,Z. In the 3-dimensional manifold M (f1, f2, f3), the Schouten tensor is

given by (11),
LX = =S (fy +3f2)X + B+ fn(XE, (26)
From (25) and (26), we obtain

a—2b 2 a+b
2= =

R(X,Y)Z = [fi+( Msl{g(Y, 2)X - g(X, 2)Y}

a a

#2382+ J5) (0 I(Z)X - n(X)n(2)Y (1)
+9(Y7 Z)’I?(X)f - g(Xv Z)U(Y)f}
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If we take
fi= i+ (922 fo = 2(220) fs,
(28)
f5 =232+ f3),
then we can write
RX,Y)Z = [fi{9(Y,Z)X -9(X,Z2)Y}
+fs {In(Y)n(Z2)X = n(X)n(2)Y
Equation (26) gives
1 3
sz(—§f1+§f2+f3)§~ (29)
If X is a vector orthogonal to £, then we get
LX =~ (i +3)X. (30)
For n > 1, then from (22), we get
1 1 4n?-2n-1
Lf:_§[fl_{na+b[( Y Ja+b]}f3]¢. (31)
If X is a vector orthogonal to £, then we have
LX =[-2 ! b fX 32
_[_§f1+2(na+b)(2n—1+ ) f3]X. (32)

Let &, F1, Es, ..., Eq, be local orthonormal vector fields on M (f1, fa, f3). Then from (21), (22)
and (32), we get
1 1
(veL)E; - (ve,L)E: = —5(Bif)E;+ S (Ejf1)E;i

1 a
b

51 T OUE)E; — (B f2)Ei]
(2n+1)(n-1)

ma.ﬁ?’n(inEj -vg Ei)§=0. (33)

Taking inner product with E; in (33), we have

1 a

(Eif) = s (5

= (na N b) + b)(EJfg) (34)
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Using (31), we obtain

1 1 4n? -2n-1
(v, DEFLE € = 3l o (g = ax b} v, €
1 1 4n? -2n -1
_i(Ejf1)€+2(na+b)[( —— Ja+b](E;fs)E.
If we use (34) in (35), then we get
2 _op _
(Ve L Ls € = ~5{fim s ()0 b} 9, €

2n+1)(n-1)
(2= 1)(na ) “Ff)é

Since v g,¢ is orthogonal to &, using (32), we get

1 a

1
L(vE;€) = [—§f1 + 2(na+b)(2n— 1 +b)f3] vE, &

Thus from (36), we obtain

2n+1)(n-1)

(vE, L) = [m

al((Ejf3)§+ f3vg, §).

Since ¢ is Killing, then we get

(VELVE, + L(9¢E)) = [-560R) + grs (G + DECIE

+[_%f1 i 2(nal+ b)(2na—1 +0)fs] ve By,
where
L(veEj) = —%fl Ve Ej+ 2(ni+ ) (Qna_ [P0 fsve By
Thus from (36), we have
(VELVE; = [-56(0) + g (5 + DECDIES.

Since (vg,; L) = (veLl)E;, from (38) and (41), we get

2n+1)(n-1)

[(2n— 1)(na +b)

al((E;f3)§+ fa v, §)

1 1 a
= 5800 * gy G g+ DEURIE
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Taking inner product with E; in (42), we obtain

1

£(fr) = m(Q +0)&(f5)- (43)
Taking inner product with £, from (42), we get
(2D D (8 f)e + s v, €) =0, (44)

(2n-1)(na+b)
this gives E;f3 =0 and fsvg, £=0 (j=1,2,...,2n). Combining this with v¢£ =0 gives

f3(vx§)=0 (45)

for any vector field X . From (45), we get

(Yf3)(vx&) + f3 vy vx£=0.
This equation and (45) give
(Xf3) vy §-(Yf3) vx &+ fslvx vy § - vy vx - vixy)€] = 0.
Multiplying this equation with f3 and using (45), we get
FIR(X,Y)E=0.

This equation and (14) give
F(f = f)In(YV)X -n(X)Y] =
from which we obtain f3(f1 - f3) =0.
Consider the case f; = 0. In this case, we have f3 =0 on M and hence, fo =0. Thus, M

is flat.

Next consider the case f; # 0. Differentiating f3(f1—f3) =0 with & gives {fi+[——+ (m+b) (g +

b) —2]f3}&(f3) = 0. If f3(p) =0 at a point p € M, then f1(p)&(f3)(p) =0, where since f; # 0,
we get £(f3) =0 at p. If f3(p) # 0, then f3 = f; in an open neighborhood U of p. Thus,

{(Zii?(;: f)fg}g(fg) =0. For n>1, since 1+n-2n?#0, we get £(f3) =0 on U. Thus, we have
&(f3)=0on M. Since E;f3=0 (j=1,2,...,2n), fs is constant on M. Hence, we have:

(a) If f3=0, then M is of constant curvature fi.

(b) If f3 #0, then we have f; = f3 and vx& =0 for any vector X on M. Hence, the

Schouten tensor L has two distinct constant eigenvalues % f1 with multiplicity 1 and —% f1 with

multiplicity 2n. Therefore, we have the decomposition D@ [£], where D is the distribution defined

127



Ahmet Yildiz / FCMS

by 7 =0 and [£] is the distribution spanned by the vector . By Lemma 2.1, D is integrable.
Hence, M is locally product of an integral submanifold N! of [¢] and an integral submanifold

N?m of D. Since the eigenvalue is constant on M, N2 is a totally geodesic submanifold of M

by Lemma 2.1. If we denote the restriction of ¢ in D by J, then
PPX=¢?’X =-X +n(X)E=-X

for any X € D. Hence, J defines an almost complex structure on N2,
Also, ¢'(JX,JY) = g(¢X,9Y) = g(X,Y) - n(X)n(Y) = ¢'(X,Y) for any X,Y € D, where
g is the induced metric on N?" from g. Hence, (N?",.J,¢') is an almost Hermitian manifold.

Since N2 is a totally geodesic hypersurface of M, the equation of Gauss is given by
R(X,Y)Z=R(X,Y)Z

for any vector fields X,Y and Z tangent to N?", where R’ is the curvature tensor of N2". Thus,

we get

R(X,Y)Z=filg'(V,Z2)X - g'(X,2)Y]

and hence, N2" is a space of constant curvature f,. In any case, from the above arguments, we
can easily see that M(f1, fa, f3) is locally symmetric. Since f; and f3 are constants, we can see

that M is of constant ¢-sectional curvature. This completes the proof of the Theorem 3.1. m|

The above theorem was proved in another ways by Kim [5] and Sarkar and De [7].

Remark 3.2 In the Theorem 1, the condition 7§ is Killing vector field” cannot be remouved.
For example, given (N, J,g) with constant curvature c, say, a 6-dimensional sphere with nearly
Kaehler structure [6], the warped product M =R xz N, where f >0 is a nonconstant function on

R, can be endowed with an almost contact metric structure (¢,€,m,9y).

4. Quasi-Conformally Weyl-Symmetric Generalized Sasakian-Space Forms

Let us consider a quasi-conformally Weyl-symmetric generalized Sasakian-space form M (f1, fo, f3).

Then, the condition

R(X,Y)-C=0
holds on M( f1, f2, f3) for every vector fields X,Y . Hence, we have
(R(X,Y)-C)(U,VIW = R(X,Y)C(UV)W -C(R(X,Y)U, V)W
-C(U,R(X,Y)V)W - C(U,V)R(X,Y)W =0. (46)
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So, for X = ¢ in (46), we have
R(&,Y)C(U VYW - C(R(E,Y)U, V)W
-C(U,R(&,Y)V)W - C(U,V)R(E, Y)W =0.
From (15), we get
(f1 = I, CUVIW)E=n(C(UVIW)Y - g(Y,U)C(E, V)W
+n(U)C(Y, VIW = g(Y,V)C(U, &)W +n(V)C(U, Y)W
~g(Y,W)C(U, V)& +n(W)C(U,V)Y} =0.
Taking the inner product of (48) with &, we obtain
(f1 = ) {9V, CUVIW) =n(C(U,VI)W)n(Y) = g(Y.U)n(C (£, V)W)
+(U)n(C(Y, VIW) = g(Y,V)n(CU,E W) +n(V)n(C(U,Y )W)
wn(W)n(C(U,V)Y)} =0.
Putting Y = U in (49), we have
(f1 = Y g(U.CU.VIW) =(C(UVIW)(U) = g(U,U)n(C (&, VIW)
w(U)n(C(U,VIW) = g(U, V)n(C(U,OW) +9(V)n(C(U,U)W)
+n(W)n(C(U,V)U} = 0.
From (16), we get

a+(2n-1)b
2n+1

n(C(X,Y)Z) = (
Putting Z = ¢, the equation (51) turns into the form
n(C(X,Y)E) =0.
Thus, using (52) in (50), we obtain
(f1 = 3){g(U, C(U, V)W) = g(U, U)n(C (&, V)W)

~g(U,V)n(C(U, W) +n(W)n(C(U,V)U)} = 0.

M=3f2+ (1-2n) f3{g(Y, Z)n(X) - g(X, Z)n(Y)}.

(48)

(50)

(51)

(52)

(53)

Let {e;}, 1<i<2n+1, (€241 = &) be an orthonormal basis of the tangent space at any point.

Then, the sum for U =¢;, 1<i<2n+1, of the relation (53) give us

(f1 - f3){g(ei, Clei, VIW) = g(es, e)n(C(E, V)W)

~g(ei, VIn(C(ei, OW) +n(W)n(C(ei, V)e;)} = 0.
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On the other hand, from (51), we have

a+(2n-1)b

n(CEVIW) = (5 —

=32+ (1=2n) f3]{g(W, V) =n(W)n(V)}.

Using (55) in (54), we get

(i F)aer, Oler, VW) 2“2 D0 3, o (1 2m) gw v} =0,
Also, from (16), we have
Cle, VIW = ——[(=3a+6b)fa + (2a-+2(2n - 1)b) f5)[g(W, V)ei - g(W, e)V]

2n+1
+afa[g(ei, W)V — g(V, W) e + 2g(ei, oV ) oW ]
+[(a+(2n=1)b) f5 + 3bf2][n(e ) n(W)V = n(V)n(W )e;

+g(ei, W)n(V)€ = g(V, W)n(e:)¢]-
Taking the inner product of (57) with e;, we get

a+(2n-1)b

9(C(es, V)W, e;) = ( D

)Bf2+ (2n=1)f3)[g(W. V) = (2n+ )n(W)n(V)].
If we use (58) in (56), we get

(fr=fs)la+(2n=1)b)(3f2 + (2n = 1) f3)[g(W, V) = n(W)n(V)] = 0.
If f1 # f5 and a # (2n-1)b, then 3fy + (2n—1)f3 = 0, that s,

fp=-22 U,

Hence, using (60) in (10), we obtain

T= 271(2’(7, + 1)(f1 — fg)

and using (60) in (9), we get
QX =2n(f1- f3)X.

So, we have the following result:

(55)

(57)

(61)

Theorem 4.1 Let M(f1, fo, f3) be a generalized Sasakian-space form. Then, M?*"*t (n > 1) is

quasi-conformally Weyl-symmetric if and only if either f1 = f3 or fo= —@fg (when f1 # f3),

where a # (2n —1)b.
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