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Abstract
Most statistical methods require likelihood evaluation to draw a statistical inference. How-
ever, in some situations, likelihood evaluation becomes difficult analytically or computa-
tionally. Different likelihood-free methods are available that eliminate the need to com-
pute the likelihood function. Approximate Bayesian Computation (ABC) is a framework
that implements likelihood-free inference and replaces the likelihood evaluation with sim-
ulations by using forward modeling. The goal of ABC methods is to approximate the
posterior distribution. However, posterior approximation via ABC methods is still con-
siderably expensive for high dimensions. ABC requires many simulations that become
computationally infeasible for complex models. Here, a technique is proposed that com-
bines a somewhat more efficient form of ABC (Population Monte Carlo, PMC) with a
Conditional Density Estimation (CDE) approach. The proposed framework provides an
estimation of the posterior distribution which is referred to as PMC-CDE. A simulation
study is performed that provides empirical evidence to show the efficiency of PMC-CDE
in terms of integrated squared error loss. Furthermore, real-life datasets manifest the ap-
plication of the proposed method.
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1. Introduction
The main concern in statistical inference is to make inferences about population pa-

rameters θ given a finite set of observations y0 = (y(1)
0 , y

(2)
0 , . . . , y

(n)
0 ). These inferences

can be formed via probability distribution of the parameters of interest θ. The Bayesian
approach is usually implemented to obtain the probability distribution of θ given data.
This technique incorporates the likelihood function and the prior distribution to evalu-
ate the posterior distribution of model parameters θ. Bayesian statistics implements the
Bayes theorem (e.g., [42, 43]) to calculate the posterior probability distribution. Bayes
theorem revises the prior distribution based on the given data y0. The updated posterior
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distribution is computed using Equation (1.1). Here, f(y0|θ) is the likelihood function
of θ, π(θ) is the prior probability distribution and

∫
f(y0|θ) π(θ) dθ shows marginal like-

lihood or normalising constant. Typically, the normalizing constant does not affect the
shape of the posterior distribution [24]. Therefore, posterior distribution can be written
as Equation (1.2).

f(θ|y0) = f(y0|θ) π(θ)∫
f(y0|θ) π(θ) dθ

, (1.1)

f(θ|y0) ∝ f(y0|θ) π(θ). (1.2)
The closed-form expression of the posterior distribution is generally difficult. Therefore,

the respected Markov Chain Monte Carlo (MCMC) (e.g., [1, 12]) can be implemented.
This technique draws samples from the posterior. However, the implementation of the
MCMC approach requires likelihood evaluation. Likelihood evaluation becomes difficult
for large data settings [41]. Therefore, many approaches are recommended that bypass
the computation of the likelihood. For example, in spatial statistics, Integrated Nested
Laplace Approximation (INLA) [7] is a good alternative to MCMC. Approximate Bayesian
Computation (ABC) is another alternative to MCMC. In recent likelihood-free procedures,
ABC [44] is the most commonly used family of algorithms (e.g., [3, 4, 26,29,33,40]).

1.1. Approximate Bayesian computation (ABC)
Until recently, different ABC-based techniques have been proposed. The first algorithm

of ABC is known as the rejection sampler. It was introduced by [44]. This algorithm
was restricted only to discrete settings. A rejection sampling algorithm for continuous
settings was introduced by [33]. Instead of an exact match between the observed and sim-
ulated datasets, simulated values of θ were accepted if the difference between observed and
synthetic datasets became smaller than the fixed threshold value θ. Beaumont et al. [3]
suggested two improvements in the rejection sampler using kernel weighting and regression
adjustments. These changes provoke observations that follow f(θ|y) more closely. The
curse of dimensionality in the ABC approach was resolved to some extent via local linear
regression [3]. Blum et al. [9] proposed an approach that deals with the curse of dimen-
sionality and computational cost more effectively. This machine learning approach was
based on two-stage nonlinear regression. Marjoram et al. [26] used the MCMC algorithm
that does not depend on the likelihood ratios.

Sequential Monte Carlo (SMC) methods (e.g., [13]) play the role of work-horses for
ABC approach. SMC samplers are used to draw samples from the approximate posterior.
Initially, algorithms for sequential Monte Carlo samplers were introduced by [8]. This
approach was based on Importance Sampling (IS) and resampling moves. Sisson et al.
[40] introduced a likelihood-free approach by making some modifications to the algorithm
[8]. A sequence of distributions approximating the posterior was specified with a decreas-
ing sequence of discrepancy thresholds. This technique was found to be effective when
there was a mismatch between sampling and target distributions. However, this approach
results in biased posterior samples. Beaumont et al. [2] and Toni et al. [46] provided
the appropriate solution and proposed sequential approaches that could implement sub-
optimal backward kernels. This step caused computational complexity that was quadratic
in the number of generated particles. Selection of the appropriate tolerance threshold
sequence can also affect the approximate posterior. Different techniques were introduced
for the adaptive selection of tolerance thresholds. For example, thresholds based on fixed
quantiles of distances corresponding to the accepted particles (e.g., [20,37,38,50]), thresh-
olds based on quantiles of effective-sample size [28, 30], thresholds based on an adaptive
choice of quantiles instead of fixed ones [37, 38]. Naive ABC approaches cannot accom-
modate high-dimensional hierarchical models. Turner and Zandt [47] suggested a new
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MCMC-based algorithm known as Gibbs ABC. Bayesian techniques have been used to in-
crease the efficiency and accuracy of ABC methods to estimate hierarchical models. Biau
et al. [5] suggested an ABC algorithm based on a k-Nearest Neighbor (KNN) [5]. The
KNN approach asks for the number of neighboring values that are closest to the observed
values. The main focus of the KNN-based ABC approach was to describe asymptotic
features of conditional density linked with ABC. Prescott and Baker [32] introduced an
SMC approach that replaces the importance sampling step with a multi-fidelity impor-
tance sampling. It was introduced to reduce the cost of repeated simulations in the ABC
context.

1.2. Conditional density estimation (CDE)
Density estimation is primarily the construction of the unobservable underlying proba-

bility function based on the information contained in the observed sample. The parametric
approach assumes that the shape of the distribution is known. The parametric estimation
has restrictive distributional assumptions. In this approach, distributions are typically
unimodal and cannot model complex applications. However, the nonparametric approach
does not make any restrictive assumptions about the shape of the unknown distribution
except for the mild ones. The key idea of the nonparametric approach is that for a given
data set (y1, y2, . . . , yn ∼ f(y)) the unknown density is estimated [48]. Different methods
have been introduced for the nonparametric estimation of a probability distribution. Some
commonly used approaches include histograms, kernel density estimators, and orthogonal
series estimators [36]. The CDE approach adopted for the proposed technique in our paper
is based on orthogonal series estimators.

The idea of density estimation via orthogonal series was first presented by [11] and later
on by [45]. These estimators are usually modified according to the geometric features of
data and bear the useful property of dimension reduction [14]. Orthogonal series is a
linear combination of expansion coefficients and an orthonormal system of functions. It
is an efficient approach for univariate, multivariate, and conditional density estimation.
Different types of orthogonal series, bounded or unbounded, can be employed for density
estimation purposes. For simplicity, suppose that the interest lies in the estimation of
density function f , over the unit interval [0,1]. However, estimation of f via this approach
requires estimation of the coefficients in its Fourier expansion. Suppose y1, y2, . . . , yn ∼
f(y) is a random sample of observations. The Fourier expansion of f is given in Equation
(1.3).

f(y) =
∞∑

j=1
ϕjβj , (1.3)

βj =
∫ 1

0
ϕj(y)f(y) dy = E[ϕj(y)]. (1.4)

The known and predetermined orthonormal functions are ϕj(y) and βj are Fourier coef-
ficients. A system with basis functions ϕj(y) is said to be orthonormal if

∫ 1
0 ϕu(y)ϕv(y) =

0, u ̸= v and
∫ 1

0 (ϕj(y))2 = 1, for every value of j. Hence, based on a sample of n obser-
vations, an estimate of βj can be obtained using Equation (1.5). The sum

∑∞
j=1 βjϕj is

not a good estimate of f . To obtain a better estimate of f , it is required to truncate the
expansion

∑
βjϕj at some point. Choose the cutoff point k. It determines the amount of

smoothing. Then, density estimate (f̂) can be obtained using Equation (1.6).

β̂j = 1
n

n∑
i=1

ϕ(yi), (1.5)
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f̂(y) =
k∑

j=1
β̂jϕj(y). (1.6)

The relationship between a dependent variable and predictor(s) can be described via
conditional mean (E(θ|y)). Conditional Density Estimation (CDE) is a technique to get
an estimate of the full probability function (f(θ|y)) of a random quantity θ for a given
quantity y [15]. CDE is the generalization of the regression approach. It explains the sto-
chastic dependence between θ and y which is modeled by a conditional probability function
f(θ|y). Different nonparametric estimators of conditional density have been proposed in
the literature. Most of them are based on the ratio method for estimating conditional
density. In the ratio method, joint and marginal distributions are estimated by kernel
density estimation [35]. Then, conditional density is estimated by taking a ratio of these
two estimates. Some estimators of CDE are based on machine learning approaches e.g.,
mixture density networks [6]. This method implemented neural networks to learn mixture
model parameters. However, it was difficult to directly fit it on conditional density esti-
mation loss. Meinshausen [27] introduced Quantile Regression Forests (QRF). The QRF
estimator estimates density as a weighted sum of quantiles attained from the tree of the
random forest. Stating differently, the density is estimated using random forest weights.
In recent methodologies, Random Forest Conditional Density Estimation (RFCDE) is a
good CDE estimator which is given by [31]. Its target is to minimize conditional density
estimation loss by training the random forest. Spectral series conditional density esti-
mator is another method for CDE [21]. FlexCode is also a conditional density estimator
formulated by [22].

In this paper, a technique is proposed that combines a sequential approach of ABC i.e.,
ABC-Population Monte Carlo (ABC-PMC) [2] with a Conditional Density Estimation
(CDE) approach [22]. Therefore, the proposed technique is entitled PMC-CDE. This
approach starts with a crude approximation of the target posterior via the ABC-PMC
sampler at the first stage. The second stage estimates the posterior by incorporating a
nonparametric CDE approach. The CDE approach implemented here utilizes orthogonal
series for the response θ and then computes posterior based on a regression technique. In
this paper, we have implemented the k-nearest neighbor regression technique. To assess
the performance of the proposed method (PMC-CDE) integrated squared error loss is
used. The rest of the paper is structured into four more sections. Section 2 describes
the proposed method (PMC-CDE) in detail. In Section 3, details of the data generation
procedure and simulation study are presented. Section 4 depicts the performance of the
proposed technique via simulated and real-life datasets. Section 5 concludes this paper.

2. Statistical methodology
In this section, a method for posterior density estimation is proposed (Section 2.3). The

proposed technique (PMC-CDE) is a combination of the population Monte Carlo-based
ABC approach [2] and a Conditional Density Estimation (CDE) technique [22]. CDE
framework is used for efficient estimation of the posterior density. The performance of the
proposed method (Section 2.3) is analyzed through average integrated squared error loss.

2.1. ABC population Monte Carlo
The ABC rejection sampler draws approximate posteriors by comparing the observed

and simulated data sets. The main cause of inefficiency in the ABC rejection sampler is
that the same distribution is used to draw samples [49]. There is a high possibility that
certain regions of prior generate simulations that are distant from observed summary sta-
tistics. Therefore, a portion of parameter values is sampled from a low region of posterior
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mass [49]. This causes a low acceptance rate in the rejection sampling approach. Intel-
ligent exploration techniques can be implemented over parameter space to decrease the
number of simulations in low-likelihood regions [39]. An efficient implementation of ABC
is possible by incorporating sequential approaches i.e., Sequential Monte Carlo (SMC)
(e.g., [8,13]) and Population Monte Carlo (PMC) [10]. This paper incorporates the PMC
approach of ABC in the proposed technique.

Population Monte Carlo-based ABC approach was introduced by [2]. The goal of PMC
methods is to improve the proposal distribution continuously for each iteration. These
methods enhance the sampling efficiency and provide a better approximation of the target
distribution. ABC-PMC [2] technique provides an approximation to the target posterior
via a sequence of artificial distributions. This sequence of distributions is constructed for
a monotonically decreasing sequence of tolerance thresholds. ABC-PMC is an iterative
procedure. At each iteration, a set of weighted particles is generated by satisfying a cri-
terion between the summaries of observed and simulated datasets. The main focus of the
ABC-PMC approach is to provide an estimate of the posterior based on a set of weighted
particles. This set of particles approximates the target posterior. The approximating dis-
tributions improve iteratively as the tolerance threshold is decreasing for each subsequent
iteration.

ABC-PMC algorithm starts with a basic rejection sampler. A set of particles is drawn
from a proposal distribution. Proposal distribution (q1(θ)) at the first iteration is equal
to the prior (π(θ)). The first approximation of the target posterior f(θ|s0) is obtained by
using the rejection sampler [3,33] with a larger tolerance threshold (ϵ1). A large value of ϵ1
corresponds to a higher acceptance rate and a bad approximation of the target posterior.
At the end of the first iteration, equal weights are assigned to the accepted particles
that give a first approximation to f(θ|s0) for an observed vector of summary statistics
(s0). The tolerance threshold for the next iteration is also specified. The ABC-PMC
algorithm gradually reduces the value of the tolerance threshold to effectively shift from a
prior distribution to a well-approximated target distribution. Initially, a fixed sequence of
threshold values can be implemented [2]. Such a sequence results in a poor approximation
of the target posterior (e.g., [49]). However, some approaches in the literature suggest an
adaptive sequence of tolerance thresholds. It is recommended that for every iteration, the
value of the tolerance threshold is set as α% quantile of the distance values corresponding
to the accepted particles in that iteration. The posterior distribution approximated in
the previous iteration is used as the proposal distribution in the next iteration. A set of
weighted samples (or particles) is drawn from the proposal distribution. These samples
are then perturbed. The ABC rejection sampler is then performed with a lower tolerance
threshold as compared to the previous iteration. The accepted particles are closer to the
target posterior f(θ|s0) in contrast to the previous approximation. At the end of each
iteration, importance weights are calculated and the tolerance threshold is specified for
the next iteration. The value of the tuning parameter is typically set using Equation
(2.1). This procedure continues until the algorithm converges. The proposals consistently
improve across iterations. Therefore, the approximation error decreases.

(r)∑
= 2Cov(θ(r)). (2.1)

2.2. Posterior density estimation by FlexCode
High-dimensional and complex data handling is a challenging problem in the statistical

inference of the modern age. Often, regression (E(θ|s)) is used to describe the relationship
between a random variable (θ) and a vector of high dimensional covariates (s). Limited
literature is available to estimate full conditional density (f(θ|s)) for high dimensional
covariates (s). If the full conditional density is implemented, bias will be reduced [21].
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Conditional density is a key quantity in modern statistical inference. In most problems
like multimodality, asymmetry, and heteroscedastic pattern of noise, the regression curve
fails to produce useful information. Conditional density estimation is the generalization of
the regression in describing the relationship between the target variable (θ) and covariates
(s). A naive method for density estimation requires a set of independent and identically
distributed samples i.e., ψ = (s1, θ1), (s2, θ2), , (sN, θN ). This set of samples (ψ) is in-
corporated in a CDE estimator to obtain an estimated density (f̂(θ|s)) at point s = s0.
However, conventional methods for estimation of conditional density (f(θ|s)) use every
(s) for estimation while in ABC-PMC applications the interest lies in observed summary
statistics s0 only.

A conditional density estimator, FlexCode [22], is used in this paper. FlexCode is a
nonparametric flexible estimator that estimates conditional density based on regression.
Flexible means that it can be applied to different data types and data structures. Flex-
Code converts regression estimation into a conditional density estimation. For this pur-
pose, orthogonal series are implemented in FlexCode [22]. Orthogonal series requires the
estimation of expansion coefficients. FlexCode employs different nonparametric regression
techniques to estimate expansion coefficients. Different regression techniques can be se-
lected according to the data type or nature of the problem. Also, different sparse structures
can be induced into the data. Like other CDE methods, FlexCode also requires a set of
independent and identically distributed data sets, i.e. ψ = (s1, θ1), (s2, θ2), . . . , (sN, θN ).
FlexCode is usually implemented in high-dimensional settings. To keep it simple, assume
that interest lies in the estimation of the posterior distribution for a single parameter
(θ ∈ R). In the FlexCode framework, orthonormal basis functions (ϕj)j∈N are specified
that are implemented on θ to model the conditional density (f(θ|s)) as a function of ϕ.
There are several orthogonal bases in the literature. Generally, the choice of orthogonal
basis function depends on the complexity of the shape to be captured [25]. However, a
reasonable choice to rationally smooth functions is the Fourier basis.

ϕ1(θ) = 1,

ϕ2j+1(θ) =
√

2 sin (2πjθ), j ∈ N,

ϕ2j(θ) =
√

2 cos (2πjθ), j ∈ N.

In FlexCode, orthogonal series is used for the response variable (θ). FlexCode limits the
estimation of complex high dimensional conditional density problems to a straightforward
regression problem (Equation (2.2)). It is worthy to note that Equation (2.2) holds if for
every s ∈ R, f(θ|s) is L2(R) integrable as a function of θ. Moreover, as the basis func-
tions {ϕj}j∈N are orthogonal so expansion coefficients are computed using Equation (2.3).
Therefore, every βj(s) is a regression estimate of the transformed variable ϕj(θ) on s.
Stating differently, for fixed j, an estimate of βj(s) is obtained by regressing ϕj(θ) on s.
By incorporating an estimate of βj(s), FlexCode estimator is obtained (Equations (2.4)
and (2.5)).

f(θ|s) =
∑
j∈N

βj(s)ϕj(θ), (2.2)

βj(s) =
∫
R
ϕj(θ)f(θ|s) dθ = E(ϕj(θ)|s), (2.3)

f̂(θ|s) =
J∑

j=1
β̂j(s)ϕj(θ), (2.4)

β̂j(s) = Ê(ϕj(θ)|s). (2.5)
The cutoff (J) plays the role of tuning parameter in the series expansion and regulates the
bias-variance tradeoff in the final density estimate. Broadly speaking, for a smaller value of
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J , the smoothness of density increases. Regarding computational efficiency, FlexCode is a
faster density estimator as compared to many existing conditional density estimators [22].
FlexCode is a consistent estimator as it is based on orthogonal series. Moreover, FlexCode
is a suitable method for parallel computing as each of the regression functions is estimated
separately and then combined to get a density estimate. Conditional density estimation via
FlexCode is streamlined to the choice of a regression technique. FlexCode offers different
regression methods for the estimation of regression functions βj(s) (Equation (2.3)). To
keep things simple, the k-Nearest Neighbor (KNN) regression (e.g., [16]) technique is
implemented in the proposed method PMC-CDE. KNN regression is a nonparametric
approach that approximates the relationship between covariates (s) and the continuous
response variable (ϕ(θ)) by taking the average of the response values in the neighborhood
of the observed variable (s0) for given s. The neighborhood size (k) is specified by the
analyst. However, the best choice is to set the neighborhood size (k) via cross-validation
and choose the size that minimizes the Mean Squared Error (MSE).

2.3. Population Monte Carlo based CDE (PMC-CDE)
This section describes the step-wise procedure of the proposed method (PMC-CDE) for

estimating posterior density. The PMC-CDE combines the ideas of the conditional density
estimation approach [22] and approximate Bayesian computation population Monte Carlo
[2]. The main focus is to estimate the posterior f(θ|s0) as accurately as possible for a given
vector of observed summary statistics (s0) and prior belief (π(θ)). For this purpose, the
proposed technique (PMC-CDE) estimates the required posterior at two stages. The first
stage consists of approximating the posterior by generating approximate samples from
a distribution of interest f(θ|s0). To approximate the posterior, a sequential approach
i.e. approximate Bayesian computation-population Monte Carlo [2] is implemented. The
second stage is the post-processing of the approximate posterior obtained in the first
stage. For this purpose, a conditional density estimator (FlexCode [22]) is incorporated
that estimates f(θ|s0). Both phases operate independently. As a result, PMC-CDE retains
the asymptotic properties of both parent methods. The algorithm-1 fully demonstrates
the implementation procedure of the PMC-CDE.

2.3.1. Tolerance threshold. In the algorithm 1, the tolerance threshold for the iteration
r = 1 is specified differently than for iteration r > 1. For the first iteration, the distance
values (γi(s, s0), i = 1, ..., B) are arranged in ascending order. Then, 50% of B particles
are retained corresponding to the minimum distances. For iteration r > 1, the tolerance
threshold ϵr is set as the 75th quantile of distance values {γ(r−1)

i }Ni=1 corresponding to the
accepted particles in (r − 1)th iteration [37,50].

2.3.2. Convergence criterion. Different convergence criteria are given in the litera-
ture. However, a criterion given by [19] is implemented in this paper. It typically depends
on the derived uncertainties of the parameters to be inferred. To check the convergence,
uncertainties are measured at the end of each iteration. If the uncertainties show a bal-
anced pattern and have negligible variation, then the algorithm attains convergence [19].
For this purpose, dispersion is computed for the accepted particles at the end of each
iteration. If the dispersion stabilizes, convergence is achieved.

Algorithm 1 Population Monte Carlo based CDE
1: At first iteration, draw B particles θi from the prior distribution. For each particle

(θi) simulate the synthetic data (y∗).
2: Compute the distance between summary statistics of observed and simulated datasets

i.e., γ = ∥s(y∗)− s(y0))∥.
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3: Arrange the distances in ascending order and retain N = 50% of B particles corre-
sponding to smallest distances.

4: Set the initial tolerance threshold ϵ(1) = max(γ1, ..., γN ), sample of particles θ(1) ←
(θ∗

1, θ
∗
2, . . . , θ

∗
N ), weights as ω(1) ← 1

N for all elements of θ(1). and the tuning parameter
as Σ(1) = 2Cov(θ(1)).

5: For iteration r > 1, repeat the steps (a), (b), (c), and (d) until N particles satisfy
γ(s∗, s0) < ϵ(r−1)

(a) Sample θ∗ from previous iteration, i.e., θ∗ ∼ θ(r−1) with probabilities ω(r−1).
(b) Perturb θ∗ using Gaussian kernel, θ∗∗ ∼ N(θ∗,Σ(r−1)).
(c) Simulate data y∗∗ i.e., y∗∗ ∼ f(y|θ∗∗).
(d) Compute γ = ∥s(y∗∗)− s(y0))∥.

6: Set θ(r) ← (θ∗∗
1 , θ

∗∗
2 , θ

∗∗
3 , . . . , θ

∗∗
N ), weights as

ω(r) ← π(θ(r))
Σω(r−1)f(θ(r)|θ(r−1),Σ(r−1))

and tolerance as ϵ(r) ← 75thquantile (γ1, γ2, . . . , γN ) and set Σ(r) = 2Cov(θ(r))
7: Store the particles of approximated posterior fabc−pmc(θ|s) at Rth iteration in a set

along with the corresponding summary statistics i.e., ψ = {(s1, θ1), . . . , (sN, θN )}.
8: Partition the dataset ψ into two parts for cross-validation such that 70% of ψ is training

dataset and 30% of ψ is validation dataset.
9: Apply FlexCode [22] on the partitioned information of ψ to obtain an estimate of
f(θ|s0).

In Algorithm 1, for one-dimensional case Σ(r) represents a scalar quantity. For high
dimensions, Σ(r) indicates a covariance matrix.

2.4. Integrated squared-error loss
To measure the efficiency of the proposed estimator (PMC-CDE), Integrated Squared

Error (ISE) loss is computed [23]. If f̂(θ|s0) is an estimator of the true posterior (f(θ|s0))
then ISE loss is Ls (Equation (2.6)). It should be smaller than any other estimator of the
true posterior.

Ls =
∫ (

f̂ (θ|s0)− f(θ|s0)
)2
dθ. (2.6)

3. Simulation study
In the simulation study, a model with known parameters is considered. As an exam-

ple, a simple model is chosen to demonstrate the performance of the proposed method
(PMC-CDE, Section 2.3). The posterior distribution of the mean of the Gaussian distri-
bution is estimated via the PMC-CDE estimator. It is compared with the actual density
through integrated squared error loss. The posterior distribution of the mean of Gaussian
distribution is estimated for the following two settings.

(1) Posterior of the mean (µ) of Gaussian distribution when variance (σ2) is known.
The sample size is set as 20 and the synthetic dataset is generated as y1, y2, . . . ,
y20|µ ∼ N(µ, 1). The prior distribution for µ is µ ∼ N(0, σ2

0). Different values of
σ0 are selected between 0.5 and 100, i.e., σ0 = (0.5, 5, 10, 20, 30, 40, 50, 60, 70,
80, 90, 100).

(2) Posterior of parameter µ of Gaussian distribution with unknown precision τ . For
this purpose, a data set is simulated as y1, y2, . . . , y20 ∼ N(µ, 1/τ). However, a
joint prior distribution for µ and τ is set as (µ, τ) ∼ Normal−Gamma(µ0, ν0, α0, β0).
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To change the precision level, different values of ν0 are chosen between 0.001 and
1, and µ = 0, α = 2, β = 50.

For both settings, observed data (y0) is simulated from N(0, 1). Sufficient summary
statistics are s∗ = ȳ, for setting-1, and s∗ = (ȳ, S) for setting-2. In each setting, the
experiment is repeated for 100 Monte Carlo runs. The posterior distribution of µ is
estimated in two main stages.

(a) Get a set of N-weighted particles that provide an approximation to the target
posterior along with the corresponding summary statistics i.e.

ψ = {(s∗
1, µ1) , (s∗

2, µ2) , . . . ., (s∗
N , µN )}.

(b) To obtain a final estimate of the posterior, apply FlexCode [22] on a set of approx-
imate samples (ψ) obtained in the first stage.

For each setting, particles (ψ) and synthetic summary statistics are constructed via algo-
rithm 1 (Section 2.3). For this, B=1000 and the adaptive sequence of tolerance thresholds
(ϵ(r)) are considered. At the first iteration of the Algorithm 1, particles (µi) are generated
from the prior distribution (π(θ)). These particles are used to simulate data of size 20 from
normal distribution i.e., yi ∼ N(µ, 1). Then, the Euclidean distance function (γ (s0, s

∗))
is used to measure dissimilarity between observed (s0) and synthetic data summary sta-
tistics (s∗). The value of γ (s0, s

∗) is compared with the first tolerance threshold (ϵ1). If
γ (s0, s

∗) < ϵ1, the corresponding particle µi is retained otherwise rejected and the next
value is simulated from the prior (π(µ)). This process continues until a pool of N particles
is accepted.

After the first iteration, instead of simulating from the prior the particles are sampled
from the perturbed previous pool of accepted particles. The Gaussian kernel is used to
perturb the accepted particles. Stating differently, instead of simulating particles from
the prior distribution (π(µ)) particles (µi) are sampled from the previous pool of accepted
particles and perturbed by the Gaussian kernel. The tolerance threshold decreases at each
iteration. To select the tolerance threshold, 75th quantile of γ(s∗, s0) corresponding to
accepted particles is taken. The set of weighted particles, obtained at the convergence of
the algorithm provides an approximate posterior. The final estimate of the true posterior
(f(µ|s0)) is obtained by applying the conditional density estimator FlexCode [22]. Flex-
Code is applied to the data set (ψ) obtained at the first stage.

This method takes the input of the particles as a response variable and the correspond-
ing summary statistics (s∗) are treated as covariates. It transforms the response variable
(µi) into Fourier basis (ϕj(µ)) and use it with covariates (s∗) to find regression func-
tion (βj (s∗) = E(ϕj(µ)|s∗)). In essence, to estimate the conditional mean (E(ϕj(µ)|s∗))
FlexCode employs a regression technique. In this simulation study, the k-nearest neighbor
regression technique is used to compute the conditional mean. When the conditional mean
and Fourier transformation of response µ are combined via Equation (2.4), an efficient con-
ditional density estimate is obtained. To show the efficiency of the PMC-CDE (Section
2.3), the average loss is used to compare the proposed PMC-CDE with the existing method
ABC-CDE [23]. ABC-CDE is based on the basic ABC-rejection sampler.

4. Results
This section explains the results obtained by the implementation of the proposed tech-

nique (PMC-CDE). Densities estimated by PMC-CDE in both settings are compared with
the densities obtained by applying ABC-CDE [23]. The whole experiment is repeated for
different values of σ0 and ν0 under both settings (Section 3). Integrated squared error loss
(Figure 3, Figure 4) is computed for both estimators and averaged over 100 Monte Carlo
runs. Posterior densities of µ estimated by PMC-CDE (Section 2.3) and ABC-CDE [23]
over a single value of σ0 and ν0 are shown in Figure 1 and 2. In Figure 1 and Figure 2,
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true posteriors are also plotted. Figure 1 and 2 show that posterior density estimated by
PMC-CDE is much closer to the true posterior [23] for both settings.

Figure 1. Posterior densities of µ estimated by ABC-CDE and PMC-CDE with
σ0 = 40.

Figure 2. Posterior densities of µ estimated by ABC-CDE and PMC-CDE with
ν0 = 1.

This experiment is repeated 100 times for every value of σ0 under setting-1 and for each
value of ν0 under setting-2. Posterior densities are estimated by ABC-CDE [23] and PMC-
CDE (Section 2.3) for both settings. Then, integrated squared error loss (Equation 2.6)
of actual and estimated densities is computed for both settings. This loss is averaged over
100 Monte Carlo runs. The average loss of PMC-CDE is compared with that of ABC-
CDE. This comparison is depicted in Figure 3 for setting-1 and Figure 4 for setting-2.
These figures (Figure 3, Figure 4) demonstrate the performance of both methods in terms
of average loss. For setting-1, as the value of σ0 increases the average loss of ABC-CDE
attains a higher value in contrast to the PMC-CDE approach i.e. the larger the variation
in prior the better PMC-CDE performs as compared to ABC-CDE. For setting-2, as the
value of ν0 (precision) increases average loss for PMC-CDE decreases.
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Figure 3. Average loss between estimated and true densities under setting-1.

Figure 4. Average loss between estimated and true densities under setting-2.

For real-life application, the proposed methodology, PMC-CDE is applied on the coop-
eration variable of a real-life dataset Guyer [17]. This dataset consists of three variables.
However, only one variable is considered in this study. Guyer dataset is taken from an
R-package, CAR, and has 20 observations. Posterior densities are estimated based on
this information and shown in Figure 5. These posterior densities are estimated by PMC-
CDE and ABC-CDE. Credible intervals are also computed for these estimated posteriors.
The interval (46.86445, 49.78514) is based on the PMC-CDE estimator and the interval
(34.50141, 50.58128) is based on the ABC-CDE estimator. It is found that the estimated
average value i.e. 48.3 of real-life datasets lies within these intervals. However, the length
of the credible interval for the PMC-CDE estimator is shorter than that of ABC-CDE.

There is another real-life data application. The proposed technique PMC-CDE and
ABC-CDE estimators are applied to the shrimp dataset which exists in R-package, MASS [34].
It is a univariate dataset of size 18. Densities estimated by employing this dataset are
shown in Figure 6. Moreover, credible intervals based on PMC-CDE and ABC-CDE ap-
proaches are (30.72584, 32.8317) and (18.02356, 39.85572), respectively. The average
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value of the shrimp dataset i.e. 31.7 lies within both intervals. Similar to the first ap-
plication, the width of the credible interval based on PMC-CDE is smaller than that of
ABC-CDE.

Figure 5. Posterior density of Guyer data by ABC-PMC and PMC-CDE.

Figure 6. Posterior density of maximum stress estimated by ABC-CDE and
PMC-CDE.

5. Conclusion and discussion
This paper suggests a technique for posterior density estimation. The proposed tech-

nique (PMC-CDE) is a combination of a sequential form of ABC i.e., ABC-PMC, and a
conditional density estimation approach. Conditional density estimation is the generalized
form of regression that explains the relationship between the response variable (θ) and co-
variates. PMC-CDE is a somewhat improved form of the existing method (ABC-CDE
[23]) which is based on the classical rejection sampler of ABC.

PMC-CDE approach estimates the target posterior at two different stages. In the first
stage, the proposed technique approximates the target posterior based on algorithm 1. The
approximate posterior is obtained via iterative refinement of a sequence of intermediate
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distributions using a sequence of decreasing tolerance thresholds. It gives a set of particles
that are closely related to the given information. In the second stage, a conditional density
estimator, FlexCode [22] is applied to obtain a final estimate of the posterior density. For
this purpose, FlexCode requires a set of particles and associated synthetic summary sta-
tistics. FlexCode implements regression techniques along with the basis transformation of
the response variable (θ) to provide an estimate of the posterior density. The performance
of the proposed technique (PMC-CDE, Section 2.3) is demonstrated using synthetic and
real-life data sets. The ISE loss of the proposed PMC-CDE is compared with that of an-
other CDE estimator i.e., ABC-CDE [23]. Results demonstrate that PMC-CDE performs
better in terms of loss as the prior variation increases. A potential use of the proposed
technique is in the more complex models e.g., mixture models. Posteriors of mixture pa-
rameters can be estimated via PMC-CDE. Further, their comparative performance with
other existing methods can be assessed.
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