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Abstract
We propose two tests based on fiducial and generalized p - value approaches for testing the
equality of treatment means in one-way analysis of variance (ANOVA). Modified maximum
likelihood (MML) estimators are used in the proposed tests. In contrast to least squares
(LS) estimators, MML estimators are highly efficient and robust to plausible deviations
from an assumed distribution and to mild data anomalies. In this study, error terms are
assumed to have short-tailed symmetric (STS) distributions with heterogeneous variances.
The performances of the proposed tests are compared with the fiducial based test using
bias-corrected LS estimators via an extensive Monte Carlo simulation study. Finally, two
real datasets are analyzed for illustrative purposes.
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1. Introduction
The one-way analysis of variance (ANOVA) F test is commonly used statistical proce-

dure for testing the equality of treatment means. It is well known that it possesses many
optimum properties under the usual normality and homogeneity of variances assumptions.
However, the performance of the F test can be negatively affected in case of violation of
these assumptions [22]. Therefore, various alternative test procedures have been proposed
in the literature when the normality and/or homogeneity of variances assumptions are not
satisfied; see for example [9, 13,14,16,17,19,24,28,34,36,37], etc.

Different from the mentioned studies, we propose new tests based on Tiku’s [26] modified
maximum likelihood (MML) estimators when the distributions of the error terms are short-
tailed symmetric (STS) with heterogeneous variances. In developing the proposed tests,
fiducial and generalized p - value approaches are used, see [5–7] and [34], respectively.
Fiducial approach deals with the shortcomings of the Bayesian approach when there is
no prior information about the parameter. Generalized p - value approach extends the
traditional F test to the case of unequal error variances by generalizing the conventional
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definition of the p - value. The reader is referred to [10, 18, 20, 32, 33] for further deails
about the fiducial and generalized p - value approaches.

Note that STS distribution has a thinner tail than the normal distribution and is es-
pecially useful for modelling inliers which are erroneous observations located close to the
mean, see [27] and also [23] for more detailed information. MML estimators are explicit
functions of the sample observations and therefore easy to compute. They are asymptoti-
cally equivalent to the well known and widely used maximum likelihood (ML) estimators
and also robust to inliers.

To the best of our knowledge, this is the first study testing the equality of treatment
means using fiducial and generalized p-value approaches when the error terms have STS
distribution with heterogeneous variances.

The remainder of this study is organized as follows. STS distribution is presented in
Section 2 and MML estimators of the model parameters are derived in Section 3. Proposed
tests based on fiducial and generalized p-value approaches are given in Section 4. A
comprehensive Monte Carlo simulation study is conducted to compare the performances
of the proposed tests with the fiducial based test using the bias-corrected LS estimators in
Section 5. Two real datasets are analyzed for illustrative purposes in Section 6. Concluding
remarks are given in Section 7.

2. Short tailed symmetric distribution
Probability density function (pdf) of the STS distribution is given by

f(z) = C

{
1 + λ

2r
z2

}r 1√
2πσ

exp
{

−1
2

z2
}

, −∞ < z < ∞, (2.1)

where z = (y − µ)/σ, r is a positive integer, λ = r/(r − d) and d < r. The constant C is
given by

C = 1
r∑

j=0

(
r
j

) (
λ
2r

)j (
(2j)!
2j(j)!

) .

Central moment of order 2i (i = 1, 2, ...) for the STS distribution is

µ2i = E
(
z2i

)
= C

 r∑
j=0

(
r
j

) (
λ

2r

)j (2 (i + j))!
2i+j (i + j)!

 .

All its central moments of order 2i + 1 are zero. Kurtosis values
(
β2 = µ4

/
µ2

2
)

are shown
in Table 1 for better understanding the shape of the STS distribution.

Table 1. Kurtosis (β2) values of the STS distribution for certain r and d values.

r d = −1 −0.5 0.0 0.5 1 1.5 2.5 3.5

2 2.648 2.559 2.437 2.265 2.026 1.711 — —
4 2.541 2.464 2.370 2.255 2.118 1.957 1.591 1.297

It can be seen from Table 1 that the values of kurtosis are not defined for d > r, therefore
the dashed entries are used when r = 2 and d = 2.5 and 3.5. Figure 1 shows the pdf plots
of the STS distribution for certain values of d when r = 2.

It can be seen from Figure 1 that the distributions are unimodal for d ≤ 0 however,
they are generally multimodal for d > 0.



1738 G. Güven

Figure 1. The pdf plots of the STS distribution for certain values of d when
r = 2.

3. Modified maximum likelihood estimators
Let Yi1, Yi2, ..., Yini (i = 1, . . . , a) be a random sample from a STS distribution with

parameters µi and σi, i = 1, . . . , a. The likelihood (L) function is given by

L =
(

C√
2π

)N a∏
i=1

( 1
σi

)ni a∏
i=1

ni∏
j=1

{
1 + λ

2r

(
yij − µi

σi

)2
}r

exp

−1
2

a∑
i=1

ni∑
j=1

(
yij − µi

σi

)2
 ,

where N =
a∑

i=1
ni. The log-likelihood (ln L) function can be written by taking the loga-

rithm of L as follows

ln L = N
[
ln (C) − ln

(√
2π

)]
−

a∑
i=1

ni ln (σi) +
a∑

i=1

ni∑
j=1

r ln
{
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(
yij−µi

σi

)2
}

−1
2

a∑
i=1

ni∑
j=1

(
yij−µi

σi

)2
.

(3.1)

The likelihood equations are obtained by equating the partial derivatives of ln L with
respect to the unknown parameters µi and σi (i = 1, . . . , a) to zero, which are given by

∂ ln L

∂µi
= − λ

σi

ni∑
j=1

zij

1 + λ
2r z2

ij

+ 1
σi

ni∑
j=1

zij (3.2)

and
∂ ln L

∂σi
= −ni

σi
− λ

σi

ni∑
j=1

z2
ij

1 + λ
2r z2

ij

+ 1
σi

ni∑
j=1

z2
ij , (3.3)

where zij = (yij − µi)/σi. The ML estimators of the parameters are the simultaneous so-
lutions of the likelihood equations ∂ ln L

∂µi
= 0 and ∂ ln L

∂σi
= 0. Realize that it is not possible

to obtain the maximum likelihood estimators of the unknown parameters analytically be-
cause of the intractable terms in the likelihood equations. Therefore, iterative methods are
required. However, this may cause some problems such as slow convergence, convergence
to the wrong values and multiple roots [1, 15, 29, 30]. To remedy these problems, we use
MML methodology providing explicit solutions to the likelihood equations. The resulting
estimators are called as MML estimators, see [2, 3, 25,31] for their attractive properties.

To obtain the MML estimators, standardized observations are firstly ordered in as-
cending way. Since summation is invariant to ordering i.e.,

ni∑
j=1

zij =
ni∑

j=1
zi(j) and so
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ni∑
j=1

g (zij) =
ni∑

j=1
g

(
zi(j)

)
, Equation (3.2) and Equation (3.3) are rewritten in terms of the

standardized ordered observations as shown below:
∂ ln L

∂µi
= − λ

σi

ni∑
j=1

g
(
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)
+ 1
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ni∑
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zi(j) = 0 (3.4)
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Here, zi(j) =
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σi and g

(
zi(j)

)
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/(
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2r z2
i(j)

)
. Since g

(
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)
is almost

linear in small intervals around ti(j) = E
(
zi(j)

)
, the function g

(
zi(j)

)
is linearized by

expanding it in a Taylor series, i.e.,

g
(
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(
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)
+
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)
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(3.6)

where

αij =
λ
r t3

i(j)(
1 + λ

2r t2
i(j)

)2 and γij =
1 − λ

2r t2
i(j)(

1 + λ
2r t2

i(j)

)2 . (3.7)

The approximate values of ti(j) are obtained from the following equality:
ti(j)∫

−∞

f (z) dz = j

ni + 1
. (3.8)

Secondly, the following modified likelihood equations are obtained by incorporating Equa-
tion (3.6) into the Equation (3.4) and Equation (3.5):

∂ ln L∗

∂µi
= − λ

σi

ni∑
j=1

(
αij + γijzi(j)

)
+ 1

σi

ni∑
j=1

zi(j) (3.9)

and
∂ ln L∗

∂σi
= −ni

σi
− λ

σi

ni∑
j=1

zi(j)
(
αij + γijzi(j)

)
+ 1

σi

ni∑
j=1

z2
i(j). (3.10)

Finally, MML estimators which are the solutions of the modified likelihood equations
∂ ln L∗

∂µi
= 0 and ∂ ln L∗

∂σi
= 0 are obtained as follows:

µ̂i =

ni∑
j=1

βijyi(j)

mi
and σ̂i =

−Bi +
√

B2
i + 4AiCi

2
√

Ai (Ai − 1)
. (3.11)

Here,

mi =
ni∑

j=1
βij , βij = 1 − λγij , Ai = ni,

Bi = λ
ni∑

j=1
αijyi(j) and Ci =

ni∑
j=1

βij

(
yi(j) − µ̂i

)2
.

It should also be noted that the denominator of σ̂i in Equation (3.11) is replaced by
2
√

Ai (Ai − 1) for bias correction.
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4. Proposed tests
One-way ANOVA model is given by

yij = µi + εij , i = 1, . . . , a; j = 1, . . . , ni, (4.1)
where yij is the jth observation in the ith treatment, µi is the mean of the ith treatment
and εij are random error terms from STS(0, σi) distribution.

Two different test statistics are proposed for testing the following hypothesis
H0 : µ1 = µ2 = · · · = µa vs. H1 : not all µ′

is are equal.
As mentioned in Section 1, the first test is based on fiducial approach and the second one
is based on generalized p-value approach. In the following subsections they are called as
fiducial based test and generalized F test, respectively.

4.1. Fiducial based test
Inspired by the natural statistic given for normal theory, we first define the following

test statistic based on the MML estimators under the assumption of known σ2
i s

Q
(
µ̂1, ..., µ̂a; σ2

1, ..., σ2
a

)
=

a∑
i=1

mi

σ2
i

(µ̂i − µi)2 −

(
a∑

i=1
mi (µ̂i − µi)

/
σ2

i

)2

a∑
i=1

mi
/
σ2

i

. (4.2)

Here, Q
(
µ̂1, ..., µ̂a; σ2

1, ..., σ2
a

)
has the asymptotic χ2 distribution with degrees of freedom

(a − 1), see Lemma A.1 and Lemma A.2 given in Appendix A.
If the variances σ2

i s are unknown, σ2
i in Equation (4.2) is replaced with σ̂2

i for i = 1, . . . , a
and the following test statistic is obtained

Q
(
µ̂1, ..., µ̂a; σ̂2

1, ..., σ̂2
a

)
=

a∑
i=1

mi

σ̂2
i

(µ̂i − µi)2 −

(
a∑

i=1
mi (µ̂i − µi)

/
σ̂2

i

)2

a∑
i=1

mi
/
σ̂2

i

. (4.3)

It is clear that the test statistic in Equation (4.3) can be simplified as

Q
(
µ̂1, ..., µ̂a; σ̂2

1, ..., σ̂2
a

)
=

a∑
i=1

mi

σ̂2
i

µ̂2
i −

(
a∑

i=1
miµ̂i

/
σ̂2

i

)2

a∑
i=1

mi
/
σ̂2

i

, (4.4)

under H0 : µ1 = µ2 = · · · = µa.
Note that for a given

(
µ̂i(obs), σ̂2

i(obs)

)
, i = 1, . . . , a, the test statistic in Equation (4.3)

can be written as

a∑
i=1

mi

σ̂2
i(obs)

(
µ̂i(obs) − µi

)2
−

(
a∑

i=1
mi

(
µ̂i(obs) − µi

)
/σ̂2

i(obs)

)2

a∑
i=1

mi/σ̂2
i(obs)

. (4.5)

The test statistic in Equation (4.5) can be simplified as

Q
(

µ̂1(obs), ..., µ̂a(obs); σ̂2
1(obs), ..., σ̂2

a(obs)

)
=

a∑
i=1

mi

σ̂2
i(obs)

µ̂2
i(obs) −

(
a∑

i=1
miµ̂i(obs)/σ̂2

i(obs)

)2

a∑
i=1

mi/σ̂2
i(obs)

, (4.6)

under H0 : µ1 = µ2 = · · · = µa.
Next the fiducial distribution of (4.5) is given and the fiducial p-value is obtained.
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Let Ei ∼ N(0, 1) and Ui ∼ χ2
ni−1, i = 1, . . . , a, be mutually independent. It should be

noted that µ̂i and σ̂2
i are also mutually independent and the asymptotic distributions of

them are

µ̂i ∼ N
(
µi, σ2

i /mi

)
(4.7)

and

(n − 1)σ̂2
i /σ2

i ∼ χ2
ni−1, (4.8)

respectively, see Lemma A.1 and Lemma A.2 given in Appendix A.
Hence, µ̂i and σ̂2

i can be written as functions of Ei and Ui, respectively. See the equalities
given below:

µ̂i = µi + σi√
mi

Ei (4.9)

and

σ̂2
i = σ2

i Ui/(ni − 1). (4.10)

Given an observations
(
µ̂i(obs), σ̂2

i(obs)

)
and (ei, ui), i = 1, . . . , a, the equations µ̂i(obs) =

µi +
(
σi/

√
mi

)
ei and σ̂2

i(obs) = σ2
i ui/(ni − 1) have the following unique solutions:

µi = µ̂i(obs) − ei√
ui/(ni − 1)

√√√√ σ̂2
i(obs)
mi

and σ2
i =

(ni − 1)σ̂2
i(obs)

ui
. (4.11)

Therefore, for given
(
µ̂i(obs); σ̂2

i(obs)

)
, i = 1, . . . , a, the fiducial distributon of µi is the same

as that of

Qµi = µ̂i(obs) − ti

√
σ̂2

i(obs)/mi. (4.12)

Here, ti is distributed as Student’s t with (ni − 1) degrees of freedom.
Finally, the fiducial distribution of Equation (4.5) is derived by utilizing the fiducial

distribution of µi in Equation (4.12) as shown below:

QF (t1, ..., ta) =
a∑

i=1
t2
i −

(
a∑

i=1
ti

(√
mi/σ̂i(obs)

))2

a∑
i=1

mi/σ̂2
i(obs)

. (4.13)

Then the fiducial p-value for H0 : µ1 = µ2 = · · · = µa is given by

p = P
(

QF > Q
(
µ̂1(obs), ..., µ̂a(obs); σ̂2

1(obs), ..., σ̂2
a(obs)

)∣∣∣ H0
)

. (4.14)

Here, Q
(
µ̂1(obs), ..., µ̂a(obs); σ̂2

1(obs), ..., σ̂2
a(obs)

)
is given in Equation (4.6).

The probability in Equation (4.14) can be estimated using the Algorithm 1 given below
via Monte Carlo simulation.



1742 G. Güven

Algorithm 1
Step 1: For a given data set, compute (µ̂1, . . . , µ̂a) and

(
σ̂2

1, . . . , σ̂2
a

)
and call them(

µ̂1(obs), . . . , µ̂a(obs)
)

and
(
σ̂2

1(obs), . . . , σ̂2
a(obs)

)
.

Step 2: Compute R0 =
a∑

i=1

mi

σ̂2
i(obs)

µ̂2
i(obs) −

(
a∑

i=1
mi(µ̂i(obs))/σ̂2

i(obs)

)2

a∑
i=1

mi/σ̂2
i(obs)

.

Step 3: For j = 1, ..., l
• Generate ti ∼ t (ni − 1) , i = 1, . . . , a.

• Compute Rj =
a∑

i=1
t2
i −

(
a∑

i=1
ti(√

mi/σ̂i(obs))
)2

a∑
i=1

mi/σ̂2
i(obs)

.

• If Rj > R0, set Sj = 1 else Sj = 0.
end l loop.

Step 4: Calculate the Monte Carlo estimate of the fiducial p-value as p̂ = 1
l

l∑
j=1

Sj .

Step 5: If p̂ < α, then H0 is rejected. Here, α is a presumed significance level.
It should be noted that the fiducial p - value of the test based on bias-corrected least

squares (LS) estimators is also calculated by following the same lines as in Algorithm 1.
The bias-corrected LS estimators for the parameters µi and σi are

µ̃i = ȳi

and

σ̃i =

√√√√s2
i

/
C

r∑
j=0

(
r
j

) (
λ

2r

)j ( {2 (j + 1)!}
2j+1 (j + 1)!

)
,

respectively. Here, s2
i =

ni∑
j=1

(yij − ȳi)2/(ni − 1) and ȳi =
ni∑

j=1
yij/ni.

4.2. Generalized F test
Let v2

i = (ni − 1) σ̂2
i(obs) be an observed value of V 2

i = (ni − 1) σ̂2
i , i = 1, . . . , a. A

generalized test variable based on MML estimators is given by

GV = Q(µ̂1,...,µ̂a;σ2
1 ,...,σ2

a)
Q

(
µ̂2

1(obs),...,µ̂2
a(obs);v2

1/U1,...,v2
a/Ua

) =

a∑
i=1

(miµ̂
2
i /σ2

i )−

(
a∑

i=1
(miµ̂i/σ2

i )
)2

a∑
i=1

mi/σ2
i

a∑
i=1

miUiµ̂2
i(obs)/v2

i −

(
a∑

i=1
miUiµ̂i(obs)/v2

i

)2

a∑
i=1

miUi/v2
i

.

(4.15)
Here, U ′

is are independently distributed χ2
ni−1 (i = 1, ..., a) random variables and

Q
(
µ̂1, ..., µ̂a; σ2

1, ..., σ2
a

)
has a chi-square distribution with (a − 1) degrees of freedom in-

dependently of (U1, ..., Ua) . The observed value of GV is defined as the value of GV

at
(
µ̂i, ..., µ̂a; V 2

1 , ..., V 2
a

)
=

(
µ̂i(obs), ..., µ̂a(obs); v2

1, ..., v2
a

)
, and this observed value is 1, see

[13]. Furthermore, GV tends to take larger values for deviations from the null hypothesis.
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Hence, the generalized p - value is obtained as follows:

p = P

 χ2
a−1

Q
(
µ̂2

1(obs), ..., µ̂2
a(obs), v2

1/U1, ..., v2
a/Ua

) > 1

 . (4.16)

It should be emphasized that the probability in Equation (4.16) does not depend on any
unknown parameters for a given

(
µ̂i(obs), ..., µ̂a(obs), v2

1, ..., v2
a

)
.

Note that the MML methodology achieves robustness to short tails by assigning small
weights to the order statistics in the middle. Therefore, the proposed tests in subsections
4.1 and 4.2 are robust to the inlying observations.

Table 2. Type I error rates of the RGF , RF and FBLS tests.

r = 2, d = −1

(σ2
1 , σ2

2 , σ2
3) (n1, n2, n3) RGF RF F BLS

(1, 1, 1)

(8, 8, 8) 0.053 0.044 0.045
(8, 10, 12) 0.047 0.043 0.044
(8, 12, 16) 0.044 0.039 0.039
(16, 16, 16) 0.044 0.043 0.042

(1, 2, 3)

(8, 8, 8) 0.050 0.044 0.039
(8, 10, 12) 0.054 0.046 0.045
(8, 12, 16) 0.045 0.038 0.036
(16, 16, 16) 0.044 0.042 0.040

(1, 3, 5)

(8, 8, 8) 0.047 0.040 0.039
(8, 12, 16) 0.049 0.043 0.043
(8, 12, 16) 0.049 0.042 0.042
(16, 16, 16) 0.052 0.048 0.050

r = 2, d = −0.5

(1, 1, 1)

(8, 8, 8) 0.052 0.042 0.039
(8, 10, 12) 0.042 0.037 0.037
(8, 12, 16) 0.051 0.043 0.045
(16, 16, 16) 0.044 0.044 0.043

(1, 2, 3)

(8, 8, 8) 0.047 0.040 0.040
(8, 10, 12) 0.051 0.048 0.046
(8, 12, 16) 0.048 0.046 0.043
(16, 16, 16) 0.050 0.045 0.044

(1, 3, 5)

(8, 8, 8) 0.054 0.049 0.046
(8, 10, 12) 0.048 0.044 0.044
(8, 12, 16) 0.049 0.043 0.043
(16, 16, 16) 0.051 0.047 0.046

r = 2, d = 0

(1, 1, 1)

(8, 8, 8) 0.052 0.044 0.038
(8, 10, 12) 0.046 0.040 0.040
(8, 12, 16) 0.051 0.043 0.041
(16, 16, 16) 0.052 0.049 0.047

(1, 2, 3)

(8, 8, 8) 0.054 0.047 0.045
(8, 10, 12) 0.045 0.040 0.037
(8, 12, 16) 0.049 0.041 0.040
(16, 16, 16) 0.050 0.048 0.043

(1, 3, 5)

(8, 8, 8) 0.051 0.044 0.041
(8, 10, 12) 0.055 0.049 0.048
(8, 12, 16) 0.049 0.045 0.041
(16, 16, 16) 0.055 0.051 0.050
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5. Monte Carlo simulation study
In this section, the simulation study is conducted to compare the performances of the

proposed tests called as robust fiducial (RF ) and robust generalized F (RGF ) with the
fiducial based test using bias-corrected LS estimators (FBLS) in terms of Type I error
rates and powers.

In running our simulations, the number of treatments is taken to be a = 3 and the
following parameter settings are considered as

• r = 2,
• d = −1, −0.5, 0,
• (n1, n2, n3) = (8, 8, 8), (8, 10, 12), (8, 12, 16), (16, 16, 16),
• (σ2

1, σ2
2, σ2

3) = (1, 1, 1), (1, 2, 3), (1, 3, 5).
Based on these parameter settings, 5,000 random samples of sizes n1, n2 and n3 are
generated from the STS (µi, σi) distributions with parameters r and d using the inverse
transformation method. For each of the random samples, l = 5, 000 Monte Carlo runs are
used to estimate the fiducial p-value in Equation (4.14). Finally, the Type I error rates
of the RF test are estimated by the proportion of 5,000 p-values less than the presumed
nominal level of α=0.05. The Type I error rates of the RGF and FBLS tests are estimated
by following the similar steps as in RF .

It should be noted that µi
′s ( i = 1, . . . , a) are taken to be zero for calculating the Type

I error rates of the tests. Also, the powers of the tests are obtained by subtracting a
constant s from the observations in the first treatment and by adding a constant s to the
observations in the third treatment. These computations are conducted in the MATLAB
environment. Type I error rates of the RGF , RF and FBLS tests are presented in Table
2 and the powers of the tests are given in Table 3.

It can be seen from Table 2 that the RGF , RF and FBLS tests control the Type I
error rates for almost all configurations. In other words, the Type I error rates of the tests
are reasonably close to the nominal level α = 0.05. However, the FBLS test is slightly
conservative when the sample sizes (n1, n2, n3) are all equal to 8 and the variances are
homogeneous.

Note that our simulation results suggest that the RGF test tends to be liberal when
the number of treatments increases in contrast to the RF and the FBLS tests. Therefore,
simulation results corresponding to a = 5 and a = 7 are not presented in this paper for
making meaningful comparisons between three tests. Simulated Type I error rates of the
RGF test can be provided upon request from the author when the number of treatments
are large.

As mentioned before the RGF test does not control the Type I error rates when the
number of groups is large. Therefore, the power of the tests are compared for a = 3. It
can be seen from Table 3 that RGF test has the highest power in all scenarios and it is
followed by RF test. It is seen that FBLS test shows the worst performance in all cases.

6. Real data applications
In this section, two real datasets are analyzed to illustrate the implementation of the

proposed tests and also to make comparisons with the traditional ANOVA F test.

Example 6.1 (Symptom score data). Chang et al. [4] presented a dataset about the
symptom score of 45 rape victims who were randomly assigned to four groups, see also
[8]. The groups with sample sizes of n1 = 14, n2 = 10, n3 = 11 and n4 = 10 were
stress inoculation therapy (SIT), prolonged exposure (PE), supportive counselling (SC)
and waiting list (WL), respectively; see Table 4. Here, our aim is to test the equality of
the group means for the symptom score data.
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Table 3. Powers of the RGF , RF and FBLStests.

r = 2, d = −1
σ2 = (1, 1, 1)

n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)
s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.053 0.044 0.045 0.00 0.047 0.043 0.044 0.00 0.044 0.039 0.039 0.00 0.044 0.043 0.042
0.30 0.10 0.08 0.08 0.25 0.09 0.08 0.07 0.24 0.09 0.09 0.09 0.19 0.08 0.08 0.08
0.60 0.26 0.23 0.22 0.50 0.23 0.21 0.21 0.48 0.27 0.25 0.25 0.38 0.27 0.26 0.25
0.90 0.57 0.53 0.50 0.75 0.54 0.50 0.50 0.72 0.56 0.53 0.52 0.57 0.53 0.51 0.50
1.20 0.83 0.79 0.78 1.00 0.79 0.75 0.74 0.96 0.80 0.78 0.76 0.75 0.79 0.78 0.77
1.50 0.97 0.96 0.95 1.25 0.95 0.94 0.93 1.20 0.96 0.95 0.94 0.95 0.95 0.95 0.94

σ2 = (1, 2, 3)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.050 0.044 0.039 0.00 0.054 0.046 0.045 0.00 0.045 0.038 0.036 0.00 0.044 0.042 0.040
0.40 0.09 0.08 0.08 0.32 0.09 0.08 0.08 0.31 0.10 0.09 0.09 0.27 0.09 0.09 0.09
0.80 0.27 0.24 0.23 0.64 0.21 0.20 0.20 0.62 0.26 0.24 0.24 0.54 0.28 0.27 0.27
1.20 0.51 0.47 0.45 0.96 0.49 0.45 0.45 0.93 0.53 0.51 0.49 0.81 0.54 0.51 0.50
1.60 0.85 0.82 0.81 1.28 0.75 0.73 0.71 1.24 0.80 0.79 0.78 1.08 0.88 0.86 0.85
2.00 0.97 0.96 0.94 1.60 0.93 0.92 0.91 1.55 0.95 0.95 0.95 1.35 0.96 0.96 0.95

σ2 = (1, 3, 5)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.047 0.040 0.039 0.00 0.049 0.043 0.043 0.00 0.049 0.042 0.042 0.00 0.052 0.048 0.050
0.45 0.12 0.10 0.10 0.39 0.09 0.08 0.08 0.36 0.09 0.09 0.09 0.30 0.10 0.10 0.10
0.90 0.24 0.21 0.20 0.78 0.25 0.22 0.22 0.72 0.27 0.26 0.26 0.60 0.26 0.25 0.24
1.35 0.51 0.46 0.45 1.17 0.54 0.51 0.50 1.08 0.51 0.49 0.48 0.90 0.51 0.50 0.48
1.80 0.78 0.74 0.73 1.56 0.77 0.74 0.72 1.44 0.80 0.78 0.76 1.20 0.81 0.79 0.78
2.25 0.95 0.93 0.93 1.95 0.94 0.93 0.93 1.80 0.96 0.95 0.95 1.50 0.94 0.93 0.92

r = 2, d = −0.5
σ2 = (1, 1, 1)

n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)
s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.052 0.042 0.039 0.00 0.042 0.037 0.037 0.00 0.051 0.043 0.045 0.00 0.044 0.044 0.043
0.30 0.08 0.07 0.07 0.26 0.10 0.09 0.09 0.24 0.10 0.09 0.09 0.19 0.09 0.08 0.08
0.60 0.24 0.22 0.21 0.52 0.24 0.22 0.21 0.48 0.24 0.21 0.20 0.38 0.24 0.23 0.23
0.90 0.51 0.46 0.44 0.78 0.51 0.48 0.46 0.72 0.53 0.49 0.48 0.57 0.51 0.50 0.48
1.20 0.81 0.77 0.75 1.04 0.78 0.74 0.73 0.96 0.78 0.77 0.76 0.76 0.77 0.76 0.74
1.50 0.94 0.92 0.92 1.30 0.94 0.93 0.92 1.20 0.95 0.93 0.92 0.95 0.94 0.94 0.93

σ2 = (1, 2, 3)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.047 0.040 0.040 0.00 0.051 0.048 0.046 0.00 0.048 0.046 0.043 0.00 0.050 0.045 0.044
0.40 0.10 0.08 0.08 0.34 0.09 0.09 0.09 0.31 0.09 0.08 0.08 0.27 0.10 0.09 0.09
0.80 0.24 0.22 0.22 0.68 0.25 0.23 0.21 0.62 0.27 0.25 0.24 0.54 0.28 0.27 0.25
1.20 0.52 0.48 0.46 1.02 0.50 0.48 0.47 0.93 0.50 0.48 0.46 0.81 0.55 0.53 0.50
1.60 0.82 0.77 0.76 1.36 0.81 0.79 0.77 1.24 0.77 0.76 0.74 1.08 0.83 0.82 0.81
2.00 0.94 0.92 0.91 1.70 0.95 0.94 0.92 1.55 0.94 0.94 0.93 1.35 0.95 0.94 0.92
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Table 3. Continued

σ2 = (1, 3, 5)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.054 0.049 0.046 0.00 0.048 0.044 0.044 0.00 0.049 0.043 0.043 0.00 0.051 0.047 0.046
0.48 0.11 0.09 0.09 0.40 0.09 0.09 0.08 0.37 0.10 0.09 0.08 0.31 0.10 0.09 0.09
0.96 0.27 0.23 0.23 0.80 0.26 0.24 0.23 0.74 0.24 0.23 0.22 0.62 0.25 0.24 0.23
1.44 0.53 0.49 0.48 1.20 0.52 0.49 0.48 1.11 0.53 0.51 0.49 0.93 0.57 0.54 0.53
1.92 0.81 0.75 0.73 1.60 0.79 0.77 0.75 1.48 0.80 0.79 0.78 1.24 0.83 0.82 0.79
2.40 0.95 0.92 0.91 2.00 0.95 0.94 0.93 1.85 0.96 0.95 0.94 1.55 0.95 0.94 0.94

r = 2, d = 0
σ2 = (1, 1, 1)

n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)
s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.052 0.044 0.038 0.00 0.046 0.040 0.040 0.00 0.051 0.043 0.041 0.00 0.052 0.049 0.047
0.30 0.09 0.08 0.07 0.27 0.09 0.07 0.06 0.25 0.11 0.10 0.09 0.20 0.10 0.09 0.08
0.60 0.24 0.21 0.19 0.54 0.24 0.22 0.20 0.50 0.26 0.24 0.22 0.40 0.26 0.26 0.24
0.90 0.51 0.48 0.43 0.81 0.53 0.49 0.46 0.75 0.51 0.49 0.46 0.60 0.51 0.50 0.46
1.20 0.74 0.71 0.68 1.08 0.79 0.76 0.72 1.00 0.78 0.77 0.72 0.80 0.80 0.78 0.74
1.50 0.94 0.90 0.87 1.35 0.96 0.95 0.92 1.25 0.95 0.94 0.90 1.00 0.94 0.93 0.91

σ2 = (1, 2, 3)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.054 0.047 0.045 0.00 0.045 0.040 0.037 0.00 0.049 0.041 0.040 0.00 0.050 0.048 0.043
0.40 0.08 0.07 0.07 0.35 0.09 0.08 0.08 0.33 0.10 0.09 0.08 0.27 0.10 0.10 0.10
0.80 0.24 0.21 0.19 0.70 0.24 0.23 0.21 0.66 0.28 0.26 0.24 0.54 0.24 0.23 0.22
1.20 0.50 0.45 0.42 1.05 0.52 0.49 0.45 0.99 0.54 0.53 0.48 0.81 0.55 0.53 0.50
1.60 0.77 0.74 0.69 1.40 0.78 0.74 0.71 1.32 0.82 0.80 0.77 1.08 0.82 0.81 0.77
2.00 0.94 0.92 0.89 1.75 0.94 0.93 0.91 1.65 0.96 0.95 0.93 1.35 0.94 0.94 0.91

σ2=(1, 3, 5)
n = (8, 8, 8) n = (8, 10, 12) n = (8, 12, 16) n = (16, 16, 16)

s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS s RGF RF FBLS

0.00 0.051 0.044 0.041 0.00 0.055 0.049 0.048 0.00 0.049 0.045 0.041 0.00 0.055 0.051 0.050
0.47 0.09 0.08 0.07 0.40 0.09 0.08 0.08 0.37 0.10 0.09 0.08 0.32 0.09 0.09 0.08
0.94 0.25 0.22 0.19 0.80 0.24 0.22 0.21 0.74 0.25 0.23 0.21 0.64 0.22 0.21 0.21
1.41 0.48 0.43 0.39 1.20 0.50 0.47 0.43 1.11 0.51 0.50 0.46 0.96 0.52 0.51 0.47
1.88 0.77 0.73 0.69 1.60 0.76 0.74 0.69 1.48 0.78 0.76 0.72 1.28 0.82 0.80 0.76
2.35 0.94 0.92 0.89 2.00 0.94 0.92 0.91 1.85 0.95 0.93 0.92 1.60 0.96 0.96 0.94

Table 4. Symptom score of rape victims.

Groups Symptom scores

I: SIT 3, 13, 13, 8, 11, 9, 12, 7, 16, 15, 18, 12, 8, 10
II: PE 18, 6, 21, 34, 26, 11, 2, 5, 5, 26
III: SC 24, 14, 21, 5, 17, 17, 23, 19, 7, 27, 25
IV: WL 12, 30, 27, 20, 17, 23, 13, 28, 12, 13

Example 6.2 (Brand data). Ryan [21] and Hartung et al. [11] presented a dataset about
the strength of four brands (A,B,C,D) of reinforcing bars; see Table 5. This data set was
originally given by [35]. Here, our aim is to test the equality of the means for the brands
of reinforcing bars.
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Table 5. Strength of four brands of reinforcing bars.

Groups Strengths

I: Brand A 21.4, 13.5, 21.1, 13.3, 18.9, 19.2, 18.3
II: Brand B 27.3, 22.3, 16.9, 11.3, 26.3, 19.8, 16.2, 25.4
III: Brand C 18.7, 19.1, 16.4, 15.9, 18.7, 20.1, 17.8
IV: Brand D 19.9, 19.3, 18.7, 20.3, 22.8, 20.8, 20.9, 23.6, 21.2

In Examples 6.1 and 6.2, we first investigate whether the error terms are distributed as
STS for each group. Distributions of the error terms are verified based on the Q-Q plot
technique and the Kolmogorov-Smirnov (K-S) test. See Figures 2 and 3 for the STS Q-Q
plots of the symptom score data and brand data, respectively, and also Table 6 for the
computed values of the K-S goodness of fit test and the corresponding p-values.

Figure 2. STS Q-Q plots of the symptom score data.

Figure 3. STS Q-Q plots of the brand data.

It can be seen from Figures 2 and 3 that the error terms of the datasets in Examples
6.1 and 6.2 do not deviate too much from the straight line for the STS distribution with
parameters (r, d) = (2, −1) and (r, d) = (2, 0), respectively.

Table 6 shows that the results of the K-S goodness of fit test are in agreement with the
results of the corresponding STS Q-Q plots. STS distribution with parameters (r, d) =
(2, −1) and (r, d) = (2, 0) provides a good fit for the datasets in Examples 6.1 and 6.2,
respectively.

We then use Levene’s test to investigate the homogeneity of variances for the groups.
The p-values corresponding to Levene’s test are obtained as p = 0.001 and p = 0.003 for
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the datasets in Examples 6.1 and 6.2, respectively. Since the p-values are less than the
nominal level α = 0.05, it is concluded that the variances are heterogeneous. We also use
the boxplots to see the central tendencies and the dispersions of the observations in each
group for the symptom score and brand datasets; see Figures 4 and 5.

Table 6. Calculated values of the K-S goodness of fit test and the corresponding
p - values for each group.

Dataset in Groups I II III IV

Example 6.1 K-S test Test statistic 0.1072 0.2145 0.1174 0.2390
p-value 0.9180 0.4490 0.9100 0.3420

Example 6.2 K-S test Test statistic 0.2728 0.2170 0.2361 0.1445
p-value 0.3600 0.5440 0.5070 0.8290

Figure 4. Boxplots of the symptom score data.

Figure 5. Boxplots of the brand data.

As shown in Figures 4 and 5, boxplots visually support the heterogeneity of the group
variances.

Based on these findings, the proposed tests can comfortably be used to test the null
hypothesis H0 : µ1 = µ2 = µ3 = µ4 for the datasets in Examples 6.1 and 6.2. Here, µi,
i = 1, . . . , 4, denotes the mean of the ith group. Estimate values of the parameters µi and
σi, i = 1, . . . , 4, and the p-values for the RGF , RF , FBLS and F tests are given in Tables
7 and 8, respectively.

It is clear from Table 8 that all the tests for the symptom score data in Example 6.1 are
in agreement in rejecting the null hypothesis when the significance level α is equal to 0.05.
However, RGF and RF tests provide strong evidence to reject the null hypothesis since
their p - values are much smaller than those of FBLS and F tests. It should be also realized
that FBLS and F tests fail to reject the null hypothesis at the significance level α = 0.01.
It is seen from Table 8 that RGF , RF and FBLS tests reject the null hypothesis for the
brand data in Example 6.2 while the F test fails to reject it when α = 0.05. This example
shows that traditional F test can produce different results from the results obtained using
heteroscedastic ANOVA tests when the population variances are unequal.
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It can also be concluded that since the MML estimates of the scale parameters (σ1, . . . , σ4)
are smaller than the corresponding LS estimates, RGF and RF tests are more reliable
than the FBLS and F tests, see Table 7.

Table 7. The MML and LS estimates of the model parameters.

Dataset in Groups MML LS

I µ̂1 = 11.0393 σ̂1 = 3.0188 µ̃1 = 11.0714 σ̃1 = 3.0250

Example 6.1 II µ̂2 = 15.8524 σ̂2 = 8.0610 µ̃2 = 15.4000 σ̃2 = 8.5121
III µ̂3 = 17.6161 σ̂3 = 5.3451 µ̃3 = 18.0909 σ̃3 = 5.4619
IV µ̂4 = 19.8346 σ̂4 = 5.0830 µ̃4 = 19.5000 σ̃4 = 5.4409

I µ̂1 = 17.4904 σ̂1 = 2.1540 µ̃1 = 17.9571 σ̃1 = 2.3209

Example 6.2 II µ̂2 = 20.2861 σ̂2 = 3.7443 µ̃2 = 20.6875 σ̃2 = 3.9584
III µ̂3 = 17.9427 σ̂3 = 1.0024 µ̃3 = 18.1000 σ̃3 = 1.0525
IV µ̂4 = 20.9752 σ̂4 = 1.0951 µ̃4 = 20.8333 σ̃4 = 1.1000

Table 8. The p - values for the RGF , RF , FBLS and F tests.

Dataset in Tests RGF RF F BLS F

Example 6.1 p-values 0.0034 0.0087 0.0109 0.0394

Example 6.2 p-values 0.0072 0.0162 0.0351 0.2106

7. Conclusion
In this paper, two tests are proposed for testing the equality of treatment means in one-

way ANOVA when the error terms have STS distributions with heterogeneous variances.
The proposed tests are compared with the fiducial based test using LS estimators via
Monte Carlo simulation study. According to the simulation results, estimated Type I
error rates for all tests are generally close to the nominal level α = 0.05 in all parameter
configurations. RGF test is the most powerful among the other tests and it is followed
by RF test. FBLS test has the worst performance. RGF test appears to be liberal when
the number of treatments goes up as mentioned earlier. This result is consistent with that
of [13] and [17] in the context of generalized F test in one-way ANOVA. Consequently,
RF test is preferred when the number of treatments is moderate or large otherwise it is
recommended to use RGF test. It is known that the traditional F test is optimal when
the usual normality and homogeneity of variances assumptions are hold.
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Appendix A.
Lemma A.1. For large ni, µ̂i is the minimum variance bound (MVB) estimator and
normally distributed with mean µi and variance σ2

i /mi.

Proof. The Equation (3.9) can be reorganized to assume the following form:
∂ ln L

∂µi

∼=
∂ ln L∗

∂µi
= mi

σ2
i

(µ̂i − µi) .

Since ∂ ln L∗/∂µi is asymptotically equivalent to ∂ ln L/∂µi, it follows that µ̂i is asymp-
totically the MVB estimator with variance σ2

i

/
mi and is normally distributed. In other

words, µ̂i is the BAN (best asymptotically normal) estimator, see [12]. �
Lemma A.2. For large ni, the distribution of (ni − 1) σ̂2

i

/
σ2

i is a multiple of chi-square
with ni − 1 degrees of freedom.

Proof. This follows from the fact that ∂ ln L∗/∂σi is equivalent to ∂ ln L/∂σi and assumes
the form

∂ ln L∗

∂σi

∼=
ni

σ3
i

(
C0
ni

− σ2
i

)
.

Also, B0
/√

nC0 ∼= 0 where B0 = λ
ni∑

j=1
αijyi(j) and C0 =

ni∑
j=1

βij

(
yi(j) − µ̂i

)2
. �


