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PREDICTION OF LARGE DEFORMATION BEHAVIOR OF
FABRICS USING LAGRANGIAN FINITE
ELEMENT FORMULATION
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In this study, the Lagrangian Finite Element formulation, covering both the tensile and bending rigidities, is extended to include
fabric weights and then exploited for the prediction of the large bending and buckling deformations of fabrics. The deformations results
are compared with those published in the literature. It is shown that there is an excellent agreement between the calculated results and

the previously published results.
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OZET

Bu calismada, egilme ve eksenel deformasyon rijitligini iceren Lagrange Sonlu Elemanlar formiilasyonu, kumas agirligini igerecek
sekilde genisletilmis ve kumaslarin bityiik egilme ve burkulma deformasyonlarinin hesaplanmasi i¢in incelenmistir. Deformasyon
sonuglari, literatiirdeki sonuglarla karsilastirilmistir. Hesaplanan sonuglarin, daha dnce yayinlanan sonuglarla oldukga iyi uyum iginde

oldugu gosterilmistir.

Anahtar Kelimeler: Lagrange Sonlu Elemanlar, Biiyiik deformasyon, Kumaslarin egilmesi, Kumaslarin burkulmast.
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1. INTRODUCTION

Bending and buckling play important
role in determining the aesthetic
appearance and the performance of
textile fabrics. As known, textile fabrics
show both geometric and material
nonlinearities, due to their microstructure
and very small bending stiffness.
Consequently, fabric  deformation
problems pose more difficulties, when
compared to solid mechanics. For the
geometric nonlinearity, in the majority
of studies in textile science, either the
Bernoulli-Euler theorem or the strain-
displacement relationship together with
Bernoulli-Euler theorem is adopted.

In the former approach, the governing
differential equation is derived using
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the Bernoulli-Euler theorem. In order to
solve the highly nonlinear differential
equation, the analytical and numerical
solutions such as Runge Kutta,
shooting, finite difference and finite
element (FE) methods were developed
(1-14). In these studies, the fabric
deformation is determined in terms of
the bending rigidity. The effect of the
tensile rigidity is not taken into
account.

For the case of using the strain-
displacement relationship, FE method
appears to be well-established powerful
computational tool for handling the
beams, plates and shells with general
geometries, loadings and boundary
conditions in the solid mechanics and
in the textile applications it has been

successfully applied to drape problems
(15-17). It should be noted that all FE
formulations require relatively more
elements with the load incrementation
procedure. FE formulations for the
large deformation of beams in the solid
mechanics are well covered in the
literature (18-21) and they may need to
be exploited further for fabric large
deformation problems. One of the FE
formulations in the solid mechanics is
the Lagrangian FE formulation for the
large displacements presented by
Milner (21), in which axial and bending
displacements are functions of a
coordinate measured along the elastic
curve and it was applied to one
problem, a beam under a bending
moment at the its free end without
resorting to load incrementation
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procedure, using up to three elements.
This formulation requires both the
tensile and bending rigidities, thus
promising a complete-cover the large
deformation behavior of beams.

In this work, the Lagrangian FE is
exploited for the fabric large bending
and buckling deformation problems.
The details of the resulting nonlinear
solution matrixes are given for all
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possible loading conditions including
fabric weights. The results are compared
with those published previously, where
possible.

2. LAGRANGIAN FINITE ELEMENT
SOLUTION

Because of the nature of the nonlinear
strain-displacement relationship, the
displacements © and v are regarded

1/2

The stress resultants Pand M are obtained as

{AZ} ) BA SIHZ}
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as function of a coordinate § measured
along the curved centroidal axis of the
deformed member, requiring the use of

du
one extra freedom d_ at each node
S

(21). Hence, the strain & and the
curvature p are defined as

(1)

(2)

3)

To arrive solution equations, the virtual work principle can be applied and it is stated as (20)
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where V¢ denotes the element volume,

4

W(S) is the distributed transverse load or weight, f(s) is the distributed axial

load, Qie are the generalized nodal forces, and 5Ael. are the virtual generalized nodal displacements of the element defined

by
Ael = u(Sa)’ AeZ :V(Su)’ Aeﬁi =
A = ”(Sb)a A = V(Sb)’ A5

[ du | [ dv ]
— AN=|—| =6
Lds ], e Lds |, (s.)
[ du '] Cdv]
=| — Ae =| — =
| ds | » | ds | e(sb)

sy Sp

)

The axial displacement u and the transverse deflection v are interpolated as:

(5)= 0,5

where y, and ¢, are the cubic interpolation functions.

(6a)

(6b)
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To solve the resulting in non-linear solution equations, the Newton-Raphson procedure is employed and it can be expressed
in the general form as:

&, () a) = 7} ([ Ja ) ()

where KT is the tangential stiffness matrix and K ¢ is the direct stiffness matrix. Taking appropriate variations of Equation

4 and substituting the stress-strain relation of Equations 1 and 2 into this expression and then the solution matrices in the
Newton-Raphson iteration form can be obtained as follows:
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in which n represents the number of the iterations.
The mathematical expresions for the element stiffness matrix K can be obtained as follows:
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The right side matrix of the Equation 8 is the tangent matrix KT and the mathematical expresion for KT can be given by

K,=K,+K, +K, (10)
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In this expresion, Ko represents the small displacement stiffness matrix, KL is the large displacement stiffness matrix,

covering both axial and bending deformations, and KU is the geometric stiffness matrix. KO, KL and KG terms can be
obtained by

v, dy,;
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3. NUMERICAL RESULTS AND
DISCUSSION

The predicted bending deformation
results with the Lagrangian FE
formulation were compared with the
experimental and theoretical results
given in the study of Kang and Yu (16).
The mechanical properties of the
samples from their study are given in
Table 1. The Figures 1 and 2 show the
bending deformation results of the
wool and cotton woven fabrics,
respectively. It is clear from the figures
that calculated results are in an
excellent  agreement  with  the
numerical results of Kang and Yu (16).

The Lagrangian FE can also handle
fabric buckling problems under the
loading in terms of prescribed
displacements, which may be well-suit
to textile applications. The buckling
deformation results are given in the
dimensionless form. In order to bring
the Lagrangian FE formulation to the
dimensionless form, simple cantilever

beam was assumed to be inextensible.
Therefore, the tensile rigidity is
assigned a very large value in
comparison with the bending rigidity.

The buckling deformation results are
given by using the same load values
and boundary conditions proposed by
Clapp and Peng (5). Therefore, the
analysis is carried out by considering
two boundary conditions, which are
called as free-free ends and fixed-fixed
ends. In the case of the free-free ends,
the boundary conditions for one half of

a buckled beam are@ =0 at s=0
and d@/ds:O at s=1. In the

case of the fixed-fixed ends, the
boundary conditons are & =0 at
s =0 and s =1. It should be noted
that boundary conditions in the study
of Clapp and Peng (5) are converted in
Cartesian  coordinates  for  the
Lagrangian FE formulation.

For two different boundary conditions,
free-free ends and fixed-fixed ends,
the right half of deformation shapes of
buckled fabrics are displayed in terms
of the four different weight values

wL® / EI =0, 2, 8 and 20 in Figures
3a-d and Figures 4a-d, respectively.
For each weight values, the fabric
buckling deformation shapes are given
under the minimum and maximum

buckling loads, PL* / EI . Between
these loads, several buckling loads are
also applied for the prediction of the
fabric buckling deformation behavior,
not covered in the literature. Therefore,
for  comparison  purposes, the
Lagrangian FE formulation results are
compared with those, obtained by
author's FE formulation (12), the
Galerkin  FE formulation. Figures
indicate that the Lagrangian FE results
are very good agreement with the
Galerkin FE results (12).

Table 1. Mechanical properties of the samples from Kang and Yu (16).

) Average length Unit weight Tensile rigidity (gf/cm) Bending rigidity (gfcm?cm)
Material >
(cm) (gffcm®) warp weft warp weft
Wool 5 0.019 1118.2 759.5 0.083 0.063
Cotton 5 0.0095 2531.6 1413.5 0.068 0.030
2
Theory (16)

....... Experimental (16)
---e--- Lagrangian FE

3
2
>
warp
54 weft
Figure 1. Deformation shapes of the wool fabric.
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Figure 2. Deformation shapes of the cotton fabric
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987 pL/EI

Galerkin FE (12)

....... Lagrangian FE

PL?/EI

11,5

———— Galerkin FE (12)

---e--- Lagrangian FE

x/L 1 15

PL/EI

13,47

Galerkin FE (12)

---e--- Lagrangian FE

2
PL°/EI ——— Galerkin FE (12)

---e*--- Lagrangian FE

Figure 3. Normalized deformation shapes for a buckled fabric model with free-free ends.
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Figure 4. Normalized deformation shapes for a buckled fabric model with fixed-fixed ends.
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4. CONCLUSION

In this work, the Lagrangian FE
formulation (21) is extended to cover
fabric weights and then exploited for
the prediction of the large bending and

solution matrixes are given for all
possible loading conditions.

The formulation is applied to the fabric
bending and buckling large deformation
problems, covered in the literature.

with those published in the literature
and the calculated results. It is shown
that the formulation, covering both the
tensile and bending rigidities, gives a
complete-cover the large deformation
behavior of fabrics.

buckling deformations of fabrics. The The formulation is verified by
details of the resulting nonlinear comparing the deformations results
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Bu arastirma, Bilim Kurulumuz tarafindan incelendikten sonra, oylama ile saptanan iki hakemin gériisiine sunulmugstur. Her iki hakem
yaptiklart incelemeler sonucunda aragtirmanin bilimselligi ve sunumu olarak “Hakem Onayl Arastirma” vasfiyla yayimlanabilecegine
karar vermigslerdir.
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