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ABSTRACT 

In this study, the Lagrangian Finite Element formulation, covering both the tensile and bending rigidities, is extended to include 
fabric weights and then exploited for the prediction of the large bending and buckling deformations of fabrics. The deformations results 
are compared with those published in the literature. It is shown that there is an excellent agreement between the calculated results and 
the previously published results. 
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ÖZET 

Bu çalışmada, eğilme ve eksenel deformasyon rijitliğini içeren Lagrange Sonlu Elemanlar formülasyonu, kumaş ağırlığını içerecek 
şekilde genişletilmiş ve kumaşların büyük eğilme ve burkulma deformasyonlarının hesaplanması için incelenmiştir. Deformasyon 
sonuçları, literatürdeki sonuçlarla karşılaştırılmıştır. Hesaplanan sonuçların, daha önce yayınlanan sonuçlarla oldukça iyi uyum içinde 
olduğu gösterilmiştir. 
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1. INTRODUCTION 

Bending and buckling play important 
role in determining the aesthetic 
appearance and the performance of 
textile fabrics. As known, textile fabrics 
show both geometric and material 
nonlinearities, due to their microstructure 
and very small bending stiffness. 
Consequently, fabric deformation 
problems pose more difficulties, when 
compared to solid mechanics.  For the 
geometric nonlinearity, in the majority 
of studies in textile science, either the 
Bernoulli-Euler theorem or the strain-
displacement relationship together with 
Bernoulli-Euler theorem is adopted.  

In the former approach, the governing 
differential equation is derived using 

the Bernoulli-Euler theorem. In order to 
solve the highly nonlinear differential 
equation, the analytical and numerical 
solutions such as Runge Kutta, 
shooting, finite difference and finite 
element (FE) methods were developed 
(1-14). In these studies, the fabric 
deformation is determined in terms of 
the bending rigidity. The effect of the 
tensile rigidity is not taken into 
account. 

For the case of using the strain-
displacement relationship, FE method 
appears to be well-established powerful 
computational tool for handling the 
beams, plates and shells with general 
geometries, loadings and boundary 
conditions in the solid mechanics and 
in the textile applications it has been 

successfully applied to drape problems 
(15-17). It should be noted that all FE 
formulations require relatively more 
elements with the load incrementation 
procedure. FE formulations for the 
large deformation of beams in the solid 
mechanics are well covered in the 
literature (18-21) and they may need to 
be exploited further for fabric large 
deformation problems. One of the FE 
formulations in the solid mechanics is 
the Lagrangian FE formulation for the 
large displacements presented by 
Milner (21), in which axial and bending 
displacements are functions of a 
coordinate measured along the elastic 
curve and it was applied to one 
problem, a beam under a bending 
moment at the its free end without 
resorting to load incrementation 
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procedure, using up to three elements. 
This formulation requires both the 
tensile and bending rigidities, thus 
promising a complete-cover the large 
deformation behavior of beams.  

In this work, the Lagrangian FE is 
exploited for the fabric large bending 
and buckling deformation problems. 
The details of the resulting nonlinear 
solution matrixes are given for all 

possible loading conditions including 
fabric weights. The results are compared 
with those published previously, where 
possible.  

2. LAGRANGIAN FINITE ELEMENT 
SOLUTION 

Because of the nature of the nonlinear 
strain-displacement relationship, the 
displacements and  are regarded 

as function of a coordinate  measured 
along the curved centroidal axis of the 
deformed member, requiring the use of 

one extra freedom 

u v

s

ds
du

 at each node 

(21). Hence, the strain ε  and the 
curvature ρ  are defined as  
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The stress resultants P and M  are obtained as 
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or 
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To arrive solution equations, the virtual work principle can be applied and it is stated as (20) 
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where  denotes the element volume,  is the distributed transverse load or weight,  is the distributed axial 

load, are the generalized nodal forces, and  are the virtual generalized nodal displacements of the element defined 
by  
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The axial displacement  and the transverse deflection  are interpolated as: u v
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where iψ  and iφ  are the cubic interpolation functions.  
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To solve the resulting in non-linear solution equations, the Newton-Raphson procedure is employed and it can be expressed 
in the general form as:  

{ }( )[ ]{ } { } [ ]{ }( 11 −− Δ−=ΔΔ
neenn

T KFK )               (7) 

where  is the tangential stiffness matrix and TK eK  is the direct stiffness matrix. Taking appropriate variations of Equation 
4 and substituting the stress-strain relation of Equations 1 and 2 into this expression and then the solution matrices in the 
Newton-Raphson iteration form can be obtained as follows: 
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in which  represents the number of the iterations.  n
The mathematical expresions for the element stiffness matrix  K  can be obtained as follows: 
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The right side matrix of the Equation 8 is the tangent matrix  and the mathematical expresion for  can be given by TK TK

σKKKK LT ++= 0                (10) 
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In this expresion,  represents the small displacement stiffness matrix,  is the large displacement stiffness matrix, 

covering both axial and bending deformations, and  is the geometric stiffness matrix. , and terms can be 
obtained by 
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3. NUMERICAL RESULTS AND 

DISCUSSION 

The predicted bending deformation 
results with the Lagrangian FE 
formulation were compared with the 
experimental and theoretical results 
given in the study of Kang and Yu (16). 
The mechanical properties of the 
samples from their study are given in 
Table 1. The Figures 1 and 2 show the 
bending deformation results of the 
wool and cotton woven fabrics, 
respectively. It is clear from the figures 
that calculated results are in an 
excellent agreement with the 
numerical results of Kang and Yu (16). 

The Lagrangian FE can also handle 
fabric buckling problems under the 
loading in terms of prescribed 
displacements, which may be well-suit 
to textile applications. The buckling 
deformation results are given in the 
dimensionless form. In order to bring 
the Lagrangian FE formulation to the 
dimensionless form, simple cantilever 

beam was assumed to be inextensible. 
Therefore, the tensile rigidity is 
assigned a very large value in 
comparison with the bending rigidity. 

The buckling deformation results are 
given by using the same load values 
and boundary conditions proposed by 
Clapp and Peng (5). Therefore, the 
analysis is carried out by considering 
two boundary conditions, which are 
called as free-free ends and fixed-fixed 
ends. In the case of the free-free ends, 
the boundary conditions for one half of 
a buckled beam are 0=θ  at  0=s  

and 0=dsdθ  at 1=s . In the 
case of the fixed-fixed ends, the 
boundary conditions are 0=θ  at  

 and 0=s 1=s . It should be noted 
that boundary conditions in the study 
of Clapp and Peng (5) are converted in 
Cartesian coordinates for the 
Lagrangian FE formulation. 

For two different boundary conditions, 
free-free ends and fixed-fixed ends, 
the right half of deformation shapes of 
buckled fabrics are displayed in terms 
of the four different weight values 

0, 2, 8 and 20 in Figures 
3a-d and Figures 4a-d, respectively. 
For each weight values, the fabric 
buckling deformation shapes are given 
under the minimum and maximum 

buckling loads, . Between 
these loads, several buckling loads are 
also applied for the prediction of the 
fabric buckling deformation behavior, 
not covered in the literature. Therefore, 
for comparison purposes, the 
Lagrangian FE formulation results are 
compared with those, obtained by 
author’s FE formulation (12), the 
Galerkin FE formulation. Figures 
indicate that the Lagrangian FE results 
are very good agreement with the 
Galerkin FE results (12). 

=EIwL /3

EIPL /2

  

 
Table 1. Mechanical properties of the samples from Kang and Yu (16). 

 

Tensile rigidity  (gf/cm) Bending rigidity (gfcm2/cm) 
Material Average length 

(cm) 
Unit weight 

(gf/cm2) warp weft warp weft 

Wool 5 0.019 1118.2 759.5 0.083 0.063 

Cotton 5 0.0095 2531.6 1413.5 0.068 0.030 
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Figure 1. Deformation shapes of the wool fabric. 
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Figure 2. Deformation shapes of the cotton fabric 
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Figure 3. Normalized deformation shapes for a buckled fabric model with free-free ends. 

(a) =0   (b) =2   (c) =8   (d) =20 EIwL /3 EIwL /3 EIwL /3 EIwL /3

-1

-0.5

0
0 0.5 1 1.5

x / L

-y
 / 

L

Galerkin FE (12)

Lagrangian FE

PL2/EI39,48

40

45

50
55606572,2

  
-1

-0.5

0
0 0.5 1 1.5

x / L

-y
 / 

L

Galerkin FE (12)

Lagrangian FE

41,82
PL2/EI

45

60
55

50

65

72,14

 

-1

-0.5

0
0 0.5 1 1.5

x / L

-y / L

Galerkin FE (12)

Lagrangian FE

PL2/EI

45,22

50

65
60

55

71,97

  
-1

-0.5

0
0 0.5 1 1.5

x / L

-y
 / 

L

Galerkin FE (12)

Lagrangian FE

PL2/EI

60

49,63

65

55

71,65

 
Figure 4. Normalized deformation shapes for a buckled fabric model with fixed-fixed ends. 
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4. CONCLUSION 

In this work, the Lagrangian FE 
formulation (21) is extended to cover 
fabric weights and then exploited for 
the prediction of the large bending and 
buckling deformations of fabrics. The 
details of the resulting nonlinear 

solution matrixes are given for all 
possible loading conditions. 

The formulation is applied to the fabric 
bending and buckling large deformation 
problems, covered in the literature. 
The formulation is verified by 
comparing the deformations results 

with those published in the literature 
and the calculated results. It is shown 
that the formulation, covering both the 
tensile and bending rigidities, gives a 
complete-cover the large deformation 
behavior of fabrics.  
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Bu araştırma, Bilim Kurulumuz tarafından incelendikten sonra, oylama ile saptanan iki hakemin görüşüne sunulmuştur. Her iki hakem 
yaptıkları incelemeler sonucunda araştırmanın bilimselliği ve sunumu olarak “Hakem Onaylı Araştırma” vasfıyla yayımlanabileceğine 
karar vermişlerdir. 
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