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Abstract: In this study, we consider bi-f -harmonic Legendre curves in Sasakian space forms. We

investigate necessary and sufficient conditions for a Legendre curve to be bi-f -harmonic in various cases.
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1. Introduction

Let (N,g) and (N̄ , ḡ) be two Riemannian manifolds and ψ ∶ (N,g) → (N̄ , ḡ) be a smooth map.

Then, let give the following definitions.

Definition 1.1 Harmonic maps between two Riemannian manifolds are critical points of the

energy functional

E(ψ) = 1

2
∫
N
∣dψ∣2dvg

for smooth maps ψ ∶ (N,g)→ (N̄ , ḡ) . Namely, ψ is called as harmonic if

τ(ψ) = −d∗dψ = trace∇dψ = 0.

Here τ(ψ), which is the tension field of ψ , is the Euler-Lagrange equation of the energy functional

E(ψ), d is the exterior differentiation, d∗ is the codifferentiation, ∇ is the connection induced from

the Levi-Civita connection ∇N̄ of N̄ and the pull-back connection ∇N̄ [1, 3, 8].

Definition 1.2 ψ is called as biharmonic if it is critical point, for all variations, of the bienergy

functional

E2(ψ) =
1

2
∫
N
∣τ(ψ)∣2dvg.

It means that ψ is a biharmonic map if bitension field τ2(ψ) equals to

τ2(ψ) = trace(∇ψ∇ψ −∇ψ∇)τ(ψ) − trace(R
N̄(dψ, τ(ψ))dψ) = 0, (1)
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where RN̄ is the curvature tensor field of N̄ [3, 12].

It is easy to see that any harmonic map is a biharmonic map. On the other hand, a

biharmonic map is called as proper biharmonic if it is not harmonic. Now, let us remind the

definition of a bi-f -harmonic map.

Definition 1.3 ψ is called as bi-f -harmonic if it is critical point of the bi-f -energy functional

Ef,2(ψ) =
1

2
∫
N
∣τf(ψ)∣2dvg,

where τf(ψ) = fτ(ψ) + dψ(gradf) is the f -tension field. The Euler-Lagrange equation for the

bi-f -harmonic map is given by

τf,2(ψ) = trace(∇ψf(∇ψτf(ψ)) − f∇ψ∇N τf(ψ) + fRN̄(τf(ψ), dψ)dψ) = 0, (2)

here τf,2(ψ) is the bi-f -tension field of the map ψ and f is a smooth positive function on the

domain [12].

Note that overall throughout this paper, we will use SSF instead of Sasakian space form for

the sake of simplicity.

The authors of [14] summarized the relationship between biharmonic and bi-f -harmonic

maps; by extending bienergy functional to bi-f -energy functional defining a new type of harmonic

map called as bi-f -harmonic map.

Bi-f -harmonic maps were introduced by Ouakkas et al. in 2010 [9] and Perktaş et al. ob-

tained bi-f -harmonicity conditions of curves in Riemannian manifolds and derived bi-f -harmonic

equations for curves in various spaces such as Euclidean and hyperbolic space in 2019 [12]. Bihar-

monic Legendre curves were handled in SSF by Fetcu in 2008 [4] and were introduced by Özgür

and Güvenç in generalized SSF and S -space forms in 2014 [10, 11]. Subsequently, f -biharmonic

Legendre curves were examined by Özgür and Güvenç in SSF in 2017 and were studied by Güvenç

in S -space forms in 2019 [6, 7].

Inspired by these papers, in this study, we examined bi-f -harmonic Legendre curves in

Sasakian space form. Firstly, in Section 2, we remind definition and properties of a Sasakian space

form. Then, in Section 3, we give our main theorems and corollaries.

2. Sasakian Space Forms

Let (N,g) be a framed metric manifold with dim(N) = (2n + s) and a framed metric structure

(φ, ξα, ηα, g) , where α ∈ {1, ..., s} ; φ is a (1,1) tensor field defining a φ−structure of rank 2n ;
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ξ1, ..., ξs are vector fields; η1, ..., ηs are 1− forms and g is a Riemannian metric on N .

For all K,L ∈ TN and α,β ∈ {1, ..., s} , following formulas are satisfied;

φ2K = −K +
s

∑
α=1

ηα(K)ξα, ηα(ξβ) = δαβ , φ(ξα) = 0, ηα ○φ = 0, (3)

g(φK,φL) = g(K,L) −
s

∑
α=1

ηα(K)ηα(L), (4)

dηα(K,L) = g(K,φL) = −dηα(L,K), ηα(K) = g(K,ξ). (5)

If Nijenhuis tensor of φ equals to −2dηα⊗ξα for all α ∈ {1, ..., s} , then (φ, ξα, ηα, g) is called

S−structure and if s = 1 , a framed metric structure becomes an almost contact metric structure;

an S−structure becomes a Sasakian structure, then we have [2, 11, 13]:

(∇Kφ)L =
s

∑
α=1
(g(φK,φL)ξα + ηα(L)φ2K), (6)

∇ξα = −φ, α ∈ {1, ..., s} . (7)

A plane section in TpN is a φ -section if there exists a vector K ∈ TpN being orthogonal

to ξ1, ..., ξs such that K,φK span the section. The sectional curvature of a φ -section is called φ -

sectional curvature such that a S -manifold of constant φ -section curvature c is called as S -space

form. Finally, if s = 1 , a S -space form becomes a Sasakian space form [2, 6, 7]. For a SSF, from

equations (6) and (7), it is easy to see that

(∇Kφ)L = g(K,L)ξ − η(L)K, (8)

∇Kξ = −φK (9)

and the curvature tensor R of a SSF is given by

R(K,L)M = c + 3
4
(g(L,M)K − g(K,M)L)

+ c − 1
4
(g(K,φM)φL − g(L,φM)φK + 2g(K,φL)φM + η(K)η(M)L

− η(L)η(M)K + g(K,M)η(L)ξ − g(L,M)η(K)ξ) (10)

for all K,L,M ∈ TN [2].

Here let’s remind the definition of a Legendre curve in a SSF.
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Definition 2.1 A Legendre curve of a SSF (N2n+1, φ, ξ, η, g) is a one dimensional integral sub-

manifold of N and β ∶ I → (N2n+1, φ, ξ, η, g) is a Legendre curve if η(T ) = 0 , where T is the

tangent vector field of β [6, 7].

3. Bi-f -harmonic Legendre Curves in Sasakian Space Forms

Let β ∶ I Ð→ N be an arc-length parametrized curve in a m -dimensional Riemannian manifold

(N,g) and u1, u2, , ur are vector fields along β such that

u1 = β
′
= T,

∇u1u1 = k1u2,

∇u1u2 = −k1u1 + k2u3, (11)

⋮

∇u1ur = −kr−1ur−1.

Then, β is called a Frenet curve of osculating order r , here k1, . . . , kr−1 are positive functions on

I and 1 ≤ r ≤m . With the help of Definition 1.3, β is called a bi-f -harmonic curve if and only if

following condition is hold [12],

τf,2(β) = (ff
′′
)
′
u1 + (3ff

′′
+ 2(f

′
)2)∇u1u1 + 4ff

′
∇2
u1
u1 + f2∇3

u1
u1 + f2R(∇u1u1, u1)u1

= 0. (12)

Now, let (N2n+1, φ, ξ, η, g) be a Sasakian space form and β ∶ I → N be a Legendre curve.

Then, with the help of equation (11) and derivative of η(T ) = η(u1) = 0, following equality

η(u2) = 0 (13)

is obtained [7]. By using equations (10), (11) and (13), we get the following equalities

∇u1u1 = k1u2,

∇u1∇u1u1 = ∇2
u1
u1 = −k21u1 + k

′

1u2 + k1k2u3,

∇u1
∇u1
∇u1

u1 = ∇3
u1
u1 = −3k1k

′

1u1 + ( − k31 + k
′′

1 − k1k22)u2

+(2k
′

1k2 + k1k
′

2)u3 + k1k2k3u4,

R(∇u1u1, u1)u1 = k1(
c + 3
4
)u2 + 3k1(

c − 1
4
)g(u2, φu1)φu1.

Then, by substutiting these equalities into the bi-f -harmonicity condition, namely into the equa-

tion (12), we obtain bi-f -harmonicity condition of a Legendre curve in a Sasakian space form as
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follows,

τf,2(β) = [(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2]u1

+ [(3ff
′′
+ 2(f

′
)2)k1 + 4ff

′
k
′

1 + ( − k31 + k
′′

1 − k1k22 + k1(
c + 3
4
))f2]u2

+ [4ff
′
k1k2 + f2(2k

′

1k2 + k1k
′

2)]u3

+ [k1k2k3f2]u4

+ 3f2k1(
c − 1
4
)g(u2, φu1)φu1

= 0. (14)

It should be noted that if function f is a constant, then bi-f -harmonicity condition turns

into a biharmonicity condition. For this reason, the function f will be considered different from a

constant throughout the paper.

Now, we give interpretations of bi-f -harmonicity condition given in equation (14).

Remark 3.1 [12] The property of a curve being bi-f -harmonic in a n-dimensional space (n > 3)

does not depend on all its curvatures, but only on k1, k2 and k3 .

Let k =min{r,4} . From equation (14), β is a bi-f -harmonic curve if and only if τf,2(β) = 0,

namely,

(i) c = 1 or φu1 ⊥ u2 or φu1 ∈ sp{u2, ..., uk} ,

(ii) g(τf,2(β), ui) = 0 for all i = 1, ..., k.

Thus, we can give the following main theorem.

Theorem 3.2 Let β be a non-geodesic Legendre curve of osculating order r in a Sasakian space

form (N2n+1, φ, ξ, η, g) and k =min{r,4} . Then, β is a bi-f -harmonic curve if and only if

(i) c = 1 or φu1 ⊥ u2 or φu1 ∈ sp{u2, ..., uk} ,

(ii) the first k of the following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
+ 3( c−1

4
)g(u2, φu1)2,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 + 3( c−14 )g(u2, φu1)g(u3, φu1) = 0,

k2k3 + 3( c−14 )g(u2, φu1)g(u4, φu1) = 0.

(15)
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From here on, we investigate results of Theorem 3.2 in eight cases.

Case I: If c = 1, then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Hence, we have Theorem 3.3.

Theorem 3.3 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) and c = 1.

Then, β is a bi-f -harmonic curve iff following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(16)

Also, we get the following corollary from Theorem 3.2.

Corollary 3.4 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) and c = 1.

Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 and f, k1 satisfy the following differential equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1

or

(ii) β is of osculating order r = 3 and f, k1, k2 satisfy the following differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0.
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Proof It is known that if k2 equals to zero, then β is called as of osculating order 2 . Here, if we

substitute zero, for k2 in equation (16), third and fourth equations are vanished, then we obtain

the differential equations given in (i). On the other hand, if k3 equals to zero, then β is called as

of osculating order 3 and similarly, substutiting zero for k3 in equation (16), fourth equation is

vanished, so we obtain the differential equations given in (ii).

Case II: If c = 1 and (f.f ′′)′ = 0 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(17)

Hence, we have Theorem 3.5.

Theorem 3.5 Let β be a Legendre curve with non-constant geodesic curvature in a SSF

(N2n+1, φ, ξ, η, g), c = 1, (f.f
′′
)
′
= 0 and n ≥ 2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 with f = c1k
− 3

4

1 , where c1 is a positive integration constant

and k1 satisfy the following second order non-linear ordinary differential equation

16k41 − 16k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0

or

(ii) β is of osculating order r = 3 with f = c1k
− 3

4

1 , k2 = c2k1 , where c1, c2 are positive integration

constants and k1 satisfy the following second order non-linear ordinary differential equation

16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 16k21 = 0.

Proof By using the first equation of (17), we get

f
′

f
= −3

4

k
′

1

k1
,

f
′′

f
= 21

16
(k

′

1

k1
)2 − 3

4

k
′′

1

k1
. (18)

Thus from equation (18), we obtain f = c1k
− 3

4

1 , where c1 is an integration constant. Then, we know

that if k2 = 0 , β is called as of osculating order r = 2 and if k2 = 0 , third and fourth equations of

(17) are vanished. Finally, by substutiting equation (18) to the second equation of (17), we obtain

a second order non-linear ordinary differential equation 16k41 − 16k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0 .
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On the other hand, we know that if k3 = 0 , β is called as of osculating order r = 3 and

if k3 = 0, fourth equation of (17) is vanished. Then, by substutiting equation (18) to the third

equation of (17), we obtain that k2 = c2k1 for a positive integration constant c2 . Finally, by using

these results in the second equation of (17), we get second order non-linear ordinary differential

equation 16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 16k21 = 0 . So, the proof is complete. ◻

Case III: If c ≠ 1 and φu1 ⊥ u2 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Then, before giving Theorem 3.7, we need the following proposition.

Proposition 3.6 [5] Let β be a Legendre curve of osculating order 3 in a SSF (N2n+1, φ, ξ, η, g)

and φu1 ⊥ u2. Then, {u1, u2, u3, φu1,∇u1φu1, ξ} is linearly independent at any point of β .

Consequently, n ≥ 3.

Now, we can give Theorem 3.7.

Theorem 3.7 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g), c ≠ 1 and

φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Now, we can introduce the Corollary 3.8 of Theorem 3.7.

Corollary 3.8 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g), c ≠ 1 and

φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 and f, k1 satisfy the following differential equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
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or

(ii) β is of osculating order r = 3, n ≥ 3 and f, k1, k2 satisfy the following differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0.

Proof The proof is similar to the proof of Corollary 3.4. ◻

Now, let investigate the Case IV.

Case IV: If c ≠ 1, φu1 ⊥ u2 and (ff ′′)′ = 0 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Now, with the help of Proposition 3.6, we can give the Theorem 3.9.

Theorem 3.9 Let β be a Legendre curve with non-constant geodesic curvature in a SSF

(N2n+1, φ, ξ, η, g) , c ≠ 1 and φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 with f = c1k
− 3

4

1 , {u1, u2, φu1,∇u1φu1, ξ} is linearly independent,

n ≥ 2 and k1 satisfy the following second order non-linear ordinary differential equation

16k41 − 4(c + 3)k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0

or

(ii) β is of osculating order r = 3 with f = c1k
− 3

4

1 , k2 = c2k1, {u1, u2, u3, φu1,∇u1φu1, ξ} is

linearly independent, n ≥ 3 and k1 satisfy the following second order non-linear ordinary

differential equation

16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 4(c + 3)k21 = 0.

Proof It is proved as similar to the proof of Theorem 3.5. ◻
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Case V: Let c ≠ 1 and φu1 ∥ u2.

In this case, since φu1 ∥ u2 , we can write φu1 = ∓u2. Hence, g(u2, φu1) = ∓1, g(u3, φu1) =

g(u3,∓u2) = 0 and similarly, g(u4, φu1) = g(u4,∓u2) = 0. Then, equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(19)

Remark 3.10 In [11], it is proved that in a SSF (N2n+1, φ, ξ, η, g) if c ≠ 1 and φu1 ∥ u2 , then

k2 = 1 .

Hence, we give the Theorem 3.11.

Theorem 3.11 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , c ≠ 1 and

φu1 ∥ u2 . Then, β is a bi-f-harmonic curve iff it is of osculating order r = 3 with f = c1k
− 1

2

1 and

k1 satisfies the following differential equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

18(k
′

1)3 − 11k1k
′

1k
′′

1 + 4k21k
′′′

1 + 8k41k
′

1 = 0,

4k41 − 3(k
′

1)2 + 2k1k
′′

1 − 4(c − 1)k21 = 0.

Proof First of all from Remark 3.10, we know that k2 = 1 and by choosing β as a curve of

osculating order r = 3 , we get k3 = 0 . Then, when we substitute these informations into the

equation (19), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c − 1,

2 f
′

f
+ k

′
1

k1
= 0.

(20)

Then, with help of third equation of (20), we obtain

f
′

f
= −1

2

k
′

1

k1
,

f
′′

f
= 3

4
(k

′

1

k1
)2 − 1

2

k
′′

1

k1
. (21)

Finally, if equation (21) is substituted into the first and second equation of (20), then two equations

are found for k1 and the proof is completed. ◻
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Case VI: If c ≠ 1, φu1 ∥ u2 and (ff ′′)′ = 0, then by using Remark 3.10, equation (15)

reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c − 1,

2 f
′

f
+ k

′
1

k1
= 0.

(22)

In this case, if we take into consideration first and third equations of (22), then it is easy to

see that f is a constant. Therefore, we obtain Theorem 3.12.

Theorem 3.12 There is no bi-f-harmonic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1,

φu1 ∥ u2 and (ff ′′)′ = 0.

Considering that f is a constant, then we get Corollary 3.13.

Corollary 3.13 Let β be a Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1, φu1 ∥ u2

and (ff ′′)′ = 0. Then, β is a biharmonic curve if and only if it is a helix with k1 =
√
c − 1 and

k2 = 1.

Case VII: Let c ≠ 1 and g(u2, φu1) is not equal to −1,0 or 1.

Now, let (N2n+1, φ, ξ, η, g) be a SSF and β ∶ I Ð→ N be a Legendre curve of osculating order

r , where 4 ≤ r ≤ 2n+1 and n ≥ 2 . We know that if β is bi-f -harmonic, then φu1 ∈ sp{u2, u3, u4} .

Here, let denote the angle between φu1 and u2 by ϕ(t) , namely,

g(u2, φu1) = cosϕ(t). (23)

By differentiating g(u2, φu1) along β with the help of (8) and (11), the equality

−ϕ
′
(t)sinϕ(t) = k2g(u3, φu1) (24)

is obtained. Also, we can write

φu1 = g(u2, φu1)u2 + g(u3, φu1)u3 + g(u4, φu1)u4. (25)

For details, see [7]. By using these results, we obtain Theorem 3.14 and Theorem 3.15.

Theorem 3.14 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , c ≠ 1 and

g(u2, φu1) is not equal to −1,0 or 1. Then, β is a bi-f -harmonic curve iff following differential
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equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
+ 3( c−1

4
)cos2ϕ(t),

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 + 3( c−14 )g(u3, φu1)cosϕ(t) = 0,

k2k3 + 3( c−14 )g(u4, φu1)cosϕ(t) = 0.

Proof It is easy to see that if equation (23) substituted into equation (15), then the proof is

completed. ◻

Case VIII: If c ≠ 1 and g(u2, φu1) is not equal to −1,0 or 1 and (ff ′′)′ = 0 , then equation

(15) reduces to

4k21ff
′
+ 3k1k

′

1f
2 = 0, (26)

k21 + k22 = 3
f
′′

f
+ 2(f

′

f
)2 + 4k

′

1

k1

f
′

f
+ k

′′

1

k1
+ c + 3

4
+ 3(c − 1

4
)cos2ϕ(t), (27)

4k2
f
′

f
+ 2k2

k
′

1

k1
+ k

′

2 + 3(
c − 1
4
)g(u3, φu1)cosϕ(t) = 0, (28)

k2k3 + 3(
c − 1
4
)g(u4, φu1)cosϕ(t) = 0. (29)

Now, let give the interpretation of Case VIII.

First of all, from equation (26), it is easy to see that f
′

f
= −3

4

k
′
1

k1
and f

′′

f
= 3

4
(k

′
1

k1
)2 − 1

2

k
′′
1

k1
.

Then, by using these equalities in the equations (27) and (28), we get

k21 + k22 =
33

16
(k

′

1

k1
)2 − 5

4

k
′′

1

k1
+ c + 3

4
+ 3(c − 1

4
)cos2ϕ(t), (30)

−k2(
k
′

1

k1
) + k

′

2 + 3(
c − 1
4
)g(u3, φu1)cosϕ(t) = 0, (31)

respectively. Then, by multiplying equation (31) with 2k2 and using equation (24), we get

2k2k
′

2 − 2k22
k
′

1

k1
+ 3(c − 1

4
)(−2ϕ

′
(t)cosϕ(t)sinϕ(t)) = 0. (32)

Let ϕ be a constant. Then, from (24), we get g(u3, φu1) = 0 and also, from (25), we get

g(u4, φu1) = ∓sinϕ since ∥φu1∥ = 1 . Finally, from (32), we obtain k2 = c2k1 , where c2 is a

positive integration constant. Then, by using these informations, equations (29) and (30) reduces
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to c2k1k3 = ∓3(c−1)sin(2ϕ(t))
8

and

33(k
′

1)2 − 20k1k
′′

1 + k21(4(c + 3) + 3(c − 1)cos2ϕ(t) − 16k21 − 16c22k21) = 0.

Now, we can state the Theorem 3.15.

Theorem 3.15 Let β be a Legendre curve with non-constant geodesic curvature of osculating

order r in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1 , g(u2, φu1) is not equal to −1,0 or 1, (ff
′′
)
′
= 0,

r ≥ 4 , n ≥ 2 and ϕ be a constant. Then, β is a bi-f -harmonic curve iff f = c1k
− 3

4

1 , k2 = c2k1 and

k1, k3 satisfy following differential equations

33(k
′

1)2 − 20k1k
′′

1 + k21(4(c + 3) + 3(c − 1)cos2ϕ(t) − 16k21 − 16c22k21) = 0,

c2k1k3 = ∓
3(c − 1)sin(2ϕ(t))

8
,

where c1 and c2 are positive integration constants.
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