On Bi- f-Harmonic Legendre Curves in Sasakian Space Forms

Şerife Nur Bozdağ © ${ }^{*}$
Ege University, Faculty of Science, Department of Mathematics İzmir, Türkiye

$$
\text { Received: } 09 \text { January } 2022 \quad \text { Accepted: } 24 \text { June } 2022
$$

Abstract

In this study, we consider bi- f-harmonic Legendre curves in Sasakian space forms. We investigate necessary and sufficient conditions for a Legendre curve to be bi- f-harmonic in various cases.

Keywords: Bi- f-harmonic curves, Legendre curves, Sasakian space forms.

1. Introduction

Let (N, g) and (\bar{N}, \bar{g}) be two Riemannian manifolds and $\psi:(N, g) \rightarrow(\bar{N}, \bar{g})$ be a smooth map. Then, let give the following definitions.

Definition 1.1 Harmonic maps between two Riemannian manifolds are critical points of the energy functional

$$
E(\psi)=\frac{1}{2} \int_{N}|d \psi|^{2} d v_{g}
$$

for smooth maps $\psi:(N, g) \rightarrow(\bar{N}, \bar{g})$. Namely, ψ is called as harmonic if

$$
\tau(\psi)=-d^{*} d \psi=\operatorname{trace} \nabla d \psi=0
$$

Here $\tau(\psi)$, which is the tension field of ψ, is the Euler-Lagrange equation of the energy functional $E(\psi), d$ is the exterior differentiation, d^{*} is the codifferentiation, ∇ is the connection induced from the Levi-Civita connection $\nabla^{\bar{N}}$ of \bar{N} and the pull-back connection $\nabla^{\bar{N}}[1,3,8]$.

Definition 1.2ψ is called as biharmonic if it is critical point, for all variations, of the bienergy functional

$$
E_{2}(\psi)=\frac{1}{2} \int_{N}|\tau(\psi)|^{2} d v_{g}
$$

It means that ψ is a biharmonic map if bitension field $\tau_{2}(\psi)$ equals to

$$
\begin{equation*}
\tau_{2}(\psi)=\operatorname{trace}\left(\nabla^{\psi} \nabla^{\psi}-\nabla_{\nabla}^{\psi}\right) \tau(\psi)-\operatorname{trace}\left(R^{\bar{N}}(d \psi, \tau(\psi)) d \psi\right)=0, \tag{1}
\end{equation*}
$$

[^0]This Research Article is licensed under a Creative Commons Attribution 4.0 International License.
where $R^{\bar{N}}$ is the curvature tensor field of $\bar{N}[3,12]$.

It is easy to see that any harmonic map is a biharmonic map. On the other hand, a biharmonic map is called as proper biharmonic if it is not harmonic. Now, let us remind the definition of a bi- f-harmonic map.

Definition 1.3 ψ is called as bi- f-harmonic if it is critical point of the bi-f-energy functional

$$
E_{f, 2}(\psi)=\frac{1}{2} \int_{N}\left|\tau_{f}(\psi)\right|^{2} d v_{g}
$$

where $\tau_{f}(\psi)=f \tau(\psi)+d \psi($ gradf $)$ is the f-tension field. The Euler-Lagrange equation for the bi-f-harmonic map is given by

$$
\begin{equation*}
\tau_{f, 2}(\psi)=\operatorname{trace}\left(\nabla^{\psi} f\left(\nabla^{\psi} \tau_{f}(\psi)\right)-f \nabla_{\nabla^{N}}^{\psi} \tau_{f}(\psi)+f R^{\bar{N}}\left(\tau_{f}(\psi), d \psi\right) d \psi\right)=0 \tag{2}
\end{equation*}
$$

here $\tau_{f, 2}(\psi)$ is the bi-f-tension field of the map ψ and f is a smooth positive function on the domain [12].

Note that overall throughout this paper, we will use SSF instead of Sasakian space form for the sake of simplicity.

The authors of [14] summarized the relationship between biharmonic and bi- f-harmonic maps; by extending bienergy functional to bi- f-energy functional defining a new type of harmonic map called as bi- f-harmonic map.

Bi- f-harmonic maps were introduced by Ouakkas et al. in 2010 [9] and Perktaş et al. obtained bi- f-harmonicity conditions of curves in Riemannian manifolds and derived bi- f-harmonic equations for curves in various spaces such as Euclidean and hyperbolic space in 2019 [12]. Biharmonic Legendre curves were handled in SSF by Fetcu in 2008 [4] and were introduced by Özgür and Güvenç in generalized SSF and S-space forms in 2014 [10, 11]. Subsequently, f-biharmonic Legendre curves were examined by Özgür and Güvenç in SSF in 2017 and were studied by Güvenç in S-space forms in 2019 [6, 7].

Inspired by these papers, in this study, we examined bi- f-harmonic Legendre curves in Sasakian space form. Firstly, in Section 2, we remind definition and properties of a Sasakian space form. Then, in Section 3, we give our main theorems and corollaries.

2. Sasakian Space Forms

Let (N, g) be a framed metric manifold with $\operatorname{dim}(N)=(2 n+s)$ and a framed metric structure $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, where $\alpha \in\{1, \ldots, s\} ; \varphi$ is a $(1,1)$ tensor field defining a φ-structure of rank $2 n$;
ξ_{1}, \ldots, ξ_{s} are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms and g is a Riemannian metric on N.
For all $K, L \in T N$ and $\alpha, \beta \in\{1, \ldots, s\}$, following formulas are satisfied;

$$
\begin{align*}
& \varphi^{2} K=-K+\sum_{\alpha=1}^{s} \eta^{\alpha}(K) \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}, \quad \varphi\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ \varphi=0 \tag{3}\\
& g(\varphi K, \varphi L)=g(K, L)-\sum_{\alpha=1}^{s} \eta^{\alpha}(K) \eta^{\alpha}(L) \tag{4}\\
& d \eta^{\alpha}(K, L)=g(K, \varphi L)=-d \eta^{\alpha}(L, K), \quad \eta^{\alpha}(K)=g(K, \xi) \tag{5}
\end{align*}
$$

If Nijenhuis tensor of φ equals to $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, then $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called S-structure and if $s=1$, a framed metric structure becomes an almost contact metric structure; an S-structure becomes a Sasakian structure, then we have $[2,11,13]$:

$$
\begin{align*}
& \left(\nabla_{K} \varphi\right) L=\sum_{\alpha=1}^{s}\left(g(\varphi K, \varphi L) \xi_{\alpha}+\eta^{\alpha}(L) \varphi^{2} K\right) \tag{6}\\
& \nabla \xi_{\alpha}=-\varphi, \quad \alpha \in\{1, \ldots, s\} \tag{7}
\end{align*}
$$

A plane section in $T_{p} N$ is a φ-section if there exists a vector $K \in T_{p} N$ being orthogonal to ξ_{1}, \ldots, ξ_{s} such that $K, \varphi K$ span the section. The sectional curvature of a φ-section is called φ sectional curvature such that a S-manifold of constant φ-section curvature c is called as S-space form. Finally, if $s=1$, a S-space form becomes a Sasakian space form $[2,6,7]$. For a SSF, from equations (6) and (7), it is easy to see that

$$
\begin{align*}
& \left(\nabla_{K} \varphi\right) L=g(K, L) \xi-\eta(L) K \tag{8}\\
& \nabla_{K} \xi=-\varphi K \tag{9}
\end{align*}
$$

and the curvature tensor R of a SSF is given by

$$
\begin{align*}
R(K, L) M & =\frac{c+3}{4}(g(L, M) K-g(K, M) L) \\
& +\frac{c-1}{4}(g(K, \varphi M) \varphi L-g(L, \varphi M) \varphi K+2 g(K, \varphi L) \varphi M+\eta(K) \eta(M) L \\
& -\eta(L) \eta(M) K+g(K, M) \eta(L) \xi-g(L, M) \eta(K) \xi) \tag{10}
\end{align*}
$$

for all $K, L, M \in T N$ [2].
Here let's remind the definition of a Legendre curve in a SSF.

Definition 2.1 A Legendre curve of a $\operatorname{SSF}\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a one dimensional integral submanifold of N and $\beta: I \rightarrow\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a Legendre curve if $\eta(T)=0$, where T is the tangent vector field of $\beta[6,7]$.

3. Bi- f-harmonic Legendre Curves in Sasakian Space Forms

Let $\beta: I \longrightarrow N$ be an arc-length parametrized curve in a m-dimensional Riemannian manifold (N, g) and $u_{1}, u_{2},, u_{r}$ are vector fields along β such that

$$
\begin{align*}
u_{1}=\beta^{\prime} & =T \\
\nabla_{u_{1}} u_{1} & =k_{1} u_{2}, \\
\nabla_{u_{1}} u_{2} & =-k_{1} u_{1}+k_{2} u_{3} \tag{11}\\
\vdots & \\
\nabla_{u_{1}} u_{r} & =-k_{r-1} u_{r-1}
\end{align*}
$$

Then, β is called a Frenet curve of osculating order r, here k_{1}, \ldots, k_{r-1} are positive functions on I and $1 \leq r \leq m$. With the help of Definition 1.3, β is called a bi- f-harmonic curve if and only if following condition is hold [12],

$$
\begin{align*}
\tau_{f, 2}(\beta) & =\left(f f^{\prime \prime}\right)^{\prime} u_{1}+\left(3 f f^{\prime \prime}+2\left(f^{\prime}\right)^{2}\right) \nabla_{u_{1}} u_{1}+4 f f^{\prime} \nabla_{u_{1}}^{2} u_{1}+f^{2} \nabla_{u_{1}}^{3} u_{1}+f^{2} R\left(\nabla_{u_{1}} u_{1}, u_{1}\right) u_{1} \\
& =0 \tag{12}
\end{align*}
$$

Now, let $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a Sasakian space form and $\beta: I \rightarrow N$ be a Legendre curve. Then, with the help of equation (11) and derivative of $\eta(T)=\eta\left(u_{1}\right)=0$, following equality

$$
\begin{equation*}
\eta\left(u_{2}\right)=0 \tag{13}
\end{equation*}
$$

is obtained [7]. By using equations (10), (11) and (13), we get the following equalities

$$
\begin{aligned}
\nabla_{u_{1}} u_{1}= & k_{1} u_{2}, \\
\nabla_{u_{1}} \nabla_{u_{1}} u_{1}= & \nabla_{u_{1}}^{2} u_{1}=-k_{1}^{2} u_{1}+k_{1}^{\prime} u_{2}+k_{1} k_{2} u_{3}, \\
\nabla_{u_{1}} \nabla_{u_{1}} \nabla_{u_{1}} u_{1}= & \nabla_{u_{1}}^{3} u_{1}=-3 k_{1} k_{1}^{\prime} u_{1}+\left(-k_{1}^{3}+k_{1}^{\prime \prime}-k_{1} k_{2}^{2}\right) u_{2} \\
& +\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) u_{3}+k_{1} k_{2} k_{3} u_{4}, \\
R\left(\nabla_{u_{1}} u_{1}, u_{1}\right) u_{1}= & k_{1}\left(\frac{c+3}{4}\right) u_{2}+3 k_{1}\left(\frac{c-1}{4}\right) g\left(u_{2}, \varphi u_{1}\right) \varphi u_{1} .
\end{aligned}
$$

Then, by substutiting these equalities into the bi- f-harmonicity condition, namely into the equation (12), we obtain bi- f-harmonicity condition of a Legendre curve in a Sasakian space form as
follows,

$$
\begin{align*}
\tau_{f, 2}(\beta) & =\left[\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}\right] u_{1} \\
& +\left[\left(3 f f^{\prime \prime}+2\left(f^{\prime}\right)^{2}\right) k_{1}+4 f f^{\prime} k_{1}^{\prime}+\left(-k_{1}^{3}+k_{1}^{\prime \prime}-k_{1} k_{2}^{2}+k_{1}\left(\frac{c+3}{4}\right)\right) f^{2}\right] u_{2} \\
& +\left[4 f f^{\prime} k_{1} k_{2}+f^{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right)\right] u_{3} \\
& +\left[k_{1} k_{2} k_{3} f^{2}\right] u_{4} \\
& +3 f^{2} k_{1}\left(\frac{c-1}{4}\right) g\left(u_{2}, \varphi u_{1}\right) \varphi u_{1} \\
& =0 . \tag{14}
\end{align*}
$$

It should be noted that if function f is a constant, then bi- f-harmonicity condition turns into a biharmonicity condition. For this reason, the function f will be considered different from a constant throughout the paper.

Now, we give interpretations of bi- f-harmonicity condition given in equation (14).

Remark 3.1 [12] The property of a curve being bi-f-harmonic in a n-dimensional space $(n>3)$ does not depend on all its curvatures, but only on k_{1}, k_{2} and k_{3}.

Let $k=\min \{r, 4\}$. From equation (14), β is a bi- f-harmonic curve if and only if $\tau_{f, 2}(\beta)=0$, namely,
(i) $c=1$ or $\varphi u_{1} \perp u_{2}$ or $\varphi u_{1} \in \operatorname{sp}\left\{u_{2}, \ldots, u_{k}\right\}$,
(ii) $g\left(\tau_{f, 2}(\beta), u_{i}\right)=0$ for all $i=1, \ldots, k$.

Thus, we can give the following main theorem.

Theorem 3.2 Let β be a non-geodesic Legendre curve of osculating order r in a Sasakian space form $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ and $k=\min \{r, 4\}$. Then, β is a bi-f-harmonic curve if and only if
(i) $c=1$ or $\varphi u_{1} \perp u_{2}$ or $\varphi u_{1} \in \operatorname{sp}\left\{u_{2}, \ldots, u_{k}\right\}$,
(ii) the first k of the following differential equations are satisfied

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{15}\\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4}+3\left(\frac{c-1}{4}\right) g\left(u_{2}, \varphi u_{1}\right)^{2}, \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}+3\left(\frac{c-1}{4}\right) g\left(u_{2}, \varphi u_{1}\right) g\left(u_{3}, \varphi u_{1}\right)=0 \\
k_{2} k_{3}+3\left(\frac{c-1}{4}\right) g\left(u_{2}, \varphi u_{1}\right) g\left(u_{4}, \varphi u_{1}\right)=0
\end{array}\right.
$$

From here on, we investigate results of Theorem 3.2 in eight cases.
Case I: If $c=1$, then equation (15) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+1, \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Hence, we have Theorem 3.3.

Theorem 3.3 Let β be a non-geodesic Legendre curve in a $\operatorname{SSF}\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ and $c=1$. Then, β is a bi-f-harmonic curve iff following differential equations are satisfied

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{16}\\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+1 \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Also, we get the following corollary from Theorem 3.2.

Corollary 3.4 Let β be a non-geodesic Legendre curve in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ and $c=1$. Then, β is a bi-f-harmonic curve iff either
(i) β is of osculating order $r=2$ and f, k_{1} satisfy the following differential equations

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0, \\
k_{1}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+1
\end{array}\right.
$$

or
(ii) β is of osculating order $r=3$ and f, k_{1}, k_{2} satisfy the following differential equations

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+1 \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0
\end{array}\right.
$$

Proof It is known that if k_{2} equals to zero, then β is called as of osculating order 2. Here, if we substitute zero, for k_{2} in equation (16), third and fourth equations are vanished, then we obtain the differential equations given in (i). On the other hand, if k_{3} equals to zero, then β is called as of osculating order 3 and similarly, substutiting zero for k_{3} in equation (16), fourth equation is vanished, so we obtain the differential equations given in (ii).

Case II: If $c=1$ and $\left(f . f^{\prime \prime}\right)^{\prime}=0$, then equation (15) reduces to

$$
\left\{\begin{array}{l}
4 k_{1}^{2} f f^{\prime}+3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{17}\\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+1, \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Hence, we have Theorem 3.5.

Theorem 3.5 Let β be a Legendre curve with non-constant geodesic curvature in a SSF
$\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c=1,\left(f \cdot f^{\prime \prime}\right)^{\prime}=0$ and $n \geq 2$. Then, β is a bi-f-harmonic curve iff either
(i) β is of osculating order $r=2$ with $f=c_{1} k_{1}^{-\frac{3}{4}}$, where c_{1} is a positive integration constant and k_{1} satisfy the following second order non-linear ordinary differential equation

$$
16 k_{1}^{4}-16 k_{1}^{2}-33\left(k_{1}^{\prime}\right)^{2}+20 k_{1} k_{1}^{\prime \prime}=0
$$

or
(ii) β is of osculating order $r=3$ with $f=c_{1} k_{1}^{-\frac{3}{4}}, k_{2}=c_{2} k_{1}$, where c_{1}, c_{2} are positive integration constants and k_{1} satisfy the following second order non-linear ordinary differential equation

$$
16\left(1+c_{2}^{2}\right) k_{1}^{4}+20 k_{1} k_{1}^{\prime \prime}-33\left(k_{1}^{\prime}\right)^{2}-16 k_{1}^{2}=0
$$

Proof By using the first equation of (17), we get

$$
\begin{equation*}
\frac{f^{\prime}}{f}=-\frac{3}{4} \frac{k_{1}^{\prime}}{k_{1}}, \quad \frac{f^{\prime \prime}}{f}=\frac{21}{16}\left(\frac{k_{1}^{\prime}}{k_{1}}\right)^{2}-\frac{3}{4} \frac{k_{1}^{\prime \prime}}{k_{1}} . \tag{18}
\end{equation*}
$$

Thus from equation (18), we obtain $f=c_{1} k_{1}^{-\frac{3}{4}}$, where c_{1} is an integration constant. Then, we know that if $k_{2}=0, \beta$ is called as of osculating order $r=2$ and if $k_{2}=0$, third and fourth equations of (17) are vanished. Finally, by substutiting equation (18) to the second equation of (17), we obtain a second order non-linear ordinary differential equation $16 k_{1}^{4}-16 k_{1}^{2}-33\left(k_{1}^{\prime}\right)^{2}+20 k_{1} k_{1}^{\prime \prime}=0$.

On the other hand, we know that if $k_{3}=0, \beta$ is called as of osculating order $r=3$ and if $k_{3}=0$, fourth equation of (17) is vanished. Then, by substutiting equation (18) to the third equation of (17), we obtain that $k_{2}=c_{2} k_{1}$ for a positive integration constant c_{2}. Finally, by using these results in the second equation of (17), we get second order non-linear ordinary differential equation $16\left(1+c_{2}^{2}\right) k_{1}^{4}+20 k_{1} k_{1}^{\prime \prime}-33\left(k_{1}^{\prime}\right)^{2}-16 k_{1}^{2}=0$. So, the proof is complete.

Case III: If $c \neq 1$ and $\varphi u_{1} \perp u_{2}$, then equation (15) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4} \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Then, before giving Theorem 3.7, we need the following proposition.

Proposition 3.6 [5] Let β be a Legendre curve of osculating order 3 in a SSF ($\left.N^{2 n+1}, \varphi, \xi, \eta, g\right)$ and $\varphi u_{1} \perp u_{2}$. Then, $\left\{u_{1}, u_{2}, u_{3}, \varphi u_{1}, \nabla_{u_{1}} \varphi u_{1}, \xi\right\}$ is linearly independent at any point of β. Consequently, $n \geq 3$.

Now, we can give Theorem 3.7.

Theorem 3.7 Let β be a non-geodesic Legendre curve in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $\varphi u_{1} \perp u_{2}$. Then, β is a bi-f-harmonic curve iff following differential equations are satisfied

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4} \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Now, we can introduce the Corollary 3.8 of Theorem 3.7.

Corollary 3.8 Let β be a non-geodesic Legendre curve in a $\operatorname{SSF}\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $\varphi u_{1} \perp u_{2}$. Then, β is a bi- f-harmonic curve iff either
(i) β is of osculating order $r=2$ and f, k_{1} satisfy the following differential equations

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4}
\end{array}\right.
$$

or
(ii) β is of osculating order $r=3, n \geq 3$ and f, k_{1}, k_{2} satisfy the following differential equations

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4} \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0
\end{array}\right.
$$

Proof The proof is similar to the proof of Corollary 3.4.
Now, let investigate the Case IV.

Case IV: If $c \neq 1, \varphi u_{1} \perp u_{2}$ and $\left(f f^{\prime \prime}\right)^{\prime}=0$, then equation (15) reduces to

$$
\left\{\begin{array}{l}
4 k_{1}^{2} f f^{\prime}+3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4} \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Now, with the help of Proposition 3.6, we can give the Theorem 3.9.

Theorem 3.9 Let β be a Legendre curve with non-constant geodesic curvature in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $\varphi u_{1} \perp u_{2}$. Then, β is a bi-f-harmonic curve iff either
(i) β is of osculating order $r=2$ with $f=c_{1} k_{1}^{-\frac{3}{4}},\left\{u_{1}, u_{2}, \varphi u_{1}, \nabla{ }_{u_{1}} \varphi u_{1}, \xi\right\}$ is linearly independent, $n \geq 2$ and k_{1} satisfy the following second order non-linear ordinary differential equation

$$
16 k_{1}^{4}-4(c+3) k_{1}^{2}-33\left(k_{1}^{\prime}\right)^{2}+20 k_{1} k_{1}^{\prime \prime}=0
$$

or
(ii) β is of osculating order $r=3$ with $f=c_{1} k_{1}^{-\frac{3}{4}}, k_{2}=c_{2} k_{1},\left\{u_{1}, u_{2}, u_{3}, \varphi u_{1}, \nabla{ }_{u_{1}} \varphi u_{1}, \xi\right\}$ is linearly independent, $n \geq 3$ and k_{1} satisfy the following second order non-linear ordinary differential equation

$$
16\left(1+c_{2}^{2}\right) k_{1}^{4}+20 k_{1} k_{1}^{\prime \prime}-33\left(k_{1}^{\prime}\right)^{2}-4(c+3) k_{1}^{2}=0
$$

Proof It is proved as similar to the proof of Theorem 3.5.

Case V: Let $c \neq 1$ and $\varphi u_{1} \| u_{2}$.

In this case, since $\varphi u_{1} \| u_{2}$, we can write $\varphi u_{1}=\mp u_{2}$. Hence, $g\left(u_{2}, \varphi u_{1}\right)=\mp 1, g\left(u_{3}, \varphi u_{1}\right)=$ $g\left(u_{3}, \mp u_{2}\right)=0$ and similarly, $g\left(u_{4}, \varphi u_{1}\right)=g\left(u_{4}, \mp u_{2}\right)=0$. Then, equation (15) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{19}\\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+c \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}=0 \\
k_{2} k_{3}=0
\end{array}\right.
$$

Remark 3.10 In [11], it is proved that in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ if $c \neq 1$ and $\varphi u_{1} \| u_{2}$, then $k_{2}=1$ 。

Hence, we give the Theorem 3.11.

Theorem 3.11 Let β be a non-geodesic Legendre curve in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $\varphi u_{1} \| u_{2}$. Then, β is a bi-f-harmonic curve iff it is of osculating order $r=3$ with $f=c_{1} k_{1}^{-\frac{1}{2}}$ and k_{1} satisfies the following differential equations

$$
\left\{\begin{array}{l}
18\left(k_{1}^{\prime}\right)^{3}-11 k_{1} k_{1}^{\prime} k_{1}^{\prime \prime}+4 k_{1}^{2} k_{1}^{\prime \prime \prime}+8 k_{1}^{4} k_{1}^{\prime}=0 \\
4 k_{1}^{4}-3\left(k_{1}^{\prime}\right)^{2}+2 k_{1} k_{1}^{\prime \prime}-4(c-1) k_{1}^{2}=0
\end{array}\right.
$$

Proof First of all from Remark 3.10, we know that $k_{2}=1$ and by choosing β as a curve of osculating order $r=3$, we get $k_{3}=0$. Then, when we substitute these informations into the equation (19), we get

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{20}\\
k_{1}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+c-1 \\
2 \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime}}{k_{1}}=0
\end{array}\right.
$$

Then, with help of third equation of (20), we obtain

$$
\begin{equation*}
\frac{f^{\prime}}{f}=-\frac{1}{2} \frac{k_{1}^{\prime}}{k_{1}}, \quad \frac{f^{\prime \prime}}{f}=\frac{3}{4}\left(\frac{k_{1}^{\prime}}{k_{1}}\right)^{2}-\frac{1}{2} \frac{k_{1}^{\prime \prime}}{k_{1}} \tag{21}
\end{equation*}
$$

Finally, if equation (21) is substituted into the first and second equation of (20), then two equations are found for k_{1} and the proof is completed.

Case VI: If $c \neq 1, \varphi u_{1} \| u_{2}$ and $\left(f f^{\prime \prime}\right)^{\prime}=0$, then by using Remark 3.10, equation (15) reduces to

$$
\left\{\begin{array}{l}
4 k_{1}^{2} f f^{\prime}+3 k_{1} k_{1}^{\prime} f^{2}=0 \tag{22}\\
k_{1}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+c-1 \\
2 \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime}}{k_{1}}=0
\end{array}\right.
$$

In this case, if we take into consideration first and third equations of (22), then it is easy to see that f is a constant. Therefore, we obtain Theorem 3.12.

Theorem 3.12 There is no bi-f-harmonic Legendre curve in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$, where $c \neq 1$, $\varphi u_{1} \| u_{2}$ and $\left(f f^{\prime \prime}\right)^{\prime}=0$.

Considering that f is a constant, then we get Corollary 3.13.

Corollary 3.13 Let β be a Legendre curve in a $\operatorname{SSF}\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$, where $c \neq 1$, $\varphi u_{1} \| u_{2}$ and $\left(f f^{\prime \prime}\right)^{\prime}=0$. Then, β is a biharmonic curve if and only if it is a helix with $k_{1}=\sqrt{c-1}$ and $k_{2}=1$.

Case VII: Let $c \neq 1$ and $g\left(u_{2}, \varphi u_{1}\right)$ is not equal to $-1,0$ or 1 .

Now, let $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a SSF and $\beta: I \longrightarrow N$ be a Legendre curve of osculating order r, where $4 \leq r \leq 2 n+1$ and $n \geq 2$. We know that if β is bi- f-harmonic, then $\varphi u_{1} \in \operatorname{sp}\left\{u_{2}, u_{3}, u_{4}\right\}$. Here, let denote the angle between φu_{1} and u_{2} by $\phi(t)$, namely,

$$
\begin{equation*}
g\left(u_{2}, \varphi u_{1}\right)=\cos \phi(t) . \tag{23}
\end{equation*}
$$

By differentiating $g\left(u_{2}, \varphi u_{1}\right)$ along β with the help of (8) and (11), the equality

$$
\begin{equation*}
-\phi^{\prime}(t) \sin \phi(t)=k_{2} g\left(u_{3}, \varphi u_{1}\right) \tag{24}
\end{equation*}
$$

is obtained. Also, we can write

$$
\begin{equation*}
\varphi u_{1}=g\left(u_{2}, \varphi u_{1}\right) u_{2}+g\left(u_{3}, \varphi u_{1}\right) u_{3}+g\left(u_{4}, \varphi u_{1}\right) u_{4} . \tag{25}
\end{equation*}
$$

For details, see [7]. By using these results, we obtain Theorem 3.14 and Theorem 3.15.

Theorem 3.14 Let β be a non-geodesic Legendre curve in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $g\left(u_{2}, \varphi u_{1}\right)$ is not equal to $-1,0$ or 1 . Then, β is a bi-f-harmonic curve iff following differential
equations are satisfied

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k_{1}^{2} f f^{\prime}-3 k_{1} k_{1}^{\prime} f^{2}=0 \\
k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4}+3\left(\frac{c-1}{4}\right) \cos ^{2} \phi(t) \\
4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}+3\left(\frac{c-1}{4}\right) g\left(u_{3}, \varphi u_{1}\right) \cos \phi(t)=0 \\
k_{2} k_{3}+3\left(\frac{c-1}{4}\right) g\left(u_{4}, \varphi u_{1}\right) \cos \phi(t)=0
\end{array}\right.
$$

Proof It is easy to see that if equation (23) substituted into equation (15), then the proof is completed.

Case VIII: If $c \neq 1$ and $g\left(u_{2}, \varphi u_{1}\right)$ is not equal to $-1,0$ or 1 and $\left(f f^{\prime \prime}\right)^{\prime}=0$, then equation (15) reduces to

$$
\begin{align*}
& 4 k_{1}^{2} f f^{\prime}+3 k_{1} k_{1}^{\prime} f^{2}=0, \tag{26}\\
& k_{1}^{2}+k_{2}^{2}=3 \frac{f^{\prime \prime}}{f}+2\left(\frac{f^{\prime}}{f}\right)^{2}+4 \frac{k_{1}^{\prime}}{k_{1}} \frac{f^{\prime}}{f}+\frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4}+3\left(\frac{c-1}{4}\right) \cos ^{2} \phi(t), \tag{27}\\
& 4 k_{2} \frac{f^{\prime}}{f}+2 k_{2} \frac{k_{1}^{\prime}}{k_{1}}+k_{2}^{\prime}+3\left(\frac{c-1}{4}\right) g\left(u_{3}, \varphi u_{1}\right) \cos \phi(t)=0, \tag{28}\\
& k_{2} k_{3}+3\left(\frac{c-1}{4}\right) g\left(u_{4}, \varphi u_{1}\right) \cos \phi(t)=0 . \tag{29}
\end{align*}
$$

Now, let give the interpretation of Case VIII.
First of all, from equation (26), it is easy to see that $\frac{f^{\prime}}{f}=-\frac{3}{4} \frac{k_{1}^{\prime}}{k_{1}}$ and $\frac{f^{\prime \prime}}{f}=\frac{3}{4}\left(\frac{k_{1}^{\prime}}{k_{1}}\right)^{2}-\frac{1}{2} \frac{k_{1}^{\prime \prime}}{k_{1}}$. Then, by using these equalities in the equations (27) and (28), we get

$$
\begin{align*}
& k_{1}^{2}+k_{2}^{2}=\frac{33}{16}\left(\frac{k_{1}^{\prime}}{k_{1}}\right)^{2}-\frac{5}{4} \frac{k_{1}^{\prime \prime}}{k_{1}}+\frac{c+3}{4}+3\left(\frac{c-1}{4}\right) \cos ^{2} \phi(t), \tag{30}\\
& -k_{2}\left(\frac{k_{1}^{\prime}}{k_{1}}\right)+k_{2}^{\prime}+3\left(\frac{c-1}{4}\right) g\left(u_{3}, \varphi u_{1}\right) \cos \phi(t)=0, \tag{31}
\end{align*}
$$

respectively. Then, by multiplying equation (31) with $2 k_{2}$ and using equation (24), we get

$$
\begin{equation*}
2 k_{2} k_{2}^{\prime}-2 k_{2}^{2} \frac{k_{1}^{\prime}}{k_{1}}+3\left(\frac{c-1}{4}\right)\left(-2 \phi^{\prime}(t) \cos \phi(t) \sin \phi(t)\right)=0 . \tag{32}
\end{equation*}
$$

Let ϕ be a constant. Then, from (24), we get $g\left(u_{3}, \varphi u_{1}\right)=0$ and also, from (25), we get $g\left(u_{4}, \varphi u_{1}\right)=\mp \sin \phi$ since $\left\|\varphi u_{1}\right\|=1$. Finally, from (32), we obtain $k_{2}=c_{2} k_{1}$, where c_{2} is a positive integration constant. Then, by using these informations, equations (29) and (30) reduces
to $c_{2} k_{1} k_{3}=\mp \frac{3(c-1) \sin (2 \phi(t))}{8}$ and

$$
33\left(k_{1}^{\prime}\right)^{2}-20 k_{1} k_{1}^{\prime \prime}+k_{1}^{2}\left(4(c+3)+3(c-1) \cos ^{2} \phi(t)-16 k_{1}^{2}-16 c_{2}^{2} k_{1}^{2}\right)=0
$$

Now, we can state the Theorem 3.15.

Theorem 3.15 Let β be a Legendre curve with non-constant geodesic curvature of osculating order r in a SSF $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$, where $c \neq 1, g\left(u_{2}, \varphi u_{1}\right)$ is not equal to $-1,0$ or $1,\left(f f^{\prime \prime}\right)^{\prime}=0$, $r \geq 4, n \geq 2$ and ϕ be a constant. Then, β is a bi-f-harmonic curve iff $f=c_{1} k_{1}^{-\frac{3}{4}}, k_{2}=c_{2} k_{1}$ and k_{1}, k_{3} satisfy following differential equations

$$
\begin{gathered}
33\left(k_{1}^{\prime}\right)^{2}-20 k_{1} k_{1}^{\prime \prime}+k_{1}^{2}\left(4(c+3)+3(c-1) \cos ^{2} \phi(t)-16 k_{1}^{2}-16 c_{2}^{2} k_{1}^{2}\right)=0 \\
c_{2} k_{1} k_{3}=\mp \frac{3(c-1) \sin (2 \phi(t))}{8}
\end{gathered}
$$

where c_{1} and c_{2} are positive integration constants.

Declaration of Ethical Standards

The author declares that the materials and methods used in their study do not require ethical committee and/or legal special permission.

Conflict of Interest

The author declares no conflicts of interest.

References

[1] Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Oxford Sciences Publications, 2003.
[2] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, 2002.
[3] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds, American Journal of Mathematics, 86, 109-160, 1964.
[4] Fetcu D., Biharmonic Legendre curves in Sasakian space forms, Journal of Korean Mathematical Society, 45, 393-404, 2008.
[5] Fetcu D., Oniciuc C., Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific Journal of Mathematics, 240, 85-107, 2009.
[6] Güvenç Ş., A note on f-biharmonic Legendre curves in S-space forms, International Electronic Journal of Geometry, $12(2), 260-267,2019$.
[7] Güvenç Ş., Özgür C., On the characterizations of f-biharmonic Legendre Curves in Sasakian space forms, Filomat, 31(3), 639-648, 2017.
[8] Maeta S., k-harmonic maps into a Riemannian manifold with constant sectional curvature, Proceedings of the American Mathematical Society, 140, 1835-1847, 2012.
[9] Ouakkas S., Nasri R., Djaa M., On the f-harmonic and f-biharmonic maps, JP Journal of Geometry and Topology, 10(1), 11-27, 2010.
[10] Özgür C., Güvenç Ş., On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collectanea Mathematica, 65, 203-218, 2014.
[11] Özgür C., Güvenç Ş., On biharmonic Legendre curves in S-space forms, Turkish Journal of Mathematics, 38, 454-461, 2014.
[12] Perktaş S.Y., Blaga A.M., Erdoğan F.E., Acet B.E., Bi-f-harmonic curves and hypersurfaces, Filomat, 33(16), 5167-5180, 2019.
[13] Yano K., Kon M., Structures on Manifolds: Series in Pure Mathematics, World Scientific Publishing Co., 1984.
[14] Zhao C.L., Lu W.J., Bi-f-harmonic map equations on singly warped product manifolds, Applied Mathematics-A Journal of Chinese Universities, 30(1), 111-126, 2015.

[^0]: *Correspondence: serife.nur.yalcin@ege.edu.tr 2020 AMS Mathematics Subject Classification: 53D15, 53C25, 53C43, 58E20

