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Abstract
This work studies the fourth-kind integral equation as a mixed system of first and second-
kind Volterra integral equations (VIEs) with constant delay. Regularity, smoothing prop-
erties and uniqueness of the solution of this mixed system are obtained by using theorems
which give the relevant conditions related to first and second-kind VIEs with delays. A
numerical collocation algorithm making use of piecewise polynomials is designed and the
global convergence of the proposed numerical method is established. Some typical numer-
ical experiments are also performed which confirm our theoretical result.

Mathematics Subject Classification (2020). 65R20, 45D05, 34K06

Keywords. fourth-kind integral equations, Volterra integral equations with constant
delay, piecewise polynomial collocation method, convergence analysis

1. Introduction
In this paper, we analyze the numerical solution of mixed system of first and second-kind

Volterra integral equations with (constant) delay τ > 0, given by
y(t) = f(t) + (ν11y)(t) + (ν12z)(t) + (ντ11y)(t) + (ντ12z)(t), t ∈ I,

0 = g(t) + (ν21y)(t) + (ν22z)(t) + (ντ21y)(t) + (ντ22z)(t), t ∈ I,
(1.1)

where I := [0, T ] and the Volterra integral operators νkl and the delay integral operator
ντkl are given by

(νklw)(t) =
∫ t

0
Kkl(t, s)w(s)ds,

(ντklw)(t) =
∫ t−τ

0
K̂kl(t, s)w(s)ds, k, l = 1, 2, t ∈ I,

with
y(t) = φ(t), z(t) = ϕ(t), t ∈ [−τ, 0).

Also, y, f : I → Rd1 , z, g : I → Rd2 , φ : [−τ, 0] → Rd1 , ϕ : [−τ, 0] → Rd2 , Kkk(., .),
K̂kk(., .) ∈ L(Rdk), K12(., .), K̂12(., .) ∈ L(Rd2 ,Rd1), K21(., .), K̂21(., .) ∈ L(Rd1 ,Rd2) are
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continuous functions and L(., .) is the linear transformation space.
The Volterra equations with delays are encountered in physical and biological modeling

processes [2, 12]. A historical survey of mathematical models in biology, which can be
described by Volterra integral equations with constant delays has been presented in the
monograph [6].

The numerical solutions of delay integral equations have been investigated by many
authors (see, for example, [1,3–7,10,11,16,17,19]). To the lest of our knowledge, numerical
analysis of mixed system (1.1) is new in the literature and there are a few available results
which investigate these systems numerically. Bulatov et al. [8, 9] considered the integral
equation

A(t)x(t) =
∫ t

t−τ
K(t, s)x(s)ds = f(t), t ∈ I,

with initial value
x(t) = x0(t), t ∈ [−τ, 0).

Here, A(t) and K(t, s) are sufficiently smooth n × n-matrices, τ > 0 is a known constant
and detA(t) ≡ 0. Sufficient conditions for the existence and uniqueness of a continuous
solution of this system were given. For more details see [8, 9] and reference therein.

Here we propose the numerical solution of the mixed system (1.1) based on piecewise
polynomial collocation methods that construct collocation solutions in a certain polyno-
mial spline space S−1

m−1(ΩN ), where ΩN represent a uniform partition of I. This is a linear
space of discontinuous polynomial spline functions of degree m − 1 whose dimension is
Nm [6]. The succeeding sections of this paper are organized as follows. In section 2,
we investigate regularity, smoothing properties and uniqueness of the solution of system
(1.1). In section 3, the collocation method based on piecewise polynomials is applied for
solving system (1.1) numerically and the global convergence of this method is established
in section 4. The paper concludes in section 5 by illustrating the efficiency of the method
on some numerical examples.

2. Regularity and smoothing properties of solution
Consider the semi-explicit system (1.1) and let | det(K22(t, t))| ≥ k0 > 0, ∀t ∈ I. By

differentiating the second equation of (1.1) with respect to t, substituting for y in the
resulting equation using the first equation and applying some elementary manipulations,
we get

z(t) = g̃(t) + (ν̃21y)(t) + (ν̃22z)(t) + (ν̃τ21y)(t) + (ν̃τ22z)(t)
+K̃21(t, t − τ)y(t − τ) + K̃22(t, t − τ)z(t − τ), (2.1)

where

g̃(t) = K−1
22 (t, t)

(
g′(t) + K21(t, t)f(t)

)
,

(ν̃21y)(t) = K−1
22 (t, t)

( ∫ t

0

(∂K21(t, s)
∂t

+ K21(t, t)K11(t, s)
)
y(s)ds

)
,

(ν̃22z)(t) = K−1
22 (t, t)

( ∫ t

0

(∂K22(t, s)
∂t

+ K21(t, t)K12(t, s)
)
z(s)ds

)
,

(ν̃τ21y)(t) = K−1
22 (t, t)

( ∫ t−τ

0

(∂K̂21(t, s)
∂t

+ K21(t, t)K̂11(t, s)
)
y(s)ds

)
,

(ν̃τ22z)(t) = K−1
22 (t, t)

( ∫ t−τ

0

(∂K̂22(t, s)
∂t

+ K21(t, t)K̂12(t, s)
)
z(s)ds

)
,

K̃21(t, t − τ) = K−1
22 (t, t)K̂21(t, t − τ),

K̃22(t, t − τ) = K−1
22 (t, t)K̂22(t, t − τ).

(2.2)
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Equation (2.1) together with the first equation of (1.1) are the same as the second kind
Volterra integral equations with constant delay given by

y(t) = f(t) + (ν11y)(t) + (ν12z)(t) + (ντ11y)(t) + (ντ12z)(t),

z(t) = g̃(t) + (ν̃21y)(t) + (ν̃22z)(t) + (ν̃τ21y)(t) + (ν̃τ22z)(t)
+K̃21(t, t − τ)y(t − τ) + K̃22(t, t − τ)z(t − τ).

(2.3)

The solution of system (2.3) is continuous at t = 0 only if the initial functions are such
that 

φ(0) = f(0) −
∫ 0

−τ
K̂11(0, s)φ(s)ds −

∫ 0

−τ
K̂12(0, s)ϕ(s)ds,

ϕ(0) = g̃(0) −
∫ 0

−τ
K̄21(0, s)φ(s)ds −

∫ 0

−τ
K̄22(0, s)ϕ(s)ds

+K̃21(0, −τ)φ(−τ) + K̃22(0, −τ)ϕ(−τ)

(2.4)

where K̄21(0, s) = K−1
22 (0, 0)K21(0, 0)K̂11(0, s) + ∂K̂21

∂t (0, s) and K̄22(0, s) = K−1
22 (0, 0)

K21(0, 0)K̂12(0, s) + ∂K̂22
∂t (0, s). The conditions of existence and uniqueness of solutions

related to the mixed system (1.1) can be investigated by considering the system (2.3) and
theorems about existence and uniqueness of the solution of second-kind Volterra integral
equations with non-vanishing delay (see [6, Theorem 4.1.1]). Note that using differentia-
tion, we reduce system (1.1) to a regular system of integral equations of the second-kind.
However, this reduction to a second-kind Volterra system is not practical from a numerical
point of view.

3. Numerical method
Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of I := [0, T ], such that

tn = nh, n = 0, ..., N and ΩN := {t0, t1, · · · , tN = T}, σ0 := [t0, t1], σn := (tn, tn+1] (1 ≤
n ≤ N − 1). The mesh ΩN is assumed to be constrained( i.e, h = τ

r for some r ∈ N ).
Consider the set of collocation parameters {cj}m

j=1, where 0 < c1 < · · · < cm ≤ 1, and
define the set XN = {tn,j = tn + cjh} of the collocation points.

Definition 3.1. For a given mesh ΩN the piecewise polynomial space S
(d)
µ (ΩN ), with

µ ≥ 0, −1 ≤ d < µ is given by
S(d)

µ (ΩN ) := {w ∈ Cd(I) : w|σn ∈ πµ, 0 ≤ n ≤ N − 1}.

Here, πµ denotes the space of (real) polynomials of degree not exceeding µ and Cd(I) as
the set of all the functions on I, which together with their derivatives of orders up to d.
It is readily verified that S

(d)
µ (ΩN ) is a (real) linear vector space whose dimension is given

by dim S
(d)
µ (ΩN ) = N(µ − d) + d + 1.

The collocation solution u, v ∈ S
(−1)
m−1(ΩN ), (µ = m−1, d = −1) to equation (1.1) is then

given by 

u(t) = f(t) +
∫ t

0
K11(t, s)u(s)ds +

∫ t

0
K12(t, s)v(s)ds

+
∫ t−τ

0
K̂11(t, s)u(s)ds +

∫ t−τ

0
K̂12(t, s)v(s)ds,

0 = g(t) +
∫ t

0
K21(t, s)u(s)ds +

∫ t

0
K22(t, s)v(s)ds

+
∫ t−τ

0
K̂21(t, s)u(s)ds +

∫ t−τ

0
K̂22(t, s)v(s)ds, t ∈ XN ,

(3.1)
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with

u(t) = φ(t), v(t) = ϕ(t), t ∈ [−τ, 0).

If t = tn,j is such that tn,j − τ = tn−r,j < 0, the values of u, v are determined by the given
initial functions. On each subinterval σn, the approximations u, v are the polynomials of
degree m − 1 and can be expressed in the form

u(tn + ρh) =
m∑

j=1
Un,jLj(ρ), (3.2)

v(tn + ρh) =
m∑

j=1
Vn,jLj(ρ), (3.3)

where Un,j = u(tn + cjh), Vn,j = v(tn + cjh) and Lj(ρ) represents the Lagrange canonical
polynomials for the collocation parameters {cj}. Let us apply the change of variable
ρ = (s − ti)/h, (i = 0, ..., n), and insert (3.2), (3.3) into system (3.1). There are two cases
that we deal with separately.

Case I: If n − r < 0, then

Un,j = f(tn,j) + h
n−1∑
i=0

m∑
k=1

( ∫ 1

0
K11(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−1∑
i=0

m∑
k=1

( ∫ 1

0
K12(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K11(tn,j , tn + ρh)Un,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K12(tn,j , tn + ρh)Vn,kLk(ρ)dρ

)
−h

−1∑
i=n−r+1

( ∫ 1

0
K̂11(tn,j , ti + ρh)φ(ti + ρh)dρ

)
−h

−1∑
i=n−r+1

( ∫ 1

0
K̂12(tn,j , ti + ρh)ϕ(ti + ρh)dρ

)
−h

∫ 1

cj

K̂11(tn,j , tn−r + ρh)φ(tn−r + ρh)dρ

−h

∫ 1

cj

K̂12(tn,j , tn−r + ρh)ϕ(tn−r + ρh)dρ,

(3.4)
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0 = g(tn,j) + h
n−1∑
i=0

m∑
k=1

( ∫ 1

0
K21(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−1∑
i=0

m∑
k=1

( ∫ 1

0
K22(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K21(tn,j , tn + ρh)Un,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K22(tn,j , tn + ρh)Vn,kLk(ρ)dρ

)
−h

−1∑
i=n−r+1

( ∫ 1

0
K̂21(tn,j , ti + ρh)φ(ti + ρh)dρ

)
−h

−1∑
i=n−r+1

( ∫ 1

0
K̂22(tn,j , ti + ρh)ϕ(ti + ρh)dρ

)
−h

∫ 1

cj

K̂21(tn,j , tn−r + ρh)φ(tn−r + ρh)dρ

−h

∫ 1

cj

K̂22(tn,j , tn−r + ρh)ϕ(tn−r + ρh)dρ.

(3.5)

Case II: If n − r ≥ 0, then

Un,j = f(tn,j) + h
n−1∑
i=0

m∑
k=1

( ∫ 1

0
K11(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−1∑
i=0

m∑
k=1

( ∫ 1

0
K12(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K11(tn,j , tn + ρh)Un,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K12(tn,j , tn + ρh)Vn,kLk(ρ)dρ

)
+h

n−r−1∑
i=0

m∑
k=1

( ∫ 1

0
K̂11(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−r−1∑
i=0

m∑
k=1

( ∫ 1

0
K̂12(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K̂11(tn,j , tn−r + ρh)Un−r,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K̂12(tnj , tn−r + ρh)Vn−r,kLk(ρ)dρ

)
,

(3.6)



Piecewise polynomial numerical method for Volterra integral equations 79

0 = g(tn,j) + h
n−1∑
i=0

m∑
k=1

( ∫ 1

0
K21(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−1∑
i=0

m∑
k=1

( ∫ 1

0
K22(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K21(tn,j , tn + ρh)Un,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K22(tn,j , tn + ρh)Vn,kLk(ρ)dρ

)
+h

n−r−1∑
i=0

m∑
k=1

( ∫ 1

0
K̂21(tn,j , ti + ρh)Ui,kLk(ρ)dρ

)
+h

n−r−1∑
i=0

m∑
k=1

( ∫ 1

0
K̂22(tn,j , ti + ρh)Vi,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K̂21(tn,j , tn−r + ρh)Un−r,kLk(ρ)dρ

)
+h

m∑
k=1

( ∫ cj

0
K̂22(tn,j , tn−r + ρh)Vn−r,kLk(ρ)dρ

)
.

(3.7)

Approximating the integrals in the obtained system by using appropriate quadrature
rules ∫ ci

0
w(s) ≈

m∑
j=1

aijw(cj),
∫ 1

0
w(s) ≈

m∑
j=1

bjw(cj),
∫ 1

ci

w(s) ≈
m∑

j=1
ãijw(cj)

where ãij =
∫ 1

ci

Lj(ρ)dρ, aij =
∫ ci

0
Lj(ρ)dρ, bj =

∫ 1

0
Lj(ρ)dρ. For n such that n − r < 0,

we get 

Un = fn + K11Un + K12Vn +
n−1∑
i=0

(
K11iUi + K12iVi

)
−

−1∑
i=n−r+1

(
K̂11iφi + K̂12iϕi

)
− K̃11φn−r − K̃12ϕn−r,

0 = gn + K21Un + K22Vn +
n−1∑
i=0

(
K21iUi + K22iVi

)
−

−1∑
i=n−r+1

(
K̂21iφi + K̂22iϕi

)
− K̃21φn−r − K̃22ϕn−r,

(3.8)

and for n such that n − r ≥ 0, we have

Un = fn + K11Un + K12Vn +
n−1∑
i=0

(
K11iUi + K12iVi

)
+

n−r−1∑
i=0

(
K̂11iUi + K̂12iVi

)
+ K̂11Un−r + K̂12Vn−r,

0 = gn + K21Un + K22Vn +
n−1∑
i=0

(
K21iUi + K22iVi

)
+

n−r−1∑
i=0

(
K̂21iUi + K̂22iVi

)
+ K̂21Un−r + K̂22Vn−r,

(3.9)
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where

φi =
(
φ(ti + c1h), . . . , φ(ti + cmh)

)T
, ϕi =

(
ϕ(ti + c1h), . . . , ϕ(ti + cmh)

)T
,

Ui =
(
Ui,1, . . . , Ui,m

)T
, Vi =

(
Vi,1, . . . , Vi,m

)T
,

and

fn =
(
f(tn,1), . . . , f(tn,m)

)T
, gn =

(
g(tn,1), . . . , g(tn,m)

)T
,

Kpq = {hKpq(tn,i, tn,j)aij}m
i,j=1, Kpqi = {hblKpq(tn,k, ti,l)}m

k,l=1,

K̂pq = {hK̂pq(tn,i, tn−r,j)aij}m
i,j=1, K̂pqi = {hblK̂pq(tn,k, ti,l)}m

k,l=1,

K̃pq = {hK̂pq(tn,i, tn−r,j)ãij}m
i,j=1, p, q = 1, 2,

The collocation approximations (3.2) and (3.3) are obtained by solving the linear sys-
tems (3.8) and (3.9) on each subinterval σn, n = 0, · · · , N − 1.

4. Convergence
In this section, based on the interpolation error, we analyze the collocation error, and

deduce the global convergence result below.

Theorem 4.1. Assume that the given functions in (1.1) for D = {(t, s) : 0 ≤ s ≤
t ≤ T}, and Dτ = I × [−τ, T − τ ] satisfy f ∈ Cm(I), φ, ϕ ∈ Cm([−τ, 0]), K11, K12 ∈
Cm(D), K̂11, K̂12 ∈ Cm(Dτ ), g ∈ Cm+1(I), K21, K22 ∈ Cm+1(D), K̂21, K̂22 ∈ Cm+1(Dτ )
and |K22(t, t)| ≥ k0 > 0, ∀t ∈ I. Let (u, v) ∈ S−1

m−1(ΩN ) be the collocation approximation of
the solution (y, z) in equation (1.1) which is defined by (3.2) and (3.3). If (0 < cm ≤ 1), the
collocation approximation u converges to the solution y for −1 ≤ λ ≤ 1 and the following
order of convergence holds:

||y − u||∞ = O(hm).
If cm = 1, the collocation approximation v converges to the solution z, and if cm < 1,

the collocation approximation v converges to the solution z for any m ≥ 1 if and only if

−1 ≤ λ = (−1)m
m∏

i=1

1 − ci

ci
≤ 1.

Furthermore, the following order of convergence holds:

||z − v||∞ =
{

O(hm), if λ ∈ [−1, 1),
O(hm−1), if λ = 1,

(4.1)

as h → 0 with Nh ≤ const.

Proof. The exact solutions y and z satisfy

y(tn + ρh) =
m∑

j=1
Lj(ρ)Yn,j + rn(ρ), rn(ρ) = hm y(m)ηn(ρ)

m!
m∏

i=1
(ρ − ci),

z(tn + ρh) =
m∑

j=1
Lj(ρ)Zn,j + sn(ρ), sn(ρ) = hm z(m)ςn(ρ)

m!
m∏

i=1
(ρ − ci),

(4.2)

where Yn,j = y(tn + cjh) and Zn,j = z(tn + cjh). It follows that the errors e = y − u and
ε = z − v have the representation

en(tn + ρh) =
m∑

j=1
Lj(ρ)en(tn,j) + O(hm), (4.3)
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εn(tn + ρh) =
m∑

j=1
Lj(ρ)εn(tn,j) + O(hm). (4.4)

where en = e|σn and εn = ε|σn . The errors also satisfy



en(tn,j) =
∫ tn,j

0
K11(tn,j , s)en(s)ds +

∫ tn,j

0
K12(tn,j , s)εn(s)ds

+
∫ tn,j−τ

0
K̂11(tn,j , s)en(s)ds +

∫ tn,j−τ

0
K̂12(tn,j , s)εn(s)ds,

0 =
∫ tn,j

0
K21(tn,j , s)en(s)ds +

∫ tn,j

0
K22(tn,j , s)εn(s)ds,

+
∫ tn,j−τ

0
K̂21(tn,j , s)en(s)ds +

∫ tn,j−τ

0
K̂22(tn,j , s)εn(s)ds.

(4.5)

If tn,j − τ < 0, then



en(tn,j) = h
n−1∑
l=0

∫ 1

0

(
K11(tn,j , tl + sh)el(tl + sh) + K12(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K11(tn,j , tn + sh)en(tn + sh) + K12(tn,j , tn + sh)εn(tn + sh)

)
ds,

0 = h
n−1∑
l=0

∫ 1

0

(
K21(tn,j , tl + sh)el(tl + sh) + K22(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K21(tn,j , tn + sh)en(tn + sh) + K22(tn,j , tn + sh)εn(tn + sh)

)
ds.

(4.6)
Considering (4.6) and using a similar procedure as outlined in [18] (see section 3 of

[18]), we can obtain the estimates of the error stated in the theorem. Now let tn,j − τ ≥ 0.
Then from (4.5), we have

en(tn,j) = h
n−1∑
l=0

∫ 1

0

(
K11(tn,j , tl + sh)el(tl + sh) + K12(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K11(tn,j , tn + sh)en(tn + sh) + K12(tn,j , tn + sh)εn(tn + sh)

)
ds

+h
n−r−1∑

l=0

∫ 1

0

(
K̂11(tn,j , tl + sh)el(tl + sh) + K̂12(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K̂11(tn,j , tn−r + sh)en−r(tn−r + sh) + K̂12(tn,j , tn−r + sh)εn−r(tn−r + sh)

)
ds,

(4.7)

0 = h
n−1∑
l=0

∫ 1

0

(
K21(tn,j , tl + sh)el(tl + sh) + K22(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K21(tn,j , tn + sh)en(tn + sh) + K22(tn,j , tn + sh)εn(tn + sh)

)
ds,

+h
n−r−1∑

l=0

∫ 1

0

(
K̂21(tn,j , tl + sh)el(tl + sh) + K̂22(tn,j , tl + sh)εl(tl + sh)

)
ds

+h

∫ cj

0

(
K̂21(tn,j , tn−r + sh)en−r(tn−r + sh) + K̂22(tn,j , tn−r + sh)εn−r(tn−r + sh)

)
ds.

(4.8)
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We now rewrite (4.8) with n replaced by n − 1 and j = m, subtract this equation from
(4.8) and divide by h, to obtain∫ cj

0

(
K21(tn,j , tn + sh)en(tn + sh) + K22(tn,j , tn + sh)εn(tn + sh)

)
ds =∫ cm

0

(
K21(tn−1,m, tn−1 + sh)en−1(tn−1 + sh) + K22(tn−1,m, tn−1 + sh)εn−1(tn−1 + sh)

)
ds

−
n−1∑
l=0

∫ 1

0

(
K21(tn,j , tl + sh)el(tl + sh) + K22(tn,j , tl + sh)εl(tl + sh)

)
ds

+
n−2∑
l=0

∫ 1

0

(
K21(tn−1,m, tl + sh)el(tl + sh) + K22(tn−1,m, tl + sh)εl(tl + sh)

)
ds

−
n−r−1∑

l=0

∫ 1

0

(
K̂21(tn,j , tl + sh)el(tl + sh) + K̂22(tn,j , tl + sh)εl(tl + sh)

)
ds

+
n−r−2∑

l=0

∫ 1

0

(
K̂21(tn−1,m, tl + sh)el(tl + sh) + K̂22(tn−1,m, tl + sh)εl(tl + sh)

)
ds

−
∫ cj

0

(
K̂21(tn,j , tn−r + sh)en−r(tn−r + sh) + K̂22(tn,j , tn−r + sh)εn−r(tn−r + sh)

)
ds

+
∫ cm

0

(
K̂21(tn−1,m, tn−1−r + sh)en−1−r(tn−1−r + sh)

+K̂22(tn−1,m, tn−1−r + sh)εn−1−r(tn−1−r + sh)
)
ds.

(4.9)
Now, without loss of generality, we consider the following two cases:

Case I. If cm = 1, then for j = 1, · · · , m

Kpq(tn,j , tl + sh) − Kpq(tn−1,m, tl + sh)
= cjhKpq,t(tn, tl + sh) + (1 − cm)hKpq,t(tn, tl + sh) + O(h),

K̂pq(tn,j , tl + sh) − K̂pq(tn−1,m, tl + sh)
= cjhK̂pq,t(tn, tl + sh) + (1 − cm)hK̂pq,t(tn, tl + sh) + O(h), p, q = 1, 2,

(4.10)

where Kpq,t(, ) = ∂Kpq

∂t
and the unspecified first arguments in the partial derivatives

of Kpq, p, q = 1, 2, are those arising in the Taylor’s remainder terms. Using (4.10) and
inserting (4.3), (4.4) into equations (4.7), (4.9), the following linear system can be derived

A(n,n)En = h
n−1∑
l=0

B(n,l)El + h
n−r−1∑

l=0
C(n,l)El + D(n,n−r)En−r + O(hm), (4.11)

where En =
(

en

εn

)
, en = (e(tn1), . . . , e(tnm))T , and εn = (ε(tn1), . . . , ε(tnm))T , and

A(n,n) =
(

I − hK
(n,n)
11 −hK

(n,n)
12

K
(n,n)
21 K

(n,n)
22

)
,

B(n,l) =
(

B
(n,l)
11 B

(n,l)
12

B̃
(n,l)
21 B̃

(n,l)
22

)
, C(n,l) =

(
C

(n,l)
11 C

(n,l)
12

C̃
(n,l)
21 C̃

(n,l)
22

)
,

D(n,n−r) =
(

hK̂
(n,n−r)
11 hK̂

(n,n−r)
12

−K̂
(n,n−r)
21 −K̂

(n,n−r)
22

)
,

such that for p, q = 1, 2

K(n,n)
pq =

 ∫ cj

0
Kpq(tnj , tn + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,
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K̂(n,n−r)
pq =

 ∫ cj

0
K̂pq(tnj , tn−r + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,

B(n,l)
pq =

 ∫ 1

0
Kpq(tnj , tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,

B̃(n,l)
pq =

 ∫ 1

0
cj

∂Kpq

∂t
(tn, tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,

C(n,l)
pq =

 ∫ 1

0
K̂pq(tnj , tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,

C̃(n,l)
pq =

 ∫ 1

0
cj

∂K̂pq

∂t
(tn, tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 .

Since |(K22(t, t))| ≥ k0 > 0, the inverse of the matrix A(n,n) exists and is bounded if h
is sufficiently small. It then follows from (4.3), (4.4) and Gronwall’s inequality that

‖en‖∞ = O(hm), ‖εn‖∞ = O(hm).
Case II. cm < 1
In order to describe the key ideas without having to resort to complex notation, we can

assume that K22(t, s) = 1 or we can employ the Taylor series expansion K22 as:

K22(tn,i, tl + sh) = K22(tn, tl) + O(h), (l = 0, · · · , n).
Using (4.10) and inserting (4.3), (4.4) into the equations (4.7), (4.9), we have

Â(n,n)En = B̂(n,n−1)En−1 + h
n−2∑
l=0

B̃(n,l)El + h
n−r−2∑

l=0
C̃(n,l)El

+Ĉ(n,n−r−1)En−r−1 + D(n,n−r)En−r + O(hm),

(4.12)

where

Â(n,n) =
(

I − hK
(n,n)
11 −hK

(n,n)
12

K
(n,n)
21 P

)
,

B̂(n,n−1) =
(

hK
(n,n−1)
11 hK

(n,n−1)
12

K21(tn−1, tn−1)S + O(h) Q

)
,

B̃(n,l) =
(

B
(n,l)
11 B

(n,l)
12

B̆
(n,l)
21 B̆

(n,l)
22

)
, C̃(n,l) =

(
C

(n,l)
11 C

(n,l)
12

C̆
(n,l)
21 C̆

(n,l)
22

)
,

Ĉ(n,n−r−1) =
(

C
(n,n−r−1)
11 C

(n,n−r−1)
12

K̂21(tn−1, tn−1)S + O(h) K̂22(tn−1, tn−1)S + O(h)

)
,

with S = ΓmΥT
mP − Γmb,

Γm = (1, 1, · · · , 1)T , Υm = (0, 0, · · · , 1)T , b = (b1, b2, · · · , bm)T

P =

 ∫ ci

0
Lj(s)ds

i, j = 1, · · · , m

 , Q =

 −
∫ 1

cm

Lj(s)ds

i, j = 1, · · · , m

 ,

B̆(n,l)
pq =

 ∫ 1

0
(cj + (1 − cm))∂Kpq

∂t
(tn, tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 ,
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C̆(n,l)
pq =

 ∫ 1

0
(cj + (1 − cm))∂K̂pq

∂t
(tn, tl + ρh)Lk(ρ)dρ

j, k = 1, · · · , m

 .

It can be verified that the inverse of the matrix Â(n,n) has the form

(Â(n,n))−1 =
(

I + O(h) O(h)
K̃

(n,n)
21 P −1

)
,

provided h is sufficiently small in which case we also have

(Â(n,n))−1B̂(n,n−1) =
(

O(h) O(h)
P −1S + O(h) P −1Q + O(h)

)
.

According to Lemma 2.4.3 of Brunner [6], we know that P −1Q has a nontrivial eigen-
value as

λ = (−1)m
m∏

i=1

1 − ci

ci
. (4.13)

Multiplying (4.12) by (Â(n,n))−1, using the elementary theory of the difference equations
[13] and considering the nontrivial eigenvalue of P −1Q by (4.13), we can conclude with
the assertion (4.1) following the steps in [14,18] with the help of Lemma 6 of [15]. �

5. Numerical Results
In this section, we illustrate the theoretical results obtained in the previous section

by the following two examples with τ = 1
2 . All computations are performed with the

Mathematicar software.

Example 5.1. Consider the mixed system of first and second-kind Volterra integral equa-
tions with constant delay given by

y(t) = f(t) +
∫ t

0
es−ty(s)ds +

∫ t

0
(t + s)z(s)ds

+
∫ t− 1

2

0
t sin sy(s)ds +

∫ t− 1
2

0
tsz(s)ds,

0 = g(t) +
∫ t

0
es+ty(s)ds +

∫ t

0
(s + t2 + 1)z(s)ds

+
∫ t− 1

2

0
sin sy(s)ds +

∫ t− 1
2

0
(ts + 3)z(s)ds, t ∈ [0, 1],

y(t) = sin t + 1, z(t) = cos t, t ∈ [−1
2 , 0),

(5.1)

where f(t) and g(t) such that the exact solution is:

y(t) = sin t + 1, z(t) = cos t.

Let (u, v) ∈ S−1
m−1(ΩN ) be the collocation approximation of the solution (y, z) for the

equation in (5.1) which is defined by (3.2) and (3.3). Gauss points (i.e., the zeros of
Pm(2s − 1) in which Pm denotes the Legendre polynomial of degree m) are chosen as
collocation parameters. Orders of convergence from the maximum errors at the grid points
have been reported in Table 1 which confirm the theoretical results of Theorem 4.1. The
error behaviors related to the spline collocation method for the different values of m and
N in Examples 1 are shown in Figures 1 and 2.
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Remark 5.2. Note that for the Gauss points as collocation parameters, we have cm < 1
and λ = 1 (if m is even), λ = −1 (if m is odd). Also, the order of convergence p defined
as follows

p := log2

( ‖eN ‖∞
‖e2N ‖∞

)
.

Example 5.3. Consider the mixed system with constant delay given by
AX(t) = F (t) +

∫ t

0
K(t, s)X(s)ds +

∫ t− 1
2

0
K̂(t, s)X(s)ds, t ∈ [0, 1],

X(t) = (e−t(t + 1), cos(t + 1), et)T , t ∈ [−1
2 , 0),

(5.2)

where

A =

 1 0 0
0 1 0
0 0 0

 , K(t, s) =

 s − t t + s + 2 s + t2

s + t sin(t + 1) s + t
1 + t2 cos t es+t

 ,

K̂(t, s) =

 s2t t3 + 1 1 + t
t2s (t + 1) s + t + 1
tes cos s es+t+2

 , X(t) =
(

x(t), y(t), z(t)
)T

,

F (t) = (f(t), g(t), h(t))T such that the exact solution is:
x(t) = e−t(t + 1), y(t) = cos(t + 1), z(t) = et.

Let u1, u2, v be the approximation of the exact solutions x, y, z, respectively. The spline
collocation method has been implemented for system (5.2)and the orders of convergence
have been reported in Table 2.

5.1. Figures and Tables

Figure 1. Point-wise absolute errors of y with m = 2 in Example 1 (left). Point-
wise absolute errors of z with m = 2 in Example 1 (right).
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Figure 2. Point-wise absolute errors of y with m = 3 in Example 1 (left). Point-
wise absolute errors of z with m = 3 in Example 1 (right).

u v

m N=16 N=32 N=64 N=16 N=32 N=64
2 1.91 1.95 1.97 0.94 0.97 0.98
3 2.97 2.98 2.99 2.94 2.97 2.98

Table 1. Orders of convergence of u and v in Example 1.

u1 u2 v

m N=16 N=32 N=64 N=16 N=32 N=64 N=16 N=32 N =64
2 2.68 2.53 2.03 1.95 1.98 1.99 0.86 0.93 0.97
3 3.76 3.46 3.03 3.15 3.09 3.04 2.97 2.98 2.99

Table 2. Order of convergence of u1, u2 and v in Example 2.
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