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Abstract

In this paper we treat the 3D stochastic incompressible generalized rotating magnetohydrodynamics equa-

tions. By using littlewood-Paley decomposition and It6 integral, we establish the global well-posedness result
L5 30

for small initial data (uo,bg) belonging in the critical Fourier-Besov-Morrey spaces FNJ 3a+2 (R3). In ad-

dition, the proof of local existence is also founded on a priori estimates of the stochastic parabolic equation

and the iterative contraction method.
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1. Introduction

We introduce the Stochastic generalized magnetohydrodynamic equations (SGMDC) with the Coriolis
force in the whole space R?

up 4 u - Vu + p(=A)u + Sez x u —b-Vb+Vr = fW in Q x (0, +00) x R3,

b +u-Vb+v(=A)b—b-Vu=gW in Q x (0,+00) x R3, )
V-u=0, V-b=0,

(1, b)|t=0 = (uo, bo),
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where the unknowns are the random vector fields v = u(w,t,z), b = b(w,t,z) and the random scalar field
m™=P+ %]b|2 which respectively denote the fluid velocity, the magnetic field and the total fluid pressure,
v > 0 is the magnetic diffusivity, ¢ > 0 is the viscosity, V-« = 0 and V - b = 0 are the incompressible
conditions, S € R denotes twice the speed of rotation around the vertical vector es = (0,0, 1), and fW and
gW are random external forces; W is a Wiener process of infinite dimension. The equation (1) is a system
of equations which controls the motion of electrically conducting fluids, such as plasma. The equation (1) is
understood in the It6 sense. It is constructed by combining the Maxwell and Navier—Stokes equations and
serves a real interest in the fields of geophysics, astrophysics, cosmology, plasma physics and several other
branches of applied science.

First, we will notice that in the deterministic case, i.e. when f = g = 0, the equation (1) becomes the
generalized magnetohydrodynamic equations with Coriolis force which is employed to show why the earth
has a non-zero large-scale magnetic field whose polarity reverses over several hundred centuries when o = 1.
For this topic, we invite the reader to consult [2] and the references therein. Let us take the time to briefly
mention some recent results in this direction; Wang and Wu [10] realized in the first the global well-posedness
and Gevrey class regularity of the solution of the generalized rotating magnetohydrodynamics equations if
the initial data are in the Lei-Lin space X172% with a € [%, 1].

For the stochastic case, we refer to |8] for results associated to the existence and uniqueness of the global
solution to the stochastic magnetohydrodynamic equation in the framework of Besov spaces when o = 1
and S = 0. The papers [1] offer several results related to the identification of the regularity of the driving
noises and conditions on « for which the existence of a martingale solution of the fractional stochastic
magnetohydrodynamic system with (—=A)® a > 0, in R% d = 2,3 when S = 0, is proven.

When b =0, S # 0 and g = 0, the system (1) is thus reconciled to the stochastic rotating Navier—Stokes
equation ruled by an additive white noise. About this topic, Wang [9] studied the spatial analyticity and
uniqueness of the global mild solution, including when a stochastic external force is high and as well as
when initial data is essentially arbitrarily large, since the speed of the rotation is fast enough. Wang and
Wu [11] investigated 1t6 integral and Littlewood—Paley theory to guarantee the well-posedness of stochastic
Navier—Stokes equations with Coriolis force in Fourier-Besov spaces FB’ . and their corresponding results
in the deterministic case.

The purpose of this work is to establish the uniform global and local existence of the solution to the

3D Stochastic generalized rotating magnetohydrodynamic equations (1) in the FBM-space ( Fourier-Besov-

4—20+2=2
Morrey space ) }"J\/' T (R3) with sufficiently small initial data. In fact, this space covers many classical

p,q’

spaces, like some spemal cases, e.g. the Lei-Lin’s space X*® = fj\fi 0,1, the Fourier-Herz space BS = ]-"./\/'i 0.

and the Fourier-Besov-Lebesgue space FB = FN 0,q- Inspired by the results [11, 9], we show the uniform
global existence by meaning that the 1n1t1a1 data is 1ndependent of the speed of rotation S. More precisely,

this paper extends the results of existence of the solution of the stochastic rotating Navier—Stokes equation
1-2043
P

given in [11] in the Fourier-Besov-Lebesgue space FB, to the results of existence of the solution of 3D

_2a +)\73
stochastic generalized rotating magnetohydrodynamic in the Fourier Besov-Morrey spaces FN Ag P (R3).

Throughout this paper, we use FBM-space to designate Fourier-Besov-Morrey space, C is the constant that
can be different depending on the place.

Before putting forward our result, we first introduce the corresponding generalized Stokes-Coriolis semi-
group. In particular, we study the following linear Stokes problem with the Coriolis force

ug + p(—=A)% + Sez x u + Vr =0, in [0, +00) x R3,
V.u =0, (2)
uw(0,7) = up(z), = €R3.

The solution of the equation (2) is obtainable from the generalized Stokes-Coriolis semigroup G |7, 12, 10],
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which is expressed as

Gsa(t)u = ]:_1[(305( f%t)l + sin(S 53

€l €]

where u is the divergence-free vector fields, ¢t > 0, I stands for the identity matrix in R® and R(£) represents
the skew-symmetric matrix symbol of the Riesz transform, as follows

1 (0 & —&
RE) =7 - 0 &1
€l & —& 0

In order to present our main result, we give the sense of a mild solution of (1).

HR(E)] * (e )y

Definition 1.1. Let (Q,F, {Ft}te[o,T} ,P) be a filtered probability space with the expectation E and T > 0.
We designate by M the smallest o -algebra of Fy -adapted distribution processes f defined on Qx[0,T] x R™
which are progressively measurable; more precisely f(w,t,-) € Fy x B([0,t]), for all t € [0,T].

Definition 1.2. Let (Q,F,P7 (Ft)

>0 W) be a fized probability basis. the divergence free process ( Z ) s a

global mild solution of problem (1), if ( Z((:) )) ) € LH(FN 4“‘”7) A M, for all t > 0 such that
() =Asalt) /Asat—s (f)dW
) /0 Asalt = B( G (00 7o e ) s 3)
where Ag o(t) = ( Gs@(té OQ,,,a(t) ) and Qualt) = e VD = F1(viERo),

Definition 1.3. For a fized probability basis (Q,F,P,{Ft}te[oﬂ ,W), a divergence free process ( Z ) s a

J’_i

local solution of (1), if there ezists a positive random time 7, such that ( Z J(w) € LA (]:N 7 )NM;

A
and satisfies the relation

() =Asalt)( /Asat—s (f)dW
—/ Asalt — sHp( 3 @®U=b8B) Yy
0

V- (u®b—-b®u)
P-a.s., for any t € [0, 7].

We are now able to state our two main results of this work.

Theorem 1.4. Let 0 < A < 3,1 < ¢ < 400 and 2/3 < a < (7T+ N)/6. Let (Q, F,P,{Fi}ocycr, W)
be a probability basis. Assume that ug,by are Fo measurable, small enough with V -ug = V - by = 0, and
frg € Mrp. Suppose that for any nonnegative S and for any positive T,

f {
1+T
1+ | ( g ) HE;‘ZL‘l (}.Ng;zwg) +1( bo ) H (]_.Ng;ia+*)< Fo0.
Then there ea:ist a random set Q0 with positive probability and a unique global mild solution of equation (1)

A N
mL4(0 T; .7-'./\/’2)\2 +2) for all w € Q.
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Theorem 1.5. Under the assumptions of Theorem 1.4. If there is a positive constant K such that

uo
Hfléli‘l (FNE;ia+%) + H ( bO ) HL4 (_FNQQ;?ZO‘+%)< K

a+7) | (4

then there em'st a random set Q with positive probability, a random time 7(w) > 0, and a process (u,b) €

L (]—'NQQ/\ qa+ )N M, for allw € Q, and (u,b) is a local solution of equation (1).

Remark 1.6. When b =0 and A =0, Wang and Wu [11] obtained the same result in the space FB;q(Rs) =
.7:./\'/';0,(1(R3). In fact, Theorem 1.4 extends the global existence results of the solution of the stochastic

.5_3
rotating Navier—Stokes equation in the Fourier Besov-Lebesque space FBiq 2% to the results of existence of

the solution of 8D stochastic generalized rotating magnetohydrodynamic in the Fourier Besov-Morrey spaces
]:NQ a+2(]R3). The proof of Theorem 1.4 is based on two methods, that is, the use of the dissipative
equatzon and the classical semi-group approach.

In order to prove Theorem 1.5, we apply an iterative contraction method, so that the solution is exactly

A
the limit in the space .7-"./\/'2 zat3 2 of the considered Picard sequence.

2. Preliminaries

This section briefly gives some notations and specifies the fundamental properties of FBM-spaces that
are constructed using a Fourier variable localization method on known Morrey spaces. For 1 < p < oo,
0 < X\ < n, the Morrey spaces M;} = M;}(R”) are the set of functions f € L} (R™) such that

A
[ fllvy = sup supr # || f|| o (B(ar)) < 00, (4)
P zeRn r>0

where B(x,r) is the ball in R™ with center = and radius r.
Next, let us recall briefly the definition of the Littlewood-Paley decomposition. More precisely, we take
x and ¢ two nonnegative smooth radial functions such that

supp C (£ €R": S <e] < %}, Sp2e =1, £eR\{0},
JEZ

supp x C {6 € R™ : [¢] < O+ p27¢) =1, {eR".
j=>0

We denote the set of all polynomials on R by P and we designate ¢;(£) = ¢(277¢). S’ is the space of
tempered distributions.
Let us insert some standard localization operators, such as,

Byu=(5") xu=p@ Dju=2" [ h@iy)u(s - y)dy,

Sju = Z Agu = x (27 jD)u—Qj”/iz(ij)u(:L‘—y)dy,

k<j—1

where h = F ' and h = F1y.
Let s e R, 1 <p<+00,1<g< 400,and 0 < A < n. TheFBMspace]—"J\/ 2q(R™) is the set of all
distributions u € S’'(R™)/P, such that ¢;u € Mp, for all j € Z, and

. . 1/q
{S2wpall} " for g<o,
JEL »
sup27*|| ;g for q=o0
JEZL

HUH}‘N;AM(R") =
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Besides, for 1 < p < ocoand T € (0, 0], the space ig(FN;)\7q) is defined as the set of tempered distributions
in (R x R™)/P with respect to the norm

s 1/q
lut, @)l zp e | ) = {sz 1A all? o MA)} < oo,
JEZ

with the usual modification for ¢ = +oc.
The following lemma is consecrated to give Young’s inequality and Bernstein’s type inequality associated
to Morrey spaces.

Lemma 2.1. /3, Lemma 2.1] Let 1 < p1,pa < 00 and 0 < Aj, Ag < n.
1. Assume that h € L' and g € M), then

p1’
1 gllype < IRl 21 lglly (5)

2. Let 1 < py <p1 < o0 such that
n—/\1 <n—)\2

n b2
If supp(h) C {&€ € R™ : |¢| < A2™} then there is a constant C > 0 independent of h and m such that

n— AQ n—kl

. ’\ m|B|+m T
1(6€)Rllypy < G2 Ml (6)

where B is a multi-index and m € Z.
Now, let us define the Chemin-Lerner type space of Bochner.

Definition 2.2. Let 1 < p, 0 < 00,1 < ¢q,p < 00,5 € R and T > 0. Chemin-Lerner type space of Bochner

LyLh FN;/\Q(R”) is defined as the space of distribution process u € My such that u(w,t) € S'(R")/P, P

-a.8. and the quasinorm

| 2B st lloni) ) Hisery  for a< o,

Plig 580 = sup2 (B 0) ) for q=oc
jGZ Tp

al=

18 finite.

3. Linear and Bilinear Estimates

In this section, we start by giving the linear nonhomogeneous dissipative equation

{ut + (=) = h(t,x) (t,2) € RT xR?
u(0,z) = up(z) = € R3,

and we give the following lemma.

Lemma 3.1. Let s € R,0 < T < 00,0 <A< 31<p<oo, andl < q,p < oo. Ifuoe}"./\/

S— 2a+
and h € L (]-"./\/'p/\q ?), then the Cauchy problem (7) admils a unique solution u(t,x) such that for all
p1 € [p, +o9
] wza S Clluollzxes IR za s, ).
N e D b

Besides, if ¢ < +o00, then v € C([0,T); ‘FN;)\,q)'
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Proof. The proof of the lemma 3.1 is very similar to the one shown in [13, Lemma 2.3] with minor modifi-
cations.
Now, we recall some useful lemmas which we will use in the sequel.

Lemma 3.2. [4, Lemma 10] Assume that 0 < T < 00,0 < A < 3,1 <p<oo,1<¢q <00 anduy €

A-204228 .
FN,rq " (R®). Then there is a constant C > 0 such that
(Gsa(®ol, 1 guisss SOl pupscs 0
T Py, q PsA,q

Lemma 3.3. [4, Proposition 11] Let 0 < A < 3,2 <p< 00,1 <qg<400,0<T < 400 and% <a<
%—I—)‘Tf, and put

_3 A=3
cA—sa4 >

X:_Z/fll"(f/\/'pkaq ),

there is a constant C = C(p,q) > 0 depending on p,q such that

1hgll | ssarr=s < Cllhlx]lgllx - (9)
L2(FN Py

P,A,q

Lemma 3.4. [5, Lemma 3.1/ Let s € R,0 < T < 00,0 < A < 3,1 <p < oo,1<gq,pr < oo and
h € L;(}"./\/';/\,q). There exists a constant C' > 0 such that

t / / /
— 7 ‘S < e} a .
15 Gsalt = M i i oy S OMAL s

4. A Priori Estimates

To find the solution of the equation (1), it is also necessary to treat the random term in (3), by superpo-
sition principle, we need to consider the following auxiliary problem

{ dv+ pu(—=A)%vdt + Sez x vdt = fdW in Q x (0, +00) x R3,

’U’t:() = Uug on {2 X RB. (10)

Remark 4.1. The deterministic version of the equation (10) is given in [5, p.6].

The Fourier transform of (10) with respect to the spatial variable gives

(11)

db + pl€)2*0dt + Ses x odt = fdW in Q x (0, +00) x R3,
D|4=0 = g on O x R3.

Now, we can conclude that this linear stochastic ODE has a unique solution. Consequently, we can obtain

the solution of the original equation (10) by inverse Fourier transform. To obtain the solution of the equation
(1) by using the fixed point argument, we should also estimate the solution of the equation (10).

Lemma 4.2. Let ug be Fy measurable and f progressively measurable on Q x [0, T] x R, and for any

~ .5 A ~ o~ .5 A
q €2, +00), up € Lé}"NQQA?;H_z,f € L6L4T]:N22/\za+2, the solution v of (10) belongs to the space

5_3 A
L4 EAFNG 2
o1/ N2 A g

and

ol j-gery SCA+DISI,

VR N gozary T luolly, _ogocary

QL%“FNZ)\,(} LélfNZ,A,q
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Proof. To prove this estimate, we should first multiply ¢; on both sides of the first equation of (11), we get

d(p;0) = —[ul€|**(p;0) + Ses x (p;0)]dt + (p; f)dW.

Applying Ité’s formula to HcpjﬁHM%, we obtain

d||90j@||§4§ = d(sup supr~ B H%UHLQ(B(Q: r)))

zeR3 r>0
= sup supr_ d||90j@\|%2(3(x,r))
zeR3 r>0
= sup s;llg?“ 20050, —[ulé]**(p;0) + Ses x (p;0)]dt + (05 f)dW)
TE T

+ 195 1172 (B 2.y 2]

= sup supr[(—2pul|| %0001 22(Bry) + 195 F 12280 dt
xeR3 r>0

+2(p;0, @ f)dW]
S =20 %UHMA + H%fllMx)dtJr 2 sup supr Mp;0, @;f)dW
z€R3 r>0

where (-,-) is the inner product in L*(B(z,r)). Reapplying Ito’s formula to (||¢;0[?> + €)% for € > 0, it
results from the above equality that

d(lle0l3p +)* S 2(lleslRg +ol(=2Ill - %0135 + e fliRg)dt
2 2 2 2

+ 2 sup sup rf)‘<<,0ﬂ7, SOjf>dW]
zeR3 r>0

+ 4 sup supr~ (cpjf p;0)2dt. (12)
z€R3 >0

Now, we consider the sequence of stopping times
oo L nf{E >0 flpgo > N}, if {E g0l > N} # 0,
N — . ~
T, if {t : [j¢j0]| >N} =10
for N =1,2,.... Integrating (12) on [0, t] for ¢ < min{T, 7} and taking the expectation of the resulting
estimate, we obtain

B(les0l2 + ) — E(llesollyy +e)?

t t
<aE [ (sup supr (o, 01) Pds =4 [ (ool + o)l -7l

zeR3 r>0

t t
+ 2B [ (lesoliyy + Ollos s+ 4B [ (lesollyy + o) sup supr (g0, ;. Fraw
0 0 z€R3 7>0

=: L1+ Lo+ L3+ Ly.
Since Lo is already in the desired form, it is enough to estimate Lq, Ls and L4 by using Young and Holder’s
inequalities.

t
L <E / I 12 012y ds

<E sup il [ oo liyds
s€(0,t]

< ¢E sup ||<,0Jv|| N —I—CJE/ ||90jf”§/pd3-
s€f0.4] 0 ’
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According to Young’s inequality, we obtain

t
s 5 8 s (Il +)° + Cab [y
s€(0 0

In order to estimate the stochastic integral L4, we first apply the Burkholde-Davis-Gundy inequality and
then Young’s inequality to obtain
s/

LiSEsup | | (lgjolip +e){ejv, oif)dW|
sejot] Jo 2

t 1

r 2

SE sup (ol + el ([ Ieifliyds)
s€[0,t] 0 ?

t

. 4 A

S B sup [(lojollip +o)llesdllgy)® +CeEt/ 5 fllap ds-
s€[0,t] 2 0 2

Based on the estimates of Li, Lo, Ls and L4, choosing € > 0 sufficiently small and passing to the limit as
€ — 0, we obtain

E sup ooty +E T2 %] 5 d
P lleidllyy + le0llxpalll - %0l yads
te[0,TATN] 2 0 2 2

TATN R
S Bllgsiolly + [+ @ ATIE [ oy fllyds (13)

Given the conditions on f and ug, we assert that E  sup H‘pﬂ'@”f\/ﬁ is bounded by a constant without N.
te[0,TATN] 2
Consequently, let N — oo and applying the fact that A}im v =T, P-a.s., we obtain
—00

T T
B s lesilly + 278 | Iesillyds < Bllgsialiy + 0+ DB [ o flyds (14)
€0

Consequently
N . T .
22998 [y llpstllyyds S Bllestollyy + (1 +TIE fy llpsfly,ds

Multiplying the above estimate by 9(3-2043)i and taking I9 norm, we obtain
<
Iy 1ty S QDI sy ol s sy

Remark 4.3. According to the inequality (14), we can deduce that

T
B sup il S Ellgstoliy + 0+ TIE [ lloi s
t€[0,T] 0 2
A
Under the same condition given in Lemma 4.2, we can obtain the solution v of (10) in the space L LOOJ’-"/\/'2 )\Qqa+ 2
with

v o 14T Con U Coaa A -
H ||L4L°°]-'N27/\i +?2 ( )HfHL?)L“ Nzg,\i +7 || OH Nzg,\i +%
Lemma 4.4. Supposing that the condition of Lemma 4.2 is verified, the solution v of the equatzon (10)
satisfies the following statement: There is a set Q with positive probability such that v(w,-,-) € .FN2 A qa+2
and there is a positive constant C such that
Iyttt S Oy + 0TIy ]

Jor all w € Q.
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Proof. The proof is given in the Fourier-Besov space [11, p.11]. First, we consider the following set

Q Z:{ w Hv(w, ‘y )” NE}\ 30+% > C[ ||UOH _/\fg;ia+7
HAHTI s ooen] } (15)
N2 A,q
for some positive constant C chosen later.
Estimate (15), Lemma 4.2 and Chebychev’s inequality give
[[o(w, )II4 5 Zard
NZ 2 2
P(7) < 1
+(1+T
C ol sy + >||f||%L4 o]
C\4
S (5)

where C is a constant given in Lemma 4.2. Put Q = O\Q* and C > C, then
~ C
PQ)=1-P(Q)>1- (=)' >0.
C
Clearly, Q is to fulfill the needs.

Proof of Theorem 1.4. Usually, the mild solution (u,b) for the equation (1) can be reformulated as follows

t t
w = Gs.a(tyuo + / Gsalt — s \PFAW — / Gsalt— PV - (u@u—b@ b)(s,-)ds,
o 0 (16)
b= Qua(t)bo + / Qualt — 5/ \PgdW — / Ovalt — )PV - (4@ b— b@u)(s', ) ds'
0 0

With Qy(f) i= ) = FL(vIEt)
The system (16) can easily be rewritten as follows

()= C;SZ((i))Zsiﬁgf:g— j’))gjvlg )+ C () — IL((b,u) ) =v(u,b),
where
L(u,v) = /Ggat—s)]P’V (u®@w)(s',-)ds,
and .
—/0 Qualt— PV - (u@v)(s,-)ds.
Put

Lemma 3.4 and Lemma 3.3 give

1L (u, u) — L(b, b)l| p ok Bl
= Gat—s PV.(u®@u—b®b)(s)ds' A
| [ Gsalt = sEv ¢ [
< C|V(u®@u—->b®0b
< OV [ enied,
< C(lfullf + [1B11%) - (17)
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To prove Theorem 1.4 we require that

t t
| (Gsalt)uo+ / Gsolt — 8 )PfdWy , Qyalt)bo + / Qualt — s )PgdWy) || < CCo.
0 0

Lemma 4.4 leads to

t
H G&a(t)w) +/ Gg,a(t — S/)PdeS/ H~‘711(]—'j\'/2%;§a+ :

<C +(1+T

(HUOH ( Ng;ioﬂ—%‘) ( )HfHL4L4 (ng;ia+%))
< %
- 2

Concerning the second equation, we note that K (u,b) can be viewed as the solution to the heat equation (7)
with ug = 0,h = PV.(u ® v). From Lemma 3.1 with s = % — 20+ %, p1 = 4, p = 2, and applying Lemma
3.3 we get

K(u,b) — K(b, Y
) = KOl ooy,

2,)\,q
= va(t—8PV.(u@b—bu)(s')d
1] (u WS i,
< QOHV-(U(@[))HL% erg’;za%)
< 20|ueb| s (18)
2(FNEHE)
< 20|ullx [|b] x -

In a similar way, Lemma 4.4 with .S = 0 yields

A
L4 (FNE; 2T

t
| Qualt)bo + / Qualt — s PgdWy

< C(||b 1+7T
(ol it + O+ Dol )

CCy

< a8 0

-2

Since
t t
H (nga(t)uO +/ Gsalt — S,)PdeS/ . Qu.a(t)bo +/ Qua(t— S/)PgdWSI) HX
0 0
< CCy, (19)
we put

H = {(u,0)|(u,b) € X, ]|(, ) [ x <2CCy},
where Cp is a constant that can be determined later. The combination of (17), (18) and (19) gives
19 (u, b)l| x
< (@sal®o-+ [ Gsalt = BTN Qualtlin + [ Qualt o) |

+ C(llullX + 1615 + 2llullxIb]x)
< CCo+ C|l(u,b)|I%
< CCy+4C3CE.

(20)
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It follows that for all (u,b) € H,1(u,b) € H if a choice of Cy < ﬁ is realized.
However, for any (u,v), (a,b) € H, we get
a1, 0) — a5 x
< L (u,w) — L(a,a)llx + | L(o, ) — L(b,)x
+ K (a,b) = K(u,v)[[x + [ K(b,a) — K(v,u)]x
< ||L(u,u — a) + L(u — a,a)||x + ||L(v — b,b) + L(v,v — b)|| x
+ [|[K(a,b—v)+ K(a —u,v)|x + [|K(bya—u) + K(b—v,u)|x
< C((lullx + llallx)llu = allx + (lvllx + ol x) [ — bllx)
+ C((llvllx + 16l le — allx + (lullx + llallx)]lv = bl[x)
< 8C*Co(||u — allx + [lv — b]lx)

< %H(u,v) = (a,b)| x-

Finally, we find that 1 is a contraction mapping from H to H. Hence, the Banach fixed point theorem leads
to the fact that ¢ has a unique fixed point (u,b) € H which is the solution of equation (1). O

Proof of Theorem 1.5. In order to obtain a sequence of approximate solutions (u*,b*) on R x R3, we employ
the following iterative scheme,

(u®, %) = (uo, bo)
kbl = 0 4 fot Gyalt — s \PFAW — fot Gsa(t — 8PV - (uf @ uF — bF @ bF) (s, ) ds/, (21)
prtl — 0 4 f(f Qua(t — ' )PgdW — f(;t Qual(t — )PV - (uk’ Qb — bk uk)(s’, ) ds’.

- 5.3
Let us now show the uniform boundedness of {u”, b*},en in X x X for some T > 0, with X = L} (FN2Z 2a+

Using (20) and (21), we obtain the following inequality.

[P

).

(™05 )| x

t t
SH (GS,oc(t)UO + /0 GS,a(t - Sl)Pdes’ 7Qu,a(t)b0 + /0 QV,Oé(t - s/)PgdWS’) HX

+ O [+ 0I5 2 [ [l 2 [l y)-
Then
| @8 < () (0.9) [l + 1 @09 15, (22)
where 0 = Gg q(t)up + f(f Gsa(t — s )PfdWy and ¥ = Q,.o(t)bo + fot Qua(t — s PgdWy.
Let 7(w, Cp) be the stopping time given by

inf D, if D
o= { P D28 @

where Cp is a positive number and

0

Dw:{te[O,T]:H(ﬁ)(w,-)H ZC’O,P—a.s}.

5_3_ A
Fa '?‘?C“r?)
L (}—le,q

Since 6 solves (10) and ¥ is also a solution of (10) when S = 0, Lemma 4.4 gives
t

c H (Gsva(t)uo +/ GS,a(t - Sl)Pdes/ ; Qu,a(t)bo
0

t
+ [ Qualt = Bgai) |
0

< CyP — as.

B (Fxd 2
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Then i
H (0,19)(&), ) “iél(]:j\'/é;’q%“*%)g CCy,Vw € Q.

t
is non decreasing and continuous as a function of ¢. Therefore

It should be noted that ||.|| “3at)
FIE2% )]
7(w, Cp) exists and is positive for allwe O
Given a Cy > 0 small enough, such that Cy < ﬁ where C is constant from Lemma 4.4. Let 7 the

corresponding 7(w, Cy) for which we prove by induction that
< Cyp, for any k € N, and w € Q.

k 1k
u”, b
609

Suppose that ||(u*, b%)(w, )H BN i-der ) < R,Vw € Q.
2,A,
Then, according to (22) and (2 ) “it follows that
k+1 pk+1 k 1k 2 O
u" b w, .| 5 3.0, < CCo+C||(u”,b 5 ,Vw € Q.
Iit ) )”Lf(]‘—/\/’éAE =) 0+ Cll(u”, b%)(w, )H L (raisied)
Consequently
k41 pk+1 2 A
(w07 ) (w, )||L4( N2§)\ ?XM) < CCyo+ CR*,Vw € Q.
Let Cp > 0 be sufficiently small that if ||(uo, bo)(w, .)HL21 (f/\é;?%%) < Cp, then 1 —4CCp > 0, and we take
the smallest root R of CCy+ CR? = R, that is,
1—+1—4CyC?
R= o~ (25)
2C
As follows, if [|(u*,b¥)(w, . < R, then
s UGBl gy S
k1 pk+1
u" b w,.)|. 5.3, <R
Iit )( )HLg(Jw;AE 1)
T%C”%)_

k € N is uniformly bounded in the space L} (FN 7

involves that ||(u*, b¥
I, 330y
Now, we bound the difference vector (u*+! — u¥ pF+1 — bk).
Firstly, note that
t
uP Tt — b = / Gsa(t — PV - WPt @uf ! —uf @ P
— @bkt — bk @ b0)](s, ) ds’
t
/ Gsa(t— s )PV - [uk_l @ (WPt —uf) + (W — 0Py @ uF

0
= (e (B b — (0 = ) @ 0] (7, )
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Then

Huk—H kH

T (i)
§HV[U ®(l€1 k)+(uk—1_ k)®uk

- (e 0 b - (=t e ]| B (raEed)

< Hukz—l ® (uk—l _ uk) + (uk—l _ uk) ® uk
_ (bk—l ® (bk—l . bk:) . (bk’—l _ bk) ® bk)“

(i)
< (I, (fNW+2)+\|u’“ g (rdderty)
k—1 k
I =l ey
k k—1
+(IIb HM(IN{?’;Q%M%) + b ‘|i$(fN§;,§a+%))

% ku,1 . bk‘

»q

(o)
uk, bk—l o bk)H

< 2CR||(u*! (26)

For the second equation we have

t
bRl — bk = / Quat — PV - [uF T @ bF 1 — ¥ @ b*
0
— (W rtour Tt — v o uh)(s, ) ds’
Then

[ DS

it (Jw,;A ;“* )

(I [ o b —uk o8] i ()

+|V- Pl @ utt - br g b ]H ( o 3a+2)>

2,\,q

<C ([ @@ =t + (@ - b @ A
+ [Pt @ (Wt — Py + O - ) @ uF 7an

| ( i I; 12 (7, N;Af;*))

77a+ ”bk ! bk” 5-_3a4+3)
14 (FA3 200 La(FN2 272

uf| 1]

<c ("

k-1 _
+ HU Ei(}_/\.[;g’;q%a-k%)

§-8a+3
L4 (PN )

2,)\,q

k
+ L

ia(mir) i34 )

bk 1 bk )
Iy ey 1y (e

< 2CR||(u*! uk,bk_l—bk)Hi 5 3. (27)
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Consequently

[ N (]

N>

a+

QN

i3 (N3,
< AOR||(uF1 — B — Y (w, )|

)

5_3 A
fa '§—§a+7)
LT(}—NQ,/\,q

(28)

for all w € Q and n € N. Now, choosing R given in (25) such that R < % (minimizing Cy, if needed), we de-

k1 _ ok ph+l _ pk ~ : k k
duce that ||(u u® b b )Hii (7'7\72%;@%“%) is contractive and therefore the sequence (u*(w,.), b (w,.))

- DB Bt A _
is a Cauchy in the space Lﬁ(f./\fé)\f]a+2), for all w € Q. As a consequence of the completeness of
. S5 _Bay A
LA (f/\f 3 )\;OHFQ), we may then extract a subsequence (u¥,b*) denoted by the same symbol, converges to
- R PNTIPY - R PNTIPY _
a limit (u,b) € L (.FN;AEOHFQ) which is a mild solution in L% (]:N22A30+2) for (1), for all w € Q.
Finally, we demonstrate the uniqueness of the solution. Suppose that (4, 13) and (u,b) are two solutions

of system (1) with the same initial data (ug,bg). Therefore the difference of these two solutions satisfies the
following equations:

t ~ ~
a—u:/ Gsalt —8)PV-(u@u) —a@d—(bb—bxb)(s,-)ds
0

~ t ~ ~
b—b—/ Qualt =8PV - (u@b—a®b— (b@u—b®@a)(s,)ds
0

Using precisely the same idea of estimates (26)—(28), we get

U — 76_ b I S5_344 A
1= w59 oy
< CH(U’ - u7b - b)(wa )||l~/$(]:./\/2%;§a+%),

which allows us to obtain the fact that @ = u and b = b due to the condition 0 < C < 1, i.e., the solution
(u,b) is unique. O
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