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Abstract

In this paper, we investigate the generalized Woodall sequences and we deal with, in
detail, four special cases, namely, modified Woodall, modified Cullen, Woodall and Cullen
sequences. We present Binet’s formulas, generating functions, Simson formulas, and the
summation formulas for these sequences. Moreover, we give some identities and matrices
related with these sequences.

1. Introduction

The Woodall numbers {Rn}, sometimes called Riesel numbers, and also called Cullen numbers of the second kind, are numbers of the form

Rn = n×2n−1.

The first few Woodall numbers are:

1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575, . . .

(sequence A003261 in the OEIS [22]). Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in [6] in 1917,
inspired by James Cullen’s earlier study of the similarly-defined Cullen numbers.
The Cullen numbers {Cn} are numbers of the form

Cn = n×2n +1.

The first few Cullen numbers are:

1,3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521, ...

(sequence A002064 in the OEIS).
Woodall and Cullen sequences have been studied by many authors and more detail can be found in the extensive literature dedicated to these
sequences, see for example, [1,2,6,9,10,11,13,15,16,17,18] and references therein.
Note that {Rn} and {Cn} hold the following relations:

Rn = 4Rn−1−4Rn−2−1,

Cn = 4Cn−1−4Cn−2 +1.
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https://orcid.org/0000-0002-1895-211X
https://orcid.org/0000-0003-2878-3505
https://orcid.org/0000-0003-2878-3505


70 Universal Journal of Mathematics and Applications

Note also that the sequences {Rn} and {Cn} satisfy the following third order linear recurrences:

Rn = 5Rn−1−8Rn−2 +4Rn−3, R0 =−1,R1 = 1,R2 = 7, (1.1)

Cn = 5Cn−1−8Cn−2 +4Cn−3, C0 = 1,C1 = 3,C2 = 9. (1.2)

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e., Woodall, Cullen numbers) via their
third order linear recurrence relations (1.1) and (1.2). First, we recall some properties of generalized Tribonacci numbers.
The generalized (r,s, t) sequence (or generalized Tribonacci sequence or generalized 3-step Fibonacci sequence)

{Wn(W0,W1,W2;r,s, t)}n≥0

(or shortly {Wn}n≥0) is defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n≥ 3 (1.3)

where W0,W1,W2 are arbitrary complex (or real) numbers and r,s, t are real numbers.
This sequence has been studied by many authors, see for example [3,4,5,7,8,14,19,20,21,24,25,27,28,29].
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n =−
s
t
W−(n−1)−

r
t
W−(n−2)+

1
t

W−(n−3)

for n = 1,2,3, ... when t 6= 0. Therefore, recurrence (1.3) holds for all integer n.
As {Wn} is a third-order recurrence sequence (difference equation), it’s characteristic equation is

x3− rx2− sx− t = 0 (1.4)

whose roots are

α = α(r,s, t) =
r
3
+A+B,

β = β (r,s, t) =
r
3
+ωA+ω

2B,

γ = γ(r,s, t) =
r
3
+ω

2A+ωB,

where

A =

(
r3

27
+

rs
6
+

t
2
+
√

∆

)1/3

, B =

(
r3

27
+

rs
6
+

t
2
−
√

∆

)1/3

,

∆ = ∆(r,s, t) =
r3t
27
− r2s2

108
+

rst
6
− s3

27
+

t2

4
, ω =

−1+ i
√

3
2

= exp(2πi/3).

Note that we have the following identities

α +β + γ = r,

αβ +αγ +βγ =−s,

αβγ = t.

In the case of two distinct roots, i.e., α = β 6= γ, Binet’s formula can be given as follows:

Theorem 1.1. (Two Distinct Roots Case: α = β 6= γ) Binet’s formula of generalized Tribonacci numbers is

Wn = (A1 +A2n)×α
n +A3γ

n

where

A1 =
−W2 +2αW1− γ(2α− γ)W0

(α− γ)2 ,

A2 =
W2− (α + γ)W1 +αγW0

α (α− γ)
,

A3 =
W2−2αW1 +α2W0

(α− γ)2 .

Next, we give the ordinary generating function
∞

∑
n=0

Wnxn of the sequence Wn.

Lemma 1.2. Suppose that fWn(x) =
∞

∑
n=0

Wnxn is the ordinary generating function of the generalized (r,s, t) sequence (the generalized

Tribonacci sequence) {Wn}n≥0. Then,
∞

∑
n=0

Wnxn is given by

∞

∑
n=0

Wnxn =
W0 +(W1− rW0)x+(W2− rW1− sW0)x2

1− rx− sx2− tx3 . (1.5)
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Matrix formulation of Wn can be given as Wn+2
Wn+1
Wn

=

 r s t
1 0 0
0 1 0

n W2
W1
W0

 . (1.6)

For matrix formulation (1.6), see [12]. In fact, Kalman gave the formula in the following form Wn
Wn+1
Wn+2

=

 0 1 0
0 0 1
r s t

n W0
W1
W2

 .

Now, we present Simson’s formula of generalized Tribonacci numbers.

Theorem 1.3 (Simson’s Formula of Generalized Tribonacci Numbers). For all integers n, we have∣∣∣∣∣∣
Wn+2 Wn+1 Wn
Wn+1 Wn Wn−1
Wn Wn−1 Wn−2

∣∣∣∣∣∣= tn

∣∣∣∣∣∣
W2 W1 W0
W1 W0 W−1
W0 W−1 W−2

∣∣∣∣∣∣ . (1.7)

Proof. For a proof, see Soykan [23]. �
Next, we consider two special cases of the generalized (r,s, t) sequence {Wn} which we call them (r,s, t) and Lucas (r,s, t) sequences. (r,s, t)
sequence {Gn}n≥0 and Lucas (r,s, t) sequence {Hn}n≥0 are defined, respectively, by the third-order recurrence relations

Gn+3 = rGn+2 + sGn+1 + tGn, G0 = 0,G1 = 1,G2 = r, (1.8)

Hn+3 = rHn+2 + sHn+1 + tHn, H0 = 3,H1 = r,H2 = 2s+ r2. (1.9)

The sequences {Gn}n≥0 and {Hn}n≥0 can be extended to negative subscripts by defining

G−n =−
s
t

G−(n−1)−
r
t

G−(n−2)+
1
t

G−(n−3),

H−n =−
s
t

H−(n−1)−
r
t

H−(n−2)+
1
t

H−(n−3)

for n = 1,2,3, ... respectively. Therefore, recurrences (1.8)-(1.9) hold for all integers n.
In the case of two distinct roots, i.e., α = β 6= γ, for all integers n, Binet’s formula of (r,s, t) and Lucas (r,s, t) numbers (using initial
conditions in (1.8)-(1.9)) can be expressed as follows:

Theorem 1.4. (Two Distinct Roots Case: α = β 6= γ) For all integers n, Binet’s formula of (r,s, t) and Lucas (r,s, t) numbers are

Gn =

(
−γ

(α− γ)2 +
1

(α− γ)
n

)
×α

n +
γ

(α− γ)2 γ
n,

Hn = 2α
n + γ

n,

respectively.

Lemma 1.2 gives the following results as particular examples (generating functions of (r,s, t) and Lucas (r,s, t) numbers).

Corollary 1.5. Generating functions of (r,s, t) and Lucas (r,s, t) numbers are

∞

∑
n=0

Gnxn =
x

1− rx− sx2− tx3 ,

∞

∑
n=0

Hnxn =
3−2rx− sx2

1− rx− sx2− tx3 ,

respectively.

The following theorem shows that the generalized Tribonacci sequence Wn at negative indices can be expressed by the sequence itself at
positive indices.

Theorem 1.6. For n ∈ Z, we have

W−n = t−n(W2n−HnWn +
1
2
(H2

n −H2n)W0).

Proof. For the proof, see Soykan [26, Theorem 2.]. �
Now, we present a basic relation between {Hn} and {Wn} which can be used to write Hn in terms of Wn.

Lemma 1.7. The following equality is true:
(W 3

2 +(t + rs)W 3
1 + t2W 3

0 +(r2− s)W 2
1 W2−2rW1W 2

2 − sW0W 2
2 + rtW 2

0 W2 +(s2 + rt)W0W 2
1 +2stW 2

0 W1 +(rs−3t)W0W1W2)Hn = (3W 2
2 +

(r2− s)W 2
1 + rtW 2

0 − 4rW1W2− 2sW0W2 +(rs− 3t)W0W1)Wn+2 +(−2rW 2
2 + 3tW 2

1 − 2sW1W2− 3tW0W2 + 3rsW 2
1 + 2stW 2

0 + 2r2W1W2 +
2s2W0W1 + rsW0W2 +2rtW0W1)Wn+1 +(−sW 2

2 +(s2 + rt)W 2
1 +3t2W 2

0 +(rs−3t)W1W2 +2rtW0W2 +4stW0W1)Wn.
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Proof. It is given in Soykan [25]. �
Using Theorem 1.6, we have the following corollary, see Soykan [26, Corollary 6].

Corollary 1.8. For n ∈ Z, we have

(a)

G−n =
1

tn+1 ((2rt− s2)G2
n + tG2n + sGn+2Gn− (3t + rs)Gn+1Gn).

(b)

H−n =
1

2tn (H
2
n −H2n).

Note that G−n and H−n can be given as follows by using G0 = 0 and H0 = 3 in Theorem 1.6,

G−n = t−n(G2n−HnGn +
1
2
(H2

n −H2n)G0) = t−n(G2n−HnGn),

H−n = t−n(H2n−HnHn +
1
2
(H2

n −H2n)H0) =
1

2tn (H
2
n −H2n),

respectively.

2. Generalized Woodall Sequence

In this paper, we consider the case r = 5,s =−8, t = 4. A generalized Woodall sequence {Wn}n≥0 = {Wn(W0,W1,W2)}n≥0 is defined by the
third-order recurrence relations

Wn = 5Wn−1−8Wn−2 +4Wn−3 (2.1)

with the initial values W0 = c0,W1 = c1,W2 = c2 not all being zero.
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 2W−(n−1)−
5
4

W−(n−2)+
1
4

W−(n−3)

for n = 1,2,3, .... Therefore, recurrence (2.1) holds for all integer n.
Theorem 1.1 can be used to obtain Binet formula of generalized Woodall numbers. Binet formula of generalized Woodall numbers can be
given as
(two distinct roots case: α = β 6= γ)

Wn = (A1 +A2n)×α
n +A3γ

n

where

A1 =
−W2 +2αW1− γ(2α− γ)W0

(α− γ)2 ,

A2 =
W2− (α + γ)W1 +αγW0

α (α− γ)
,

A3 =
W2−2αW1 +α2W0

(α− γ)2 .

Here, α,β and γ are the roots of the cubic equation

x3−5x2 +8x−4 = (x−2)2 (x−1) = 0.

Moreover

α = β = 2,

γ = 1.

So,

Wn = (A1 +A2n)×2n +A3

where

A1 =−W2 +4W1−3W0,

A2 =
W2−3W1 +2W0

2
,

A3 =W2−4W1 +4W0,
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i.e.,

Wn = ((−W2 +4W1−3W0)+
W2−3W1 +2W0

2
n)×2n +(W2−4W1 +4W0). (2.2)

The first few generalized Woodall numbers with positive subscript and negative subscript are given in the following Table 1.
Table 1. A few generalized Woodall numbers

n Wn W−n
0 W0 W0
1 W1

1
4 (8W0−5W1 +W2)

2 W2 (11W0−9W1 +2W2)

3 4W0−8W1 +5W2
1
16 (52W0−47W1 +11W2)

4 20W0−36W1 +17W2 (57W0−54W1 +13W2)

5 68W0−116W1 +49W2
1
64 (240W0−233W1 +57W2)

6 196W0−324W1 +129W2 (247W0−243W1 +60W2)

7 516W0−836W1 +321W2
1

256 (1004W0−995W1 +247W2)

8 1284W0−2052W1 +769W2
1

256 (1013W0−1008W1 +251W2)

9 3076W0−4868W1 +1793W2
1

1024 (4072W0−4061W1 +1013W2)

10 7172W0−11268W1 +4097W2
1

1024 (4083W0−4077W1 +1018W2)

11 16388W0−25604W1 +9217W2
1

4096 (16356W0−16343W1 +4083W2)

12 36868W0−57348W1 +20481W2
1

4096 (16369W0−16362W1 +4089W2)

13 81924W0−126980W1 +45057W2
1

16384 (65504W0−65489W1 +16369W2)

Now, we define four special cases of the sequence {Wn}. Modified Woodall sequence {Gn}n≥0 , modified Cullen sequence {Hn}n≥0,
Woodall sequence {Rn} and Cullen sequence {Cn} are defined, respectively, by the third-order recurrence relations

Gn = 5Gn−1−8Gn−2 +4Gn−3, G0 = 0,G1 = 1,G2 = 5, (2.3)

Hn = 5Hn−1−8Hn−2 +4Hn−3, H0 = 3,H1 = 5,H2 = 9, (2.4)

Rn = 5Rn−1−8Rn−2 +4Rn−3, R0 =−1,R1 = 1,R2 = 7, (2.5)

Cn = 5Cn−1−8Cn−2 +4Cn−3, C0 = 1,C1 = 3,C2 = 9. (2.6)

The sequences {Gn}n≥0, {Hn}n≥0, {Rn}n≥0 and {Cn}n≥0 can be extended to negative subscripts by defining

G−n = 2G−(n−1)−
5
4

G−(n−2)+
1
4

G−(n−3),

H−n = 2H−(n−1)−
5
4

H−(n−2)+
1
4

H−(n−3),

R−n = 2R−(n−1)−
5
4

R−(n−2)+
1
4

R−(n−3),

C−n = 2C−(n−1)−
5
4

C−(n−2)+
1
4

C−(n−3),

for n = 1,2,3, ... respectively. Therefore, recurrences (2.3)-(2.6) hold for all integer n.
Next, we present the first few values of the modified Woodall, modified Cullen, Woodall and Cullen numbers with positive and negative
subscripts:
Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Gn 0 1 5 17 49 129 321 769 1793 4097 9217 20481 45057 98305

G−n 0 1
4

1
2

11
16

13
16

57
64

15
16

247
256

251
256

1013
1024

509
512

4083
4096

4089
4096

Hn 3 5 9 17 33 65 129 257 513 1025 2049 4097 8193 16385
H−n 2 3

2
5
4

9
8

17
16

33
32

65
64

129
128

257
256

513
512

1025
1024

2049
2048

4097
4096

Rn −1 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495
R−n − 3

2 − 3
2 − 11

8 − 5
4 − 37

32 − 35
32 − 135

128 − 33
32 − 521

512 − 517
512 − 2059

2048 − 1027
1024 − 8205

8192
Cn 1 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497

C−n
1
2

1
2

5
8

3
4

27
32

29
32

121
128

31
32

503
512

507
512

2037
2048

1021
1024

8179
8192

Gn,Hn, Rn and Cn are the sequences A000337, A000051 (and A048578), A003261 and A002064 in [22], respectively. Note that {Hn}
satisfies the following second order linear recurrence:

Hn = 3Hn−1−2Hn−2, H0 = 3,H1 = 5

and satisfies the following first order non-linear recurrence:

Hn = 2Hn−1−1, H0 = 3.
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For all integers n, modified Woodall, modified Cullen, Woodall and Cullen numbers (using initial conditions in (2.2)) can be expressed using
Binet’s formulas as

Gn = (n−1)2n +1

Hn = 2n+1 +1

Rn = n×2n−1

Cn = n×2n +1

respectively.

Next, we give the ordinary generating function
∞

∑
n=0

Wnxn of the sequence Wn.

Lemma 2.1. Suppose that fWn(x) =
∞

∑
n=0

Wnxn is the ordinary generating function of the generalized Woodall sequence {Wn}n≥0. Then,

∞

∑
n=0

Wnxn is given by

∞

∑
n=0

Wnxn =
W0 +(W1−5W0)x+(W2−5W1 +8W0)x2

1−5x+8x2−4x3 .

Proof. Take r = 5,s =−8, t = 4 in Lemma 1.2. �
The previous lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of modified Woodall, modified Cullen, Woodall and Cullen numbers are
∞

∑
n=0

Gnxn =
x

1−5x+8x2−4x3 ,

∞

∑
n=0

Hnxn =
3−10x+8x2

1−5x+8x2−4x3 ,

∞

∑
n=0

Rnxn =
−1+6x−6x2

1−5x+8x2−4x3 ,

∞

∑
n=0

Cnxn =
1−2x+2x2

1−5x+8x2−4x3 ,

respectively.

3. Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1−F2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be written in the form∣∣∣∣ Fn+1 Fn
Fn Fn−1

∣∣∣∣= (−1)n.

The following theorem gives generalization of this result to the generalized Woodall sequence {Wn}n≥0.

Theorem 3.1 (Simson Formula of Generalized Woodall Numbers). For all integers n, we have∣∣∣∣∣∣
Wn+2 Wn+1 Wn
Wn+1 Wn Wn−1
Wn Wn−1 Wn−2

∣∣∣∣∣∣=−22n−4(W2−4W1 +4W0)(W2−3W1 +2W0)
2.

Proof. Take r = 5,s =−8, t = 4 in Theorem 1.3. �
The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, Simson formula of modified Woodall, modified Cullen, Woodall and Cullen numbers are given as∣∣∣∣∣∣
Gn+2 Gn+1 Gn
Gn+1 Gn Gn−1
Gn Gn−1 Gn−2

∣∣∣∣∣∣=−22n−2,

∣∣∣∣∣∣
Hn+2 Hn+1 Hn
Hn+1 Hn Hn−1
Hn Hn−1 Hn−2

∣∣∣∣∣∣= 0,

∣∣∣∣∣∣
Rn+2 Rn+1 Rn
Rn+1 Rn Rn−1
Rn Rn−1 Rn−2

∣∣∣∣∣∣= 22n−2,

∣∣∣∣∣∣
Cn+2 Cn+1 Cn
Cn+1 Cn Cn−1
Cn Cn−1 Cn−2

∣∣∣∣∣∣=−22n−2,

respectively.
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4. Some Identities

In this section, we obtain some identities of generalized Woodall, modified Woodall, modified Cullen, Woodall and Cullen numbers. First,
we can give a few basic relations between {Wn} and {Gn}.

Lemma 4.1. The following equalities are true:

(a) 16Wn = (52W0−47W1 +11W2)Gn+4 +(199W1−216W0−47W2)Gn+3 +4(57W0−54W1 +13W2)Gn+2.
(b) 4Wn = (11W0−9W1 +2W2)Gn+3 +(40W1−47W0−9W2)Gn+2 +(52W0−47W1 +11W2)Gn+1.
(c) 4Wn = (8W0−5W1 +W2)Gn+2 +(25W1−36W0−5W2)Gn+1 +4(11W0−9W1 +2W2)Gn.
(d) Wn =W0Gn+1 +(−5W0 +W1)Gn +(8W0−5W1 +W2)Gn−1.
(e) Wn =W1Gn +(−5W1 +W2)Gn−1 +4W0Gn−2.
(f) 4(4W0−4W1 +W2)(2W0−3W1 +W2)

2Gn
=(8W 2

1 −5W1W2−4W0W1+W 2
2 )Wn+4+(−36W 2

1 −5W 2
2 +20W0W1−4W0W2+25W1W2)Wn+3+4(4W 2

0 +16W 2
1 +2W 2

2 −16W0W1+
5W0W2−11W1W2)Wn+2.

(g) (4W0−4W1 +W2)(2W0−3W1 +W2)
2Gn

= (W 2
1 −W0W2)Wn+3 +(4W 2

0 −8W0W1 +5W0W2−W1W2)Wn+2 +(8W 2
1 +W 2

2 −4W0W1−5W1W2)Wn+1.
(h) (4W0−4W1 +W2)(2W0−3W1 +W2)

2Gn
= (4W 2

0 +5W 2
1 −8W0W1−W1W2)Wn+2 +(W 2

2 −4W0W1 +8W0W2−5W1W2)Wn+1 +4(W 2
1 −W0W2)Wn.

(i) (4W0−4W1 +W2)(2W0−3W1 +W2)
2Gn

= (20W 2
0 +25W 2

1 +W 2
2 −44W0W1 +8W0W2−10W1W2)Wn+1 +4(−8W 2

0 +16W0W1−W2W0−9W 2
1 +2W2W1)Wn +4(4W 2

0 +5W 2
1 −

8W0W1−W1W2)Wn−1.
(j) (4W0−4W1 +W2)(2W0−3W1 +W2)

2Gn
= (68W 2

0 +89W 2
1 +5W 2

2 −156W0W1 +36W0W2−42W1W2)Wn +4(−36W 2
0 +80W0W1−16W0W2−45W 2

1 +19W1W2−2W 2
2 )Wn−1 +

4(20W 2
0 +25W 2

1 +W 2
2 −44W0W1 +8W0W2−10W1W2)Wn−2.

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing

Wn = a×Gn+4 +b×Gn+3 + c×Gn+2

and solving the system of equations

W0 = a×G4 +b×G3 + c×G2

W1 = a×G5 +b×G4 + c×G3

W2 = a×G6 +b×G5 + c×G4

we find that a = 1
16 (52W0−47W1 +11W2),b =− 1

16 (216W0−199W1 +47W2),c = 1
4 (57W0−54W1 +13W2). The other equalities can be

proved similarly. �
Note that all the identities in the above Lemma 4.1 can be proved by induction as well.
Next, we present a few basic relations between {Wn} and {Hn}.

Lemma 4.2. The following equalities are true:

(a) 2(2W0−3W1 +W2)(4W0−4W1 +W2)Hn = (8W0−10W1+3W2)Wn+4+(36W1−28W0−11W2)Wn+3+2(12W0−16W1+5W2)Wn+2.
(b) (2W0−3W1 +W2)(4W0−4W1 +W2)Hn = (6W0−7W1 +2W2)Wn+3 +(24W1−20W0−7W2)Wn+2 +2(8W0−10W1 +3W2)Wn+1.
(c) (2W0−3W1 +W2)(4W0−4W1 +W2)Hn = (10W0−11W1 +3W2)Wn+2 +2(18W1−16W0−5W2)Wn+1 +4(6W0−7W1 +2W2)Wn.
(d) (2W0−3W1 +W2)(4W0−4W1 +W2)Hn = (18W0−19W1 +5W2)Wn+1 +4(15W1−14W0−4W2)Wn +4(10W0−11W1 +3W2)Wn−1.
(e) (2W0−3W1 +W2)(4W0−4W1 +W2)Hn = (34W0−35W1 +9W2)Wn +4(27W1−26W0−7W2)Wn−1 +4(18W0−19W1 +5W2)Wn−2.

Now, we give a few basic relations between {Wn} and {Rn}.

Lemma 4.3. The following equalities are true:

(a) 8Wn = (42W1−39W0−11W2)Rn+4 +(151W0−161W1 +42W2)Rn+3 +(151W1−144W0−39W2)Rn+2.
(b) 8Wn = (49W1−44W0−13W2)Rn+3 +(168W0−185W1 +49W2)Rn+2 +4(42W1−39W0−11W2)Rn+1.
(c) 2Wn = (15W1−13W0−4W2)Rn+2 +(49W0−56W1 +15W2)Rn+1 +(49W1−44W0−13W2)Rn.
(d) 2Wn = (19W1−16W0−5W2)Rn+1 +(60W0−71W1 +19W2)Rn +4(15W1−13W0−4W2)Rn−1.
(e) Wn = (12W1−10W0−3W2)Rn +2(19W0−23W1 +6W2)Rn−1 +2(19W1−16W0−5W2)Rn−2.
(f) 2(4W0−4W1 +W2)(2W0−3W1 +W2)

2Rn
=(−12W 2

0 +36W0W1−13W0W2−26W 2
1 +18W1W2−3W 2

2 )Wn+4+(52W 2
0 +108W 2

1 +12W 2
2 −152W0W1+53W0W2−73W1W2)Wn+3+

(−48W 2
0 +140W0W1−48W0W2−100W 2

1 +67W1W2−11W 2
2 )Wn+2.

(g) 2(4W0−4W1 +W2)(2W0−3W1 +W2)
2Rn

=(−8W 2
0 +28W0W1−12W0W2−22W 2

1 +17W1W2−3W 2
2 )Wn+3+(48W 2

0 +108W 2
1 +13W 2

2 −148W0W1+56W0W2−77W1W2)Wn+2+
4(−12W 2

0 +36W0W1−13W0W2−26W 2
1 +18W1W2−3W 2

2 )Wn+1.
(h) (4W0−4W1 +W2)(2W0−3W1 +W2)

2Rn
= (4W 2

0 −W 2
1 −W 2

2 −4W0W1−2W0W2+4W1W2)Wn+2+2(4W 2
0 +18W 2

1 +3W 2
2 −20W0W1+11W0W2−16W1W2)Wn+1+2(−8W 2

0 +
28W0W1−12W0W2−22W 2

1 +17W1W2−3W 2
2 )Wn.

(i) (4W0−4W1 +W2)(2W0−3W1 +W2)
2Rn

=(28W 2
0 +31W 2

1 +W 2
2 −60W0W1+12W0W2−12W1W2)Wn+1+2(−24W 2

0 +44W0W1−4W0W2−18W 2
1 +W1W2+W 2

2 )Wn+4(4W 2
0 −

W 2
1 −W 2

2 −4W0W1−2W0W2 +4W1W2)Wn−1.
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(j) (4W0−4W1 +W2)(2W0−3W1 +W2)
2Rn

=(92W 2
0 +119W 2

1 +7W 2
2 −212W0W1+52W0W2−58W1W2)Wn+4(−52W 2

0 +116W0W1−26W0W2−63W 2
1 +28W1W2−3W 2

2 )Wn−1+
4(28W 2

0 +31W 2
1 +W 2

2 −60W0W1 +12W0W2−12W1W2)Wn−2.

Next, we present a few basic relations between {Wn} and {Cn}.

Lemma 4.4. The following equalities are true:

(a) 8Wn = (25W0−22W1 +5W2)Cn+4 +(95W1−105W0−22W2)Cn+3 +(112W0−105W1 +25W2)Cn+2.
(b) 8Wn = (20W0−15W1 +3W2)Cn+3 +(71W1−88W0−15W2)Cn+2 +4(25W0−22W1 +5W2)Cn+1.
(c) 2Wn = (3W0−W1)Cn+2 +(8W1−15W0−W2)Cn+1 +(20W0−15W1 +3W2)Cn.
(d) 2Wn = (3W1−W2)Cn+1 +(3W2−7W1−4W0)Cn +4(3W0−W1)Cn−1.
(e) Wn = (4W1−2W0−W2)Cn +2(3W0−7W1 +2W2)Cn−1 +2(3W1−W2)Cn−2.
(f) 2(4W0−4W1 +W2)(2W0−3W1 +W2)

2Cn
= (4W 2

0 + 10W 2
1 +W 2

2 − 12W0W1 + 3W0W2 − 6W1W2)Wn+4 + (−12W 2
0 + 40W0W1 − 11W0W2 − 36W 2

1 + 23W1W2 − 4W 2
2 )Wn+3 +

(16W 2
0 +44W 2

1 +5W 2
2 −52W0W1 +16W0W2−29W1W2)Wn+2.

(g) 2(4W0−4W1 +W2)(2W0−3W1 +W2)
2Cn

=(8W 2
0 +14W 2

1 +W 2
2 −20W0W1+4W0W2−7W1W2)Wn+3+(−16W 2

0 +44W0W1−8W0W2−36W 2
1 +19W1W2−3W 2

2 )Wn+2+4(4W 2
0 +

10W 2
1 +W 2

2 −12W0W1 +3W0W2−6W1W2)Wn+1.
(h) (4W0−4W1 +W2)(2W0−3W1 +W2)

2Cn
=(12W 2

0 +17W 2
1 +W 2

2 −28W0W1+6W0W2−8W1W2)Wn+2+2(−12W 2
0 +28W0W1−5W0W2−18W 2

1 +8W1W2−W 2
2 )Wn+1+2(8W 2

0 +
14W 2

1 +W 2
2 −20W0W1 +4W0W2−7W1W2)Wn.

(i) (4W0−4W1 +W2)(2W0−3W1 +W2)
2Cn

= (36W 2
0 +49W 2

1 +3W 2
2 −84W0W1 +20W0W2−24W1W2)Wn+1 +2(−40W 2

0 +92W0W1−20W0W2−54W 2
1 +25W1W2−3W 2

2 )Wn +
4(12W 2

0 +17W 2
1 +W 2

2 −28W0W1 +6W0W2−8W1W2)Wn−1.
(j) (4W0−4W1 +W2)(2W0−3W1 +W2)

2Cn
=(100W 2

0 +137W 2
1 +9W 2

2 −236W0W1+60W0W2−70W1W2)Wn+4(−60W 2
0 +140W0W1−34W0W2−81W 2

1 +40W1W2−5W 2
2 )Wn−1+

4(36W 2
0 +49W 2

1 +3W 2
2 −84W0W1 +20W0W2−24W1W2)Wn−2.

Now, we give a few basic relations between {Gn} and {Hn}.

Lemma 4.5. The following equalities are true:

4Hn = 5Gn+4−19Gn+3 +18Gn+2,

2Hn = 3Gn+3−11Gn+2 +10Gn+1,

Hn = 2Gn+2−7Gn+1 +6Gn,

Hn = 3Gn+1−10Gn +8Gn−1,

Hn = 5Gn−16Gn−1 +12Gn−2.

Next, we present a few basic relations between {Gn} and {Rn}.

Lemma 4.6. The following equalities are true:

8Gn =−13Rn+4 +49Rn+3−44Rn+2,

2Gn =−4Rn+3 +15Rn+2−13Rn+1,

2Gn =−5Rn+2 +19Rn+1−16Rn,

Gn =−3Rn+1 +12Rn−10Rn−1,

Gn =−3Rn +14Rn−1−12Rn−2,

and

8Rn =−11Gn+4 +43Gn+3−40Gn+2,

2Rn =−3Gn+3 +12Gn+2−11Gn+1,

2Rn =−3Gn+2 +13Gn+1−12Gn,

Rn =−Gn+1 +6Gn−6Gn−1,

Rn = Gn +2Gn−1−4Gn−2.

Now, we give a few basic relations between {Gn} and {Cn}.

Lemma 4.7. The following equalities are true:

8Gn = 3Cn+4−15Cn+3 +20Cn+2,

2Gn =−Cn+2 +3Cn+1,

Gn =−Cn+1 +4Cn−2Cn−1,

Gn =−Cn +6Cn−1−4Cn−2,
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and

8Cn = 5Gn+4−21Gn+3 +24Gn+2,

2Cn = Gn+3−4Gn+2 +5Gn+1,

2Cn = Gn+2−3Gn+1 +4Gn,

Cn = Gn+1−2Gn +2Gn−1,

Cn = 3Gn−6Gn−1 +4Gn−2.

Next, we present a few basic relations between {Hn} and {Rn}.

Lemma 4.8. The following equalities are true:

4Hn =−3Rn+4 +13Rn+3−14Rn+2,

2Hn =−Rn+3 +5Rn+2−6Rn+1,

Hn = Rn+1−2Rn,

Hn = 3Rn−8Rn−1 +4Rn−2.

Now, we give a few basic relations between {Hn} and {Cn}.

Lemma 4.9. The following equalities are true:

4Hn = 5Cn+4−19Cn+3 +18Cn+2,

2Hn = 3Cn+3−11Cn+2 +10Cn+1,

Hn = 2Cn+2−7Cn+1 +6Cn,

Hn = 3Cn+1−10Cn +8Cn−1,

Hn = 5Cn−16Cn−1 +12Cn−2.

Next, we present a few basic relations between {Rn} and {Cn}.

Lemma 4.10. The following equalities are true:

4Rn =−6Cn+4 +23Cn+3−21Cn+2,

4Rn =−7Cn+3 +27Cn+2−24Cn+1,

Rn =−2Cn+2 +8Cn+1−7Cn,

Rn =−2Cn+1 +9Cn−8Cn−1,

Rn =−Cn +8Cn−1−8Cn−2,

and

4Cn =−6Rn+4 +23Rn+3−21Rn+2,

4Cn =−7Rn+3 +27Rn+2−24Rn+1,

Cn =−2Rn+2 +8Rn+1−7Rn,

Cn =−2Rn+1 +9Rn−8Rn−1,

Cn =−Rn +8Rn−1−8Rn−2.

5. On the Recurrence Properties of Generalized Woodall Sequence

Taking r = 5,s =−8, t = 4 in Theorem 1.6, we obtain the following Proposition.

Proposition 5.1. For n ∈ Z, generalized Woodall numbers (the case r = 5,s =−8, t = 4) have the following identity:

W−n = 4−n(W2n−HnWn +
1
2
(H2

n −H2n)W0)

where

Hn =
((10W0−11W1 +3W2)Wn+2−2(16W0−18W1 +5W2)Wn+1 +4(6W0−7W1 +2W2)Wn)

(2W0−3W1 +W2)(4W0−4W1 +W2)
(5.1)

Note that if we take r = 5,s =−8, t = 4 in Lemma 1.7 (or using Lemma 4.2 (c)) we get (5.1).
From the above Proposition 5.1 and Corollary 1.8, we have the following Corollary 5.2 which gives the connection between the special cases
of generalized Woodall sequence at the positive index and the negative index: for modified Woodall, modified Cullen, Woodall and Cullen
numbers: take Wn = Gn with G0 = 0,G1 = 1,G2 = 5, take Wn = Hn with H0 = 3,H1 = 5,H2 = 9, Wn = Rn with R0 =−1,R1 = 1,R2 = 7
and Wn =Cn with C0 = 1,C1 = 3,C2 = 9, respectively. Note that in this case Hn = Hn.

Corollary 5.2. For n ∈ Z, we have the following recurrence relations:

(a) Modified Woodall sequence:

G−n = 4−n(−6G2
n +G2n−2Gn+2Gn +7Gn+1Gn).
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(b) Modified Cullen sequence:

H−n = 2−2n−1
(

H2
n −H2n

)
.

(c) Woodall sequence:

R−n = 2−2n−1(−R2
n+1 +R2n+1 +2Rn+1Rn).

(d) Cullen sequence:

C−n = 2−2n−1(4C2
n+2 +49C2

n+1 +24C2
n −2C2n+2 +7C2n+1−4C2n−28Cn+1Cn+2 +20CnCn+2−70CnCn+1).

6. Sum Formulas

The following Theorem 6.1 presents some formulas of of generalized Woodall numbers numbers with indices in arithmetic progression.

Theorem 6.1. For all integers m and j, we have the following sum formula:

n

∑
k=0

Wmk+ j =
1

2(2m−1)2 (Γ1 +Γ2 +Γ3)

where

Γ1 = (( j+mn−2)2mn+2m+ j− ( j+m+mn−2)2mn+m+ j +(m− j+2)2m+ j +( j−2)2 j +2(n+1)(2m−1)2)W2,

Γ2 = (−(3 j+3mn−8)2mn+2m+ j +(3 j+3m+3mn−8)2mn+m+ j +(3 j−3m−8)2m+ j− (3 j−8)2 j−8(n+1)(2m−1)2)W1,

Γ3 = 2(( j+mn−3)2mn+2m+ j− ( j+m+mn−3)2mn+m+ j +(m− j+3)2m+ j +( j−3)2 j +4(n+1)(2m−1)2)W0.

Proof. Use the Binet’s formula of generalized Woodall numbers, i.e.,

Wn = ((−W2 +4W1−3W0)+
W2−3W1 +2W0

2
n)×2n +(W2−4W1 +4W0). �

The following Proposition 6.2 presents some formulas of generalized Woodall numbers numbers with positive subscripts.

Proposition 6.2. For n≥ 0, we have the following formulas:

(a) ∑
n
k=0 Wk = ((n−3)2n +n+3)W2− ((3n−11)2n +4n+11)W1 +((n−4)2n+1 +4n+9)W0.

(b) ∑
n
k=0 W2k =

1
9 (((3n−4)22n+2 +9n+16)W2−12((3n−5)22n +3n+5)W1 +((6n−11)22n+2 +36n+53)W0).

(c) ∑
n
k=0 W2k+1 =

1
9 (((6n−5)22n+2 +9n+20)W2−3((6n−7)22n+2 +12n+25)W1 +4((3n−4)22n+2 +9n+16)W0).

Proof. Take m = 1, j = 0; m = 2, j = 0 and m = 2, j = 1, respectively, in Theorem 6.1. �
From Theorem 6.1, we have the following Corollary.

Corollary 6.3. For all integers m and j, we have the following sum formulas:

(a) ∑
n
k=0 Gmk+ j =

1
(2m−1)2 (( j+mn−1)2mn+2m+ j− ( j+m+mn−1)2mn+m+ j +(n+1)22m− (n+1)2m+1− ( j−m−1)2m+ j

+( j−1)2 j +n+1).
(b) ∑

n
k=0 Hmk+ j =

1
(2m−1) (2

mn+m+ j+1 +(n+1)2m−2 j+1−n−1).

(c) ∑
n
k=0 Rmk+ j =

1
(2m−1)2 (( j+mn)2mn+2m+ j− ( j+m+mn)2mn+m+ j− (n+1)22m +(n+1)2m+1 +(m− j)2m+ j +2 j j−n−1).

(d) ∑
n
k=0 Cmk+ j =

1
(2m−1)2 (( j+mn)2mn+2m+ j− ( j+m+mn)2mn+m+ j +(n+1)22m− (n+1)2m+1 +(m− j)2m+ j +2 j j+n+1).

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.4 which gives sum formulas of modified Woodall
numbers (take Wn = Gn with G0 = 0,G1 = 1,G2 = 5).

Corollary 6.4. For n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Gk = (n−2)2n+1 +n+4.

(b) ∑
n
k=0 G2k =

1
9 ((6n−5)22n+2 +9n+20).

(c) ∑
n
k=0 G2k+1 =

1
9 ((3n−1)22n+4 +9n+25).

Taking Wn = Hn with H0 = 3,H1 = 5,H2 = 9 in the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.5 which
presents sum formulas of modified Cullen numbers.

Corollary 6.5. For n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Hk = 2n+2 +n−1.

(b) ∑
n
k=0 H2k =

1
3 (2

2n+3 +3n+1).
(c) ∑

n
k=0 H2k+1 =

1
3 (2

2n+4 +3n−1).

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.6 which gives sum formulas of Woodall numbers
(take Wn = Rn with R0 =−1,R1 = 1,R2 = 7).

Corollary 6.6. For n≥ 0 we have the following formulas:
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(a) ∑
n
k=0 Rk = (n−1)(2n+1−1).

(b) ∑
n
k=0 R2k =

1
9 ((3n−1)22n+3−9n−1).

(c) ∑
n
k=0 R2k+1 =

1
9 ((6n+1)22n+3−9n+1).

Taking Wn =Cn with C0 = 1,C1 = 3,C2 = 9 in the last Proposition 6.2, we have the following Corollary 6.7 which presents sum formulas of
Cullen numbers.

Corollary 6.7. For n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Ck = (n−1)2n+1 +n+3.

(b) ∑
n
k=0 C2k =

1
9 ((3n−1)22n+3 +9n+17).

(c) ∑
n
k=0 C2k+1 =

1
9 ((6n+1)22n+3 +9n+19).

7. Matrices Related With Generalized Woodall numbers

We define the square matrix A of order 3 as:

A =

 5 −8 4
1 0 0
0 1 0


such that detA = 4. From (2.1) we have Wn+2

Wn+1
Wn

=

 5 −8 4
1 0 0
0 1 0

 Wn+1
Wn

Wn−1

 (7.1)

and from (1.6) (or using (7.1) and induction) we have Wn+2
Wn+1
Wn

=

 5 −8 4
1 0 0
0 1 0

n W2
W1
W0

 .

If we take W = G in (7.1) we have Gn+2
Gn+1
Gn

=

 5 −8 4
1 0 0
0 1 0

 Gn+1
Gn

Gn−1

 .

We also define

Bn =

 Gn+1 −8Gn +4Gn−1 4Gn
Gn −8Gn−1 +4Gn−2 4Gn−1

Gn−1 −8Gn−2 +4Gn−3 4Gn−2


and

Cn =

 Wn+1 −8Wn +4Wn−1 4Wn
Wn −8Wn−1 +4Wn−2 4Wn−1

Wn−1 −8Wn−2 +4Wn−3 4Wn−2


Theorem 7.1. For all integer m,n≥ 0, we have

(a) Bn = An

(b) C1An = AnC1
(c) Cn+m =CnBm = BmCn.

Proof. Take r = 5,s =−8, t = 4 in Soykan [25, Theorem 5.1.]. �
Some properties of matrix An can be given as

An = 5An−1−8An−2 +4An−3

and

An+m = AnAm = AmAn

and

det(An) = 4n

for all integer m and n.

Corollary 7.2. For all integers n, we have the following formulas for the modified Woodall, Woodall and Cullen numbers.
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(a) Modified Woodall Numbers.

An =

 5 −8 4
1 0 0
0 1 0

n

=

 Gn+1 −8Gn +4Gn−1 4Gn
Gn −8Gn−1 +4Gn−2 4Gn−1

Gn−1 −8Gn−2 +4Gn−3 4Gn−2


=

 2n+1n+1 4×2n−6×2nn−4 4×2nn−4×2n +4
2nn−2n +1 5×2n−3×2nn−4 2×2nn−4×2n +4
1
2 2nn−2n +1 2n+2− 3

2 2nn−4 2nn−3×2n +4

 .

(b) Woodall Numbers.

An =
1
2

 −5Rn+3 +19Rn+2−16Rn+1 24Rn+2−92Rn+1 +76Rn 4(−5Rn+2 +19Rn+1−16Rn)
−5Rn+2 +19Rn+1−16Rn 24Rn+1−92Rn +76Rn−1 4(−5Rn+1 +19Rn−16Rn−1)
−5Rn+1 +19Rn−16Rn−1 24Rn−92Rn−1 +76Rn−2 4(−5Rn +19Rn−1−16Rn−2)

 .

(c) Cullen Numbers.

An =

 −Cn+2 +4Cn+1−2Cn 6Cn+1−26Cn +16Cn−1 4(−Cn+1 +4Cn−2Cn−1)
−Cn+1 +4Cn−2Cn−1 6Cn−26Cn−1 +16Cn−2 4(−Cn +4Cn−1−2Cn−2)
−Cn +4Cn−1−2Cn−2 6Cn−1−26Cn−2 +16Cn−3 4(−Cn−1 +4Cn−2−2Cn−3)

 .

Proof.

(a) It is given in Theorem 7.1 (a).
(b) Note that, from Lemma 4.6, we have

2Gn =−5Rn+2 +19Rn+1−16Rn.

Using the last equation and (a), we get required result.
(c) Note that, from Lemma 4.7, we have

Gn =−Cn+1 +4Cn−2Cn−1.

Using the last equation and (a), we get required result. �

Theorem 7.3. For all integers m,n, we have

Wn+m =WnGm+1 +Wn−1(−8Gm +4Gm−1)+4Wn−2Gm (7.2)

=WnGm+1 +(−8Wn−1 +4Wn−2)Gm +4Wn−1Gm−1

Proof. Take r = 5,s =−8, t = 4 in Soykan [25, Theorem 5.2.]. �
By Lemma 4.1, we know that

(4W0−4W1 +W2)(2W0−3W1 +W2)
2Gm = (4W 2

0 +5W 2
1 −8W0W1−W1W2)Wm+2

+(W 2
2 −4W0W1 +8W0W2−5W1W2)Wm+1 +4(W 2

1 −W0W2)Wm.

so (7.2) can be written in the following form
(4W0 − 4W1 +W2)(2W0 − 3W1 +W2)

2Wn+m = Wn((4W 2
0 + 5W 2

1 − 8W0W1 −W1W2)Wm+3 + (W 2
2 − 4W0W1 + 8W0W2 − 5W1W2)Wm+2 +

4(W 2
1 −W0W2)Wm+1)+(−8Wn−1 +4Wn−2)((4W 2

0 +5W 2
1 −8W0W1−W1W2)Wm+2

+(W 2
2 −4W0W1+8W0W2−5W1W2)Wm+1+4(W 2

1 −W0W2)Wm)+4Wn−1((4W 2
0 +5W 2

1 −8W0W1−W1W2)Wm+1+(W 2
2 −4W0W1+8W0W2−

5W1W2)Wm +4(W 2
1 −W0W2)Wm−1).

Corollary 7.4. For all integers m,n, we have

Gn+m = GnGm+1 +Gn−1(−8Gm +4Gm−1)+4Gn−2Gm,

Hn+m = HnGm+1 +Hn−1(−8Gm +4Gm−1)+4Hn−2Gm,

Rn+m = RnGm+1 +Rn−1(−8Gm +4Gm−1)+4Rn−2Gm,

Cn+m =CnGm+1 +Cn−1(−8Gm +4Gm−1)+4Cn−2Gm,

and

2Rm+n = −5RnRm+3 +(19Rn +40Rn−1−20Rn−2)Rm+2

+4(−4Rn−43Rn−1 +19Rn−2)Rm+1 +4(51Rn−1−16Rn−2)Rm−64Rn−1Rm−1,

2Cm+n = −CnCm+3 +(3Cn +8Cn−1−4Cn−2)Cm+2

+4(−7Cn−1 +3Cn−2)Cm+1 +12Cn−1Cm.
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Taking m = n in the last Corollary we obtain the following identities:

G2n = 4G2
n−1 +(Gn+1−8Gn−1 +4Gn−2)Gn,

H2n = HnGn+1−4(2Hn−1−Hn−2)Gn +4Hn−1Gn−1,

R2n = RnGn+1−4(2Rn−1−Rn−2)Gn +4Rn−1Gn−1,

C2n =CnGn+1−4(2Cn−1−Cn−2)Gn +4Cn−1Gn−1,

and

2R2n =−5RnRn+3 +(19Rn +40Rn−1−20Rn−2)Rn+2 +4(−4Rn−43Rn−1 +19Rn−2)Rn+1

+4(51Rn−1−16Rn−2)Rn−64Rn−1Rn−1,

2C2n =−CnCn+3 +(3Cn +8Cn−1−4Cn−2)Cn+2 +4(−7Cn−1 +3Cn−2)Cn+1 +12Cn−1Cn.
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