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 Abstract 

Article Info This study aims to determine the effect of Bacillus megaterium var. phosphaticum 
applied together with rock phosphate on the yield of wheat grown in calcareous 
soil, some biological properties of soils and phosphorus fractions in the soil under 
greenhouse conditions. Considering the P fixation capacity of the soil used in the 
experiments and the amount of P present in the soil, the trial subjects were 
created based on randomized block designs with 3 replications, depending on 
whether 0, 25, 50, 75 and 100% of the P required to be given to the wheat plant 
was met from rock phosphate and whether it was bacterial or not, and finally 
wheat was grown. In the harvested plants, grain and stem weights were 
determined, grain and stem P contents were analysed and the amounts removed 
with grain and stem were calculated. Dehydrogenase (DHA) and phosphatase 
(PA) enzyme activities were performed in the soil samples taken after harvest. 
Soluble and loosely bound-P, Calcium-bound-P (Ca-P), Reductant soluble-P (RS-P) 
fractions and Olsen-P were determined in soil samples taken before planting and 
after harvest. The percent reduction in the fractions was calculated by using the 
pre-sowing and post-harvest values of these samples. According to the results, 
Bacillus megaterium DSM 3228 strain inoculated with rock phosphate increased 
grain and stem yield, grain and stem P content, and P amount removed by grain 
and stem of wheat. These parameters were found to be higher at high doses of P 
applied as rock phosphate. Inoculation increased the DHA and PA values of the 
soils. A decrease in P fraction forms with low solubility was determined by 
inoculation, some of this phosphorus was removed by plants and some of it was 
retained in the soil in different forms. 
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Introduction 
Phosphorus (light-bearing) is the second major macronutrient essential for plant growth and development 
and plays a role in basic biological functions such as cell division, synthesis of nucleic acids, photosynthesis 
and respiration, as well as energy transfer, fat, sugar and starch formation. Naturally, the amount of 
phosphorus in various soils generally varies between 0.01-0.15%, but not all of this is in a form suitable for 
plant use. Phosphorus requirement in vegetative organs for normal plant development varies between 0.3-
0.5% in dry matter content, and in the case that the phosphorus content of plants is usually 0.1% or less, the 
plant suffers from phosphorus deficiency.  

All over the world, phosphorus chemical fertilizers are used in traditional agriculture to eliminate 
phosphorus deficiency and to obtain the highest yield in the product. Due to the difference in the amount, 
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type and application times of the applied fertilizers and the lack of knowledge of the practitioners in this 
field, the health of living things and the environment can be adversely affected by phosphorus fertilizer 
applications. Phosphates were put in the same class as nitrate as an important pollutant, particularly in the 
last quarter of the 20th century. Regardless of its source, most of the dissolved phosphates are retained in the 
soil, and the part that can reach the sea due to the reasons such as erosion is deposited and imprisoned for 
millions of years (Correll, 1998; Daniel et al., 1998). In addition, the use of phosphorus fertilizers causes 
some heavy metals such as Cd, Cr, Pb and Ni in the structure of fertilizers to permeate into the soil and plant 
structure, and may have negative effects on soil and environmental health (Huang and Jin, 2008; Atafar, 
2010). Due to the high costs arising from raw materials and intermediate inputs in fertilizer production in 
our country in recent years, fertilizer production has decreased and its import has increased. Further 
research is needed to ensure less use of these fertilizers and increase their effectiveness in order to reduce 
the import of raw materials, intermediate inputs and fertilizers in fertilizer production and to minimize the 
negative effects of chemical fertilizers on the environmental health. 

Due to the negative effects and costs of chemical fertilizers on living things and the environment, the need 
for the use of more natural resources such as rock phosphate, which can be an alternative to these fertilizers, 
has arisen. However, the limited solubility of rock phosphate and the low rate of release limit the use of this 
material in agriculture. There are various factors affecting the utilization of raw phosphates by cultivated 
plants. In particular, soil reaction is the most important soil feature in the solubility of rock phosphate 
(Kanabo and Gilkes, 1987; Bolan and Hedley, 1990). Studies have shown that there has been an increase in 
crop yield with the application of raw rock phosphate in acid-reaction soils (Chien and Menon, 1995). On the 
other hand, it was determined that the raw rock phosphate application on calcareous alkaline reaction soils 
did not have a significant effect on the phosphorus nutrition of the plant (Çağatay et al., 1973). 

It is known that microorganisms dissolve insoluble phosphate by producing organic acids (malic acid, acetic 
acid, indoleacetic acid) and by chelating oxoacids from sugar (Dawwam et al., 2013; Khan et al., 2016; Behera 
et al., 2017; Pande et al., 2017) and many microorganisms with the ability to dissolve phosphorus have been 
identified by various researchers (Chunga et al., 2005; Fernández et al., 2007; Iyer et al. 2017). It has been 
demonstrated by studies that inoculation of seeds or soil with phosphate-solving bacteria (PSB) increases 
the solubility of fixed soil phosphorus and phosphates applied as fertilizers, resulting in higher crop yields 
(Batool and Iqbal, 2019). In addition, it has been pointed out that the use of rock phosphate as phosphorus 
fertilizer and its solubility with microorganisms can be an alternative to costly chemical fertilizers (Kaur and 
Reddy, 2015). 

The current study aims to determine the effect of Bacillus mageterium var. phosphaticum applied together 
with rock phosphate on the yield of wheat grown in calcareous soil, some biological properties of soil and 
phosphorus fractions in the soil under greenhouse conditions. 

Material and Methods 
Material 

In this study, bacteria that dissolve phosphorus as material, rock phosphate as phosphorus source and 
wheat as plant were used. The microorganism Bacillus megaterium var. phosphaticum is isolate of DSM 3228, 
obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 
1b 38124 Braunschweig, Germany). Rock phosphate was obtained from domestic sources in Turkey and 
rock phosphates from Mardin Mazı Mountain were used for this purpose. Altındane variety of wheat 
(Triticum aestium) was used as the test plant in the experiments. A soil with high lime content and low 
phosphorus content was used in the experiments.  

Soil used in the trials was determined as silty loam (Sand: 38.28%; Clay: 11.5%; Silt: 50.21%) and bulk 
density was 1.25 gr.cm-3, field capacity was 32.21% and wilting point was 16.21%. In addition, its pH (1:1, 
Soil : Water suspension) was 7.80; Electrical conductivity was (1:1, Soil : Water suspension) 0.502 dSm-1; 
Lime content was determined as 42.6%, organic Matter was 0.90% and available  P content was 3.04 mg kg-1. 
The pH value of the rock phosphate used as a phosphorus source was 8.22, the total phosphorus content was 
27%, the water-soluble phosphorus was 0.08%, and the water + citrate-soluble phosphorus values were 
0.081%. 

The trial subjects were created based on randomized block designs with 3 replications, depending on 
whether 0, 25, 50, 75 and 100% of the P required to be given to the wheat plant was met from rock 
phosphate and whether it was bacterial or not considering the P fixation capacity of the soil used in the 
experiments and the amount of P present in the soil.  
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For the application of bacteria in the experiment, lyophilized cultures of the mentioned bacteria were 
activated under completely aseptic conditions, and liquid culture of bacteria was formed in Nutrient agar 
(peptone 5 g, meat extract 3 g, 10 mg MnSO4.H2O L-1, pH=7). The greenhouse experiment was established 
and carried out in the light, temperature etc controlled research greenhouse in the Black Sea Agricultural 
Research Institute (at 250C, 350 ppm CO2, 8 hours dark and 16 hours light conditions). In the greenhouse 
experiment, different doses of rock phosphate placed in pots of 5 kg soil (<4 mm) over the dry weight and 
bacterial applications were applied to each pot separately according to the trial subjects. Bacteria 
inoculation level was applied to the soil at 5 ml (108 CFU. mL-1) per seed. Wheat seeds were sown by hand, 
15 in each pot. After the first emergence of the seeds from the soil, thinning was made to have 10 plants in 
each pot. Nitrogen and potassium required for plants without any phosphorus fertilization during the 
experiment were added in liquid form according to the results of soil analysis. The moisture content of the 
soil was kept at the field capacity level; for this purpose, the water lost from the soil by various ways was 
completed with pure water by taking the weights every day.  

Analysis Methods 

Grain and stem weights were determined by harvesting the plants that reached grain maturity, P contents of 
grain and stem were analysed, and the amounts removed with grain and stem were calculated. 
Dehydrogenase and phosphatase enzyme activities were performed in the soil samples taken after the 
harvest. Soluble and loosely bound-P, Calcium bound P (Ca-P), Reductant soluble-P(RS-P) fractions and 
Olsen-P were determined in the soil samples taken before planting and after harvest (Table 1). The % 
reduction in fractions was calculated with the following formula using the pre-planting and post-harvest 
values of these samples: 

ΔPi = (C preplanting-C postharvest) × 100/ C preplanting 

Table 1. Analyses applied to soil samples taken at the end of the trials 

Plant Analyses  Method 

Grain weight Gravimetrically (Jones, 2001)   

Stem weight  Gravimetrically (Jones, 2001)   

Grain and Stem P Amount The total P amount in dry-burned soil samples was determined by the 
vanadomolybdophosphoric yellow photometric method (Jones, 2001)   

Soil Biological Analyses  

Dehydrogenase activity Spectrophotometric determination of the colour formed as a result of the 
conversion of TTC entering the cell into TPF with the effect of the 

dehydrogenase enzyme in the cell (Pepper et al., 1995) 
Phosphatase enzyme activity Decomposition of disodium p-nitrophenylphosphate with the effect of 

phosphatase enzymes and spectrophotometric determination of the released 
p-nitrophenol (Tabatabai and Bremner,1969) 

Inorganic Phosphorus fractions 

Soluble and loosely bound P Extraction with 1M NH4Cl solution (Self-Davis et al., 2009)   

Calcium-bound P (Ca-P) Extraction with 0.25 M H2SO4 solution (Self-Davis et al., 2009)   

Reductant soluble P(RS-P) Extraction Na-dithionite- Na-citrate solution (Self-Davis et al., 2009)   

Olsen P 0.5 N NaHCO3 extraction (Olsen et.al., 1954)  

 

Inorganic phosphorus fractions were done according to the method proposed by Kuo (1996). The procedure 
used for calcareous soils has been described in detail by Self-Davis et al. (2009). In the first step, soluble and 
weak Al and Fe bound phosphates are separated or labile phosphates (NaOH/NaCl) are extracted. In the 
second step, it is extracted in soluble reductant (occluded phosphorus bound to Fe and Al oxides and 
pedogenic Ca-phosphates with reduced availability)/(Na citrate-bicarbonate-dithionite-extracted-CDB). In 
the third step, the fraction of phosphates bound to calcium of primary minerals -apatite group, hardly 
soluble phosphates (HCl extracted) are extracted.  

Evaluation of Obtained Results and Statistical Analysis 

The trials were analysed in the ANOVA statistical program according to the split plot trial design in the 
randomized plot experimental design, and the differences were classified according to Duncan and LDS 
(0,05).  
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Results and Discussion 
Effect of treatments on grain and stem yield and removed P amount  

Table 2 shows the changes in grain yield, P content and P amount removed with grain of wheat by Bacillus 
megaterium DSM 3228 strain inoculated with rock phosphate. Both the application of rock phosphate and 
inoculation affected the grain yield of the wheat statistically. The highest yield was obtained from the 
application of 75% of the P required to be given to the wheat in the subjects with and without inoculation. 
Microorganism inoculation was the subject that increased the grain yield more than the subject without 
inoculation. Rock phosphate application affected the grain P content of wheat statistically and the highest 
grain P value was obtained from 100% application of P required to be given to the wheat plant. However the 
inoculation application, did not cause a statistical difference in the grain P values of the plant. Both the rock 
phosphate application and inoculation caused a statistical difference in the P content removed by the plant 
grain. The highest P value removed with the grain was obtained from the 75% dose application of the P 
required to be given to the wheat. The P value removed by grain was found to be higher in the inoculated 
subjects than in the non-inoculated subjects.   

Table 2. Grain yield, grain P content and removed P amount by grain of wheat  

 Grain yield (gr pot -1) Grain P (%) P removed by grain (mg pot -1) 

 -DSM  
3228 

+DSM 
3228 

Mean -DSM 
3228 

+DSM 
3228 

Mean -DSM 
3228 

+DSM 
3228 

Mean 

0 3.088 4.050 3.733 B 0.129 0.129 0.129 C 3.971 5.212 4.592 C 

25 3.087 4.683 3.887 B 0.193 0.175 0.185 B 5.967 8.193 7.080 B 

50 3.487 4.360 3.923 B 0.195 0.195 0.197 AB 6.801 8.482 7.642 B 

75 4.313 5.230 4.771 A 0.189 0.202 0.195 B 8.163 10.51 9.337 A 

100 3.330 4.151 3.740 B 0.206 0.209 0.208 A 6.851 8.690 7.770 B 
Mean 3.461 B 4.495 A  0.182 0182  6.351 B 8.218 A  

 LSD0.05 LSD0.05 LSD0.05 

Inoculation (I) 0.284*  0.650* 
P doses (P) 0.378* 0.0126* 0.879* 

I*P    

Changes caused by Bacillus megaterium DSM 3228 strain inoculated with rock phosphate in stem yield, stem 
P content and the amount of P removed by stem of wheat are given in Table 3. Both rock phosphate 
application and inoculation affected the stem yield of wheat statistically. The highest yield was obtained 
from the application of 100% of the P required to be given to the wheat in the subjects with and without 
inoculation. Microorganism inoculation was the subject that increased the stem yield more than the non-
inoculated subject. Rock phosphate application did not affect the stem P content of wheat statistically, 
whereas inoculation resulted in a statistically significant difference. Inoculation was the application that 
increased the stem P content of the plant more. Both the rock phosphate application and inoculation caused 
a statistical difference in the P content removed by the plant stem. The highest P value removed by the stem 
was obtained from the 100% application of the P required to be given to the wheat. The P value removed by 
the stem was found to be higher in the inoculated subjects than in the non-inoculated subjects.  Many studies 
have shown that the application of phosphorus-solving microorganisms alone or in combination with any 
source of phosphorus provides increases in the development, growth parameters and P removal of various 
plants (Mamta et al., 2010; Singh and Reddy, 2011; Gupta et al., 2012; Hussain et al., 2019). 

Table 3. Stem yield, Stem P content and removed P amount by stem of wheat  

 Stem Yield, gr pot-1 Stem P, % P removed by stem, mg pot-1 
 -DSM 

3228 
+DSM 
3228 

Mean -DSM 
3228 

+DSM 
3228 

Mean -DSM 
3228 

+DSM 
3228 

Mean 

0 2.843 3.658 3.250 C 0.022 0.036 0.0267 0.633 1.300 0.967 B 
25 3.127 3.975 3.550 BC 0.025 0.026 0.0267 0.796 1.018 0.908 B 
50 2.920 4.044 3.483 BC 0.025 0.025 0.0267 0.733 1.004 0.870 B 
75 3.680 4.138 3.908 B 0.023 0.027 0.0250 0.835 1.137 0.987 B 

100 4.293 4.526 4.410 A 0.026 0.029 0.0283 1.103 1.307 1.207 A 
Mean 3.373 B 4.068 A  0.024 B 0.028 A  0.820 B 1.153 A  

 LSD0.05 LSD0.05 LSD0.05 

Inoculation (I) 0.379* 0.0033* 0.121* 
P doses(P) 0.463*  0.156* 

I*P    
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Table 4 shows the change caused by the Bacillus megaterium DSM 3228 strain inoculated with rock 
phosphate in the DHA and PA of the soil samples taken after harvest. Inoculation affected DHA statistically, 
and rock phosphate doses were found to be statistically ineffective. The subjects with inoculation were the 
application that increased the DHA activity of the soils more than the subjects that were not inoculated. Both 
the application of rock phosphate and inoculation affected the PA of the soils taken after the harvest of the 
wheat statistically. Phosphatase activity was found to be higher in inoculated subjects compared to non-
inoculated subjects. The highest phosphatase activity was obtained from 75% application of P required to be 
given to the wheat plant. This was followed by 25% and 50% applications, and the lowest PA value was 
obtained from the subject in which no fertilizer was applied.  

Dehydrogenase activity is not independent of the host microbial cell; therefore it is considered a good 
indicator of total microbial activity (Masciandaro et al., 2000; Kızılkaya, 2008). Phosphatase activity is an 
extracellular enzyme, that is, it is synthesized by microorganisms and accumulates in the soil, where it is 
synthesized. This enzyme is effective in organic and inorganic phosphorus availability in the soil and is 
widely used in the evaluation of the biological activity of soils (Amador et al., 1997; Kızılkaya and Hepşen, 
2004). It has been demonstrated by previous studies that the inoculation of microorganisms into the soil or 
seed that promote plant growth, alone or together with any P source, causes changes in the biological 
properties of the soil (Kızılkaya and Bayraklı, 2005; Singh and Reddy, 2011; Kaur and Reddy, 2014; Chaya 
and Bijoy, 2015).   

Table 4. Dehydrogenase activity (DHA) and Phosphatase activity (PA) activity of soil samples taken after harvest 

 Dehydrogenase activity (DHA) 
g TPF g-1 soil 24h 250C 

Phosphatase activity (PA) 
μg p-nitrophenol g-1 soil 

 -DSM 3228 +DSM 
3228 

Mean -DSM 3228 +DSM 
3228 

Mean 

0 2.551 2.952 2.751 111.9 120.4 116.1 C 

25 2.750 3.499 3.123 131.8 123.2 127.5 AB 

50 2.702 2.864 2.783 123.5 130.9 127.2 AB 

75 3.204 2.990 3.095 124.9 144.6 134.7 A 

100 2.321 2.757 2.541 112.9 138.6 125.7 B 
Mean 2.706 3.012  121.0 131.5  

 LSD0.05 LSD0.05 

Inoculation (I) 0.268* 7.509* 
Phosphor doses(P)  8.204* 

I*P   

In this study, P fractions the sequential analysis of inorganic phosphorus proposed by Kuo (1996) were 
modified for application to calcareous soils (Self-Davis et al., 2009). In this approach, fractionation 
procedures are based on the different solubility of various inorganic P forms in various extracts. With 
NaOH/NaCl extraction, some of both Al-P and Fe-P as well as the soluble loosely bound P were extracted. 
Reductant soluble P retained in the matrices of aggregates/minerals was extracted by CDB (Na citrate-
bicarbonate-dithionite) extraction, and finally, poorly soluble phosphates and especially the Ca-P fraction 
were extracted using HCl (Milić, 2019). 

P added to the soils as rock phosphate increased the inorganic phosphorus fractions of the soils compared to 
the control (Table 5). Studies have shown that phosphorus added to soils in different forms increases the 
amount of phosphorus in the soils (Wang et al., 2010; Audette et al., 2016; Mahmoud et al., 2018). The 
highest phosphorus amounts were determined as the Ca-P fraction both in the pre-planting and post-harvest 
periods. The order of the P fractions in the soil were as Ca-P ˃ reductant-P ˃ Soluble and loosely bound-P. In 
the studies, it has stated that the dominant form in calcareous soils is Ca-P (Solis and Torrent, 1989; Shen et 
al., 2004; Kızılkaya et al., 2007). P fractions in the pre-planting soil samples were higher than the amount of 
P fractions in the post-harvest soil samples (except reductant-P) in the inoculated and non-inoculated 
treatments. The P values in the post-harvest soil samples may have been lower due to some chemical 
reactions and/or plant uptake in the soil.  The relationships between plant P uptake and inorganic P forms in 
calcareous soils are not clearly defined. Plant P uptake is most closely associated with Ca-P (Kamprath and 
Watson, 1980), resin extractable P (Yang et al., 1990), and citrate-bicarbonate P (RS-P) (Solis and Torrent, 
1989). Samadi (2006) reported significant positive relationships between Ca2-P, Al-P, Fe-P and Ca10-P 
fractions and plant P uptake. Compared with the pre-planting P fractions, the Ca-P fraction had lower values 
in the inoculated subjects than being in the non-inoculated. When the reduction rates in the fraction are 
examined, it is seen that the percentage of decrease in the inoculated subjects is higher. On the other hand, 
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there was an increase in reductant-P values when compared to the pre-planting P fractions, and this increase 
was higher in the inoculated subjects. The ability of plants to utilize acid-soluble P (Ca-P) fractions has been 
attributed to acidification of the rhizosphere (Grinsted et al., 1982; Ahmad et al., 2018). Phosphorus-solving 
microorganisms can secrete various acids and provide the dissolution of Ca-P by lowering the pH of the soil 
and rhizosphere region. Bacillus mageterium var. phosphaticum is a very important phosphorus dissolving 
bacterium, especially capable of dissolving calcium phosphate. It is known that Bacillus strains produce 
lactic, isovaleric, isobutyric and acetic acid mixtures and these play an important role in phosphorus 
solubility. Other organic acids as glycolic, oxalic, maleic, and succinic acids have also been identified as 
phosphate solvents and are produced by bacteria that dissolve phosphorus (Banik and Dey 1982, Illmer and 
Schinner, 1992). Bacteria secrete these organic acids and solubilize insoluble inorganic phosphate in the 
form of tricalcium, dicalcium, rock phosphate and hydroxy apatite (Goldstein 1986, 1995; Güneş et al., 
2013). According to Oberson et al. (2001), microorganisms constitute highly important dynamic reserves of 
potentially useful nutrients for plants. Microorganisms play an important role in the conversion of organic 
phosphorus in the soil by secreting phosphatase enzyme and they also allow moderately unstable forms 
from phosphate compounds to pass into solution. Gong et.al (2014) reported that Penicillium oxalicum I1 
(PI1) isolate, a fungus with high phosphorus dissolving ability, converted a wide variety of insoluble 
phosphates such as Ca8H2(PO4)6.5H2O, AlPO4, FePO4 and Ca10(PO4)6(OH)2 in soil into soluble CaHPO4 and this 
isolate prevented the conversion of CaHPO4 into insoluble form.  

Table 5. P fractions of soils taken before planting and after harvest, % decrease in Olsen-P values 

  Post-harvest  Reduction in Fraction (%) 

 Pre-planting +DSM 3228 - DSM 3228 +DSM 3228 - DSM 3228 

Soluble and loosely bound P (mg kg-1) 

0 2.595 2.539 2.031 2 22 

25 2.595 2.539 2.116 2 18 

50 2.883 1.354 1.947 53 32 

75 3.325 1.524 2.285 54 31 

100 3.748 1.778 2.539 53 32 

Ca-P (mg kg-1) 
0 186 156 159 16 15 

25 193 170 171 12 11 
50 199 180 185 10 7 
75 225 196 200 13 11 

100 235 210 215 11 9 
Reductant-P (mg kg-1) 

0 9.625 10.70 9.513 -11 1 

25 12.70 13.38 11.59 -5 9 

50 6.930 9.513 7.135 -37 -3 

75 8.855 8.918 10.11 -1 -14 

100 8.085 17.540 16.35 -117 -102 

Olsen-P (mg kg-1) 
0 3.104 2.324 2.462 25 21 

25 3.235 2.324 2.321 28 28 

50 3.133 2.380 2.480 24 21 

75 4.040 3.201 3.447 21 15 

100 3.635 2.954 3.242 19 11 

Conclusion 
In this study, Bacillus megaterium DSM 3228 strain inoculated with rock phosphate increased grain and stem 
yield, grain and stem P content, and P amount removed by grain and stem of wheat. These parameters were 
found to be higher at higher doses of P applied as rock phosphate. Inoculation increased the DHA and PA 
values of the soils. A decrease was determined in P fraction forms with low solubility by inoculation, some of 
this phosphorus was removed by plants and some remained in the soil as other forms. It is considered that 
inoculated strain and some acids secreted by the plant roots are effective in this conversion. In calcareous 
soils, the solubility of more natural resources such as rock phosphate can be achieved by applying the 
Bacillus megaterium DSM 3228 strain. Conducting these trials with different phosphorus-solving bacteria 
and for many years will provide us more information about the behaviour of P fractions in the soil.  
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