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Abstract. Let R be a commutative ring with unity 1 6= 0. In this paper

we introduce the definition of the first derivative property on the ideals of the

polynomial ring R[x]. In particular, when R is a finite local ring with principal

maximal ideal m 6= {0} of index of nilpotency e, where 1 < e ≤ |R/m|+ 1, we

show that the null ideal consisting of polynomials inducing the zero function

on R satisfies this property. As an application, when R is a finite local ring

with null ideal satisfying this property, we prove that the stabilizer group of R

in the group of polynomial permutations on the ring R[x]/(x2), is isomorphic

to a certain factor group of the null ideal.
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1. Introduction

Let R be a commutative ring with unity 1 6= 0, and R[x] be the polynomial ring

over R of one indeterminate x. In addition to the usual operations on polynomials,

R[x] has a further operation, which appears in a normal way, namely the formal

derivative of polynomials. Nöbauer used this operation to define the derivative of

ideals with a certain property [4].

Another well known feature of R[x] is that every polynomial f(x) =
∑k
j=0 ajx

j ∈
R[x] induces a function F : R −→ R, where F (r) =

∑k
j=0 ajr

j for all r ∈ R. In this

case F is called a polynomial function on R. The set of all polynomial functions

on R is a monoid via composition of functions. Moreover, when the function F

is a bijection we say F is a polynomial permutation while f is a permutation

polynomial. Obviously, the set of all polynomial permutations is a group, which
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we denote by P(R). Further, P(R) forms the group of units of the monoid of

polynomial functions.

If a polynomial g ∈ R[x] induces the constant zero function over R, that is

g(r) = 0 for each r ∈ R, then g is called a null polynomial over (on) R. The set of

all null polynomials on R is an ideal of R[x], which we denote by NR and we call

it the null ideal (on R). The null ideal NR supplies the ring of polynomials R[x]

with an equivalence relation in which two polynomials g, h ∈ R[x] are equivalent

whenever g − h ∈ NR. In other words, two polynomials are related in this relation

if and only if they induce the same function on R. Moreover, every equivalence

class corresponds to one polynomial function on R and vice versa.

This paper considers a property of the ideals of the ring R[x] and its application

to the group of polynomial permutations on finite rings. In particular, for a finite

local ring R with null ideal having this property, we prove some facts about the

permutation polynomials on the ring R[x]/(x2).

The property defined in the paper depends on the formal derivative of polyno-

mials, however it is completely different from the one considered in [4].

Throughout this paper for a local ring R, let m denote its maximal ideal and let

N(m) be the set of all polynomials over R which vanish on the ideal m. Evidently,

N(m) is an ideal in the polynomial ring R[x] containing NR. For f ∈ R[x] with

f(x) =
∑n
i=0 aix

i, let f ′ denote its formal derivative; i.e., f ′(x) =
∑n
i=1 iaix

i−1.

2. The first derivative property and the null ideal

We begin this section with the definition of our property. Then we prove some

supplementary results. Later, we show that the null ideal NR has this property for

a wide class of finite local rings with principal maximal ideals.

Definition 2.1. Let R be a commutative ring. An ideal I of R[x] satisfies the first

derivative property if g, h ∈ I implies that g′h′ ∈ I.

For shortness we use the abbreviation FDP for the first derivative property.

Proposition 2.2. Let I, J be ideals of R[x]. Then:

(1) I2 satisfies FDP;

(2) if I and J satisfy FDP, then IJ satisfies FDP.

Proof. We prove (2) and leave (1) to the reader. Let f, g ∈ IJ . Then there

exist polynomials f1, . . . , fn; g1, . . . , gm ∈ I and h1, . . . , hn; k1, . . . , km ∈ J such

that f =
n∑
i=1

fihi and g =
m∑
j=1

gjkj . So f ′ =
n∑
i=1

f ′ihi +
n∑
i=1

fih
′
i and g′ =

m∑
j=1

g′jkj +
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m∑
j=1

gjk
′
j . Obviously,

n∑
i=1

fih
′
i,

m∑
j=1

gjk
′
j ∈ I and

n∑
i=1

f ′ihi,
m∑
j=1

g′jkj ∈ J . On the other

hand, by Definition 2.1, we have f ′ig
′
j ∈ I for every 1 ≤ i ≤ n; 1 ≤ j ≤ m.

Hence (
n∑
i=1

f ′ihi)(
m∑
j=1

g′jkj) =
∑
i,j

f ′ig
′
jhikj ∈ IJ . Similarly, (

n∑
i=1

fih
′
i)(

m∑
j=1

gjk
′
j) ∈ IJ .

Therefore

f ′g′ = (

n∑
i=1

f ′ihi +

n∑
i=1

fih
′
i)(

m∑
j=1

g′jkj +

m∑
j=1

gjk
′
j) ∈ IJ. �

The following result gives a criterion for FDP for finitely generated ideals over

R[x].

Proposition 2.3. Let I be an ideal of R[x] and suppose that I = (f1, . . . , fn)

for some f1, . . . , fn ∈ R[x]. Then I satisfies FDP if and only if f ′if
′
j ∈ I for all

i, j ∈ {1, . . . , n}.

Proof. (⇒) Obvious.

(⇐) Suppose that f ′if
′
j ∈ I for any two generators fi, fj ∈ I. Let g, h ∈ I.

Then there exist g1, . . . , gn;h1, . . . , hn ∈ R[x] such that g(x) =
n∑
i=1

gifi and h(x) =

n∑
i=1

hifi. We have g′ =
n∑
i=1

g′ifi +
n∑
i=1

gif
′
i and h′ =

n∑
i=1

h′ifi +
n∑
i=1

hif
′
i . So

g′h′ = (

n∑
i=1

g′ifi)h
′ + (

n∑
i=1

gif
′
i)(

n∑
i=1

h′ifi) + (

n∑
i,j=1

gihjf
′
if
′
j).

Clearly, g′h′ ∈ I, and hence I satisfies FDP. �

Remark 2.4. Let R be a local ring with maximal ideal m and residue field Fq,
and let λ(x) =

∏q
i=1(x− ci), where {c1, . . . , cq} is any complete systems of residue

modulo m. It is obvious that ci − cj is a unit in R whenever i 6= j; hence for every

r ∈ R such that r ≡ ci mod m, r− cj is a unit. Then the following lemma follows.

Lemma 2.5. Let r ∈ R. Then λ′(r) is a unit in R.

Remark 2.6. It is a celebrated fact that every finite local commutative ring is a

Henselian ring, i.e., a local ring in which Hensel’s lemma holds, (see for example, [2,

Theorem. XIII.4]). This allows us to use some facts about the ideals m, NR, when

R is a Henselian ring, from [5] to improve our related ideas on finite local rings.

Lemma 2.7. [5, Corollary 2.11] Let R be a Henselian ring. Then λ(R) = m.

Lemma 2.8. [5, Theorem 4.2] Let R be a Henselian ring and λ(x) as in Re-

mark 2.4. If N(m) = (F1(x), . . . , Fn(x)), then NR = (F1(λ(x)), . . . , Fn(λ(x))).
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Recall from the introduction the definitions of the ideals NR, N(m). The follow-

ing result shows that, for a Henselian ring R and a finitely generated ideal N(m),

either both N(m) and NR satisfy FDP or neither satisfies FDP.

Theorem 2.9. Let R be a Henselian ring and λ(x) as in Remark 2.4. If N(m) =

(F1(x), . . . , Fn(x)), then NR satisfies FDP if and only if N(m) satisfies FDP.

Proof. By Lemma 2.8, NR = (F1(λ(x)), . . . , Fn(λ(x))).

(⇐) Suppose that N(m) satisfies FDP. Then for every i, j ∈ {1, . . . , n} there

exists hi,j ∈ N(m) such that F ′iF
′
j = hi,j . Hence F ′i (λ(x))F ′j(λ(x)) = hi,j(λ(x)) ∈

NR since λ(R) = m by Lemma 2.7. Now

(Fi(λ(x)))′(Fj(λ(x)))′ = (λ′(x))2F ′i (λ(x))F ′j(λ(x)) = (λ′(x))2hi,j(λ(x)) ∈ NR.

Thus NR satisfies FDP by Proposition 2.3.

(⇒) Suppose that NR satisfies FDP. Then for every i, j ∈ {1, . . . , n} we have

(Fi(λ(x)))′(Fj(λ(x)))′ = (λ′(x))2F ′i (λ(x))F ′j(λ(x)) ∈ NR.

Now let r ∈ R be arbitrary, so (λ′(r))2F ′i (λ(r))F ′j(λ(r)) = 0 by the definition

of NR. Hence F ′i (λ(r))F ′j(λ(r)) = 0 since λ′(r) is a unit by Lemma 2.5, whence

F ′i (λ(x))F ′j(λ(x)) ∈ NR. But, λ(R) = m by Lemma 2.7. Therefore F ′iF
′
j ∈ N(m)

for every i, j ∈ {1, . . . , n}. Thus N(m) satisfies FDP by Proposition 2.3. �

Remark 2.10. Notice that we don’t require R to be Noetherian. In fact there

exists a Henselian ring which is non-Noetherian with a finitely generated ideal

N(m) (see [5, Example 3.2]).

Our aim now is to show that the null ideal NR satisfies FDP for every finite

local ring with a nonzero principal maximal ideal of index of nilpotency less than

or equal q + 1, where q is the cardinality of the residue field Fq. To do so, we need

this lemma.

Lemma 2.11. [5, Theorem 4.4] Let R be a finite local ring with principal maximal

ideal m = (m) and residue filed Fq. Suppose e is the index of nilpotency of m. If

e ≤ q, then N(m) = (x,m)e; if e = q + 1, then N(m) = (x,m)e + (xq −mq−1x).

Theorem 2.12. Let R be a finite local ring with principal maximal ideal m = (m)

and residue filed Fq. Suppose e is the index of nilpotency of m. If 1 < e ≤ q + 1

then NR satisfies FDP, provided e ≥ 4 when e = q + 1.
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Proof. In view of Theorem 2.9, we need only to prove that N(m) satisfies FDP.

Now N(m) is finitely generated since R is finite, so it is enough to show that

g′h′ ∈ N(m) for every pair of generators g, h of N(m) by Proposition 2.3.

First assume that 1 < e < q + 1. By Lemma 2.11, N(m) is generated by the set

{xe,mxe−1, . . . ,me−1x}. Let g, h be any generators of N(m). Then g(x) = mjxe−j

and h(x) = mixe−i for some 0 ≤ i, j ≤ e− 1. Therefore

g′(x)h′(x) = (e− i)(e− j)mi+jx2e−i−j−2 ∈ N(m)

since e ≥ 2, and so N(m) satisfies FDP.

We now consider the case e = q + 1. By Lemma 2.11, N(m) is generated by the

following set {xe,mxe−1, . . . ,me−1x, xq−mq−1x}. Since q ∈ m we have q = rm for

some r ∈ R. Let g, h any two generators of N(m). We distinguish three cases.

Case 1. g(x) = h(x) = xq −mq−1x. Then

g′(x)h′(x) = (qxq−1 −mq−1)2 = q2x2q−2 − 2qmq−1xq−1 +m2q−2,

whence

g′(x)h′(x) = r2m2x2e−4 − 2rme−1xe−2 +m2e−4.

Evidently, r2m2x2e−4−2rme−1xe−2 ∈ N(m) since e = q+1 ≥ 3. Thus g′h′ ∈ N(m)

if and only if m2e−4 ∈ N(m) if and only if m2e−4 = 0, provided e ≥ 4.

Case 2. g(x) = xq −mq−1x and h(x) = mixe−i for some 0 ≤ i ≤ e− 1.

Then

g′(x)h′(x) = (e− i)mixe−i−1(qxq−1−mq−1) = (e− i)mixe−i−1(rmxe−2−me−2) =

= (e − i)mi+1xe−i−1(rxe−2 − me−3) ∈ N(m) since mi+1xe−i−1 ∈ N(m) and e ≥
4 > 3.

Case 3. g(x) = mjxe−j and h(x) = mixe−i for some 0 ≤ i, j ≤ e− 1. Then

g′(x)h′(x) = (e− i)(e− j)mi+jx2e−i−j−2 ∈ N(m)

since e ≥ 4.

Therefore N(m) satisfies FDP. �

Remark 2.13. (1) If e = 1, then R = Fq. In this case NFq
= (xq − x)Fq[x].

But, NFq does not satisfy FDP. Because, if we take g(x) = xq − x, then

(g′(x))2 = (qxq−1 − 1)2 = 1 6∈ NFq
.
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(2) Consider g(x) = (x2 − x)2 − 2(x2 − x) ∈ Z8[x], by Fermat’s Theorem,

one can show easily that g(a) ≡ 0 (mod 8) for every a ∈ Z8, that is,

g ∈ NZ8 . However, NZ8 does not satisfy FDP since (g′)2 6∈ NZ8 . Indeed,

(g′(1))2 = 4 6≡ 0 (mod 8). Note that e = q + 1 = 3 < 4.

Corollary 2.14. Let n be a positive integer and p a prime number.

(1) If p > 2, then NZpn
satisfies FDP for every 1 < n ≤ p+ 1.

(2) If p = 2, then NZ4
satisfies FDP.

Although we defined null ideals for finite rings, the definition is still true for

infinite rings. We consider this fact in the following example.

Example 2.15. Let R be a boolean ring (not necessary finite). By definition,

f = x2 − x ∈ NR. But, (f ′)2 = (−1)2 = 1 /∈ NR.

Right now we have achieved our first main goal, that is, showing the existence

of a wide class of finite local rings with null ideals having FDP. In the next section

we employ FDP to infer some facts about a group of polynomial permutations over

the ring R[x]/(x2).

3. Applications to polynomial permutations of the ring R[x]/(x2)

In this section, for a finite local commutative ring R with the null ideal NR

satisfying the first derivative property, we prove some facts about some kind of

permutation polynomials on the ring R[x]/(x2).

Throughout this section all rings are finite.

Recall that R[x]/(x2) is isomorphic to the ring R[α] = {a+ bα : a, b ∈ R}, where

α 6∈ R and α2 = 0. Here are some easily verifiable facts about polynomials over

R[α].

Fact 3.1. Let h ∈ R[x]. Then h(a+ bα) = h(a) + bh′(a)α for each a, b ∈ R.

Fact 3.2. Let g ∈ R[α][x]. Then g = g1 + g2α for some g1, g2 ∈ R[x].

Recall from the introduction that P(R[α]) denotes the group of polynomial per-

mutations on the ring R[α].

Definition 3.3. Let Stα(R) = {F ∈ P(R[α]) : F (r) = r for each r ∈ R}.

Obviously, Stα(R) is a nonempty finite subset of P(R[α]). Further, it is closed

under the composition of functions. Therefore Stα(R) is a subgroup of P(R[α]).

The group Stα(R) by definition stabilizes every element of R; for this we call it
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the stabilizer group of R in the group of polynomial permutations of R[α] or more

shortly the stabilizer group.

Lemma 3.4. Let A be a ring and g, h ∈ A[x]. If g and h induce the same function

over A, then there exists f ∈ NA such that g = h+ f .

Proof. Take f = g − h. Then f ∈ NA. �

We need some facts from [1]. However, we prove these facts as the proofs do not

depend on extra materials.

Lemma 3.5. [1, Lemma 3.4] Let h ∈ NR. Then hα induces the zero function over

R[α].

Proof. By Fact 3.1, h(a+ bα)α = (h(a) + bh′(a)α)α = h(a)α+ 0 = 0α = 0 for all

a, b ∈ R. �

Proposition 3.6. [1, Proposition 4.6] Let R be a ring. Then

Stα(R) = {F ∈ P(R[α]) : F is induced by x+ f(x) for some f ∈ NR}.

Proof. It is obvious that

Stα(R) ⊇ {F ∈ P(R[α]) : F is induced by x+ f(x) for some f ∈ NR}.

Now let F ∈ P(R[α]) such that F (r) = r for each r ∈ R. Since F is a polynomial

permutation over R[α], F is induced by a polynomial g ∈ R[α][x]. By Fact 3.2,

g = g0 + g1 α, where g0, g1 ∈ R[x]. Now r = F (r) = g(r) = g0(r) + g1(r)α for

each r ∈ R. Then g1(r)α = 0, and so g1(r) = 0 for each r ∈ R, i.e., g1 ∈ NR.

Hence, g1α is a null polynomial over R[α] by Lemma 3.5. Thus g0 and g0 + g1α

both induce F on R[α], i.e., F is induced by g0. Further, g0 ≡ x mod NR, i.e.,

g0 induces the identity on R, and therefore g0(x) = x + h(x) for some h ∈ NR by

Lemma 3.4. This shows the other inclusion. �

Lemma 3.7. Let F ∈ Stα(R). Suppose that x + f(x) induces F , where f ∈ NR.

Then the following statements are equivalent

(1) (f ′)2 ∈ NR;

(2) x− f(x) induces F−1;

(3) F k = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

is induced by x+ kf(x) for every k ∈ N.
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Proof. (1) ⇒ (2) Let G be the function induced by x − f(x). Then for every

r, s ∈ R we have

G ◦ F (r + s α) = G(r + s α+f(r + s α))

= G(r + s α+f(r) + sf ′(r)α) (by Fact 3.1)

= G(r + s α+sf ′(r)α) (since f is null)

= (r + s α+sf ′(r)α)− f(r + (s+ sf ′(r))α)

= (r + s α+sf ′(r)α)−
(
f(r) + (s+ sf ′(r))f ′(r)α

)
(by Fact 3.1)

= r + s α+sf ′(r)α−sf ′(r)α (since (f ′)2 ∈ NR)

= r + s α .

Thus F−1 = G, whence x− f(x) induces F−1.

(2)⇒ (1) Let x− f(x) induces F−1. Then one can use the previous calculations

to get that for every r, s ∈ R, r + sα = F−1 ◦ F (r + s α) = r + s α−s(f ′(r))2α.

Hence s(f ′(r))2α = 0, whence (f ′(r))2s = 0 for every r, s ∈ R. So if s = 1, we

have (f ′(r))2 = 0 for every r ∈ R. Therefore (f ′)2 ∈ NR.

(1) ⇒ (3) By induction on k.

(3) ⇒ (1) Let k = 2. Then F 2 is induced by x+ 2f(x), and so that

F 2(r + s α) = r + s α+2f ′(r)s α .

While, by successive calculations,

F 2(r+s α) = F ◦F (r+s α) = F (r+s α+sf ′(r)α) = r+s α+s(2f ′(r)+(f ′(r))2)α.

Then from the two expression of F 2(r + s α) follows that s(f ′(r))2 = 0 for every

r, s ∈ R. Thus (f ′(r))2 = 0 for every r ∈ R, and hence (f ′)2 ∈ NR. �

In the following proposition we show that how FDP is useful in describing the

behavior of the elements of the stabilizer group Stα(R) in connection with their

polynomial expressions.

Proposition 3.8. Let F ∈ Stα(R). Suppose that x + f(x) induces F , where

f ∈ NR. If NR satisfies FDP, then the following statements hold:

(1) x− f(x) induces F−1;

(2) F k = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

is induced by x+ kf(x) for every k ∈ N;

(3) if G ∈ Stα(R) is induced by x+ g(x), where g ∈ NR, then x+ f(x) + g(x)

induces F ◦G.
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Proof. Since NR satisfies FDP, we have (f ′)2 ∈ NR, and hence (1) and (2) hold

by Lemma 3.7.

(3) Let G ∈ Stα(R) be induced by x + g(x), where g ∈ NR. Then by FDP,

f ′g′ ∈ NR. Now we have for every r, s ∈ R, by Fact 3.1 and since f, g ∈ NR,

G ◦ F (r + s α) = G(r + s α+sf ′(r)α)

= (r + s α+sf ′(r)α) + g(r + s α+sf ′(r)α)

= (r + s α+sf ′(r)α) + (s+ sf ′(r))g′(r)α

= r + s α+sf ′(r)α+sg′(r)α by FDP.

Therefore G ◦ F is induced by the polynomial x+ f(x) + g(x). �

We prove now a special case of [1, Theorem 4.1].

Lemma 3.9. Let g ∈ R[x]. Then g is a permutation polynomial on R[α] if and

only if g is a permutation polynomial on R and g′(r) is a unit for every r ∈ R.

Proof. (⇒) Let c ∈ R. Then c ∈ R[α]. Since g is a permutation polynomial over

R[α], there exist a, b ∈ R such that g(a + bα) = c. Thus g(a) + bg′(a)α = c by

Fact 3.1. So g(a) = c, whence g is surjective on the ring R. Hence g is a permutation

polynomial on R.

Let a ∈ R and suppose that g′(a) is a non-unit in R. Then g′(a) is a zero divisor

of R. Let b ∈ R, b 6= 0, such that bg′(a) = 0. Then g(a+bα) = g(a)+bg′(a)α = g(a),

so g is not injective, which contradicts to the fact being bijective over R[α].

(⇐) We need only to prove that g is injective. For this let a, b, c, d ∈ R such that

g(a + bα) = g(c + dα). Then g(a) + bg′(a)α = g(c) + dg′(c)α by Fact 3.1. Thus

we have g(a) = g(c) and bg′(a) = dg′(c). Hence a = c since g is a permutation

polynomial on R. So, since g′(a) is a unit in R, b = d follows. �

We recall the following well-known result.

Lemma 3.10. [3, Theorem 3] Let R be a local ring with nonzero maximal ideal m,

and g ∈ R[x]. Then g is a permutation polynomial on R if and only if the following

conditions hold:

(1) g is a permutation polynomial on R/m;

(2) g′(r) 6≡ 0 mod m, for all r ∈ R.

Lemma 3.11. Let R be a local ring with nonzero maximal ideal m, and g ∈ R[x].

Then g is a permutation polynomial on R[α] if and only if g is a permutation

polynomial on R.
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Proof. (⇒) Follows by Lemma 3.9.

(⇐) Suppose that g is a permutation polynomial on R. Then for all a ∈ R,

g′(a) 6≡ 0 mod m by Lemma 3.10. Thus for all a ∈ R, g′(a) is a unit in R since

R is a local ring. Hence g is a permutation polynomial on R[α] by Lemma 3.9. �

Corollary 3.12. Let R be a local ring with nonzero maximal ideal m and let f ∈
NR. If F is the function induced by x+ f(x), then F ∈ Stα(R).

In the rest of the paper let N ′R = {f ∈ NR : f ′ ∈ NR}. It is evident that N ′R is

an ideal of R[x] contained in NR.

Lemma 3.13. Let g ∈ R[x]. Then g is a null polynomial on R[α] if and only if

g ∈ N ′R.

Proof. By Fact 3.1, g(a+ bα) = g(a) + bg′(a)α for every a, b ∈ R.

(⇐) Immediately.

(⇒) Since g is null on R[α] we have that g(a) + bg′(a)α = 0 for every a, b ∈ R.

This is equivalent to g(a) = bg′(a) = 0 for every a, b ∈ R. Thus if b = 1, we have

g(a) = g′(a) = 0 for very a ∈ R. Hence g ∈ N ′R. �

We are now ready to prove our main result for this section.

Proposition 3.14. Let R be a local ring with nonzero maximal ideal m. If NR

satisfies FDP, then

Stα(R) ∼= NR
/
N ′R.

Proof. Let f ∈ NR, then obviously [x + f(x)] ∈ Stα(R) by Corollary 3.12, where

[x+ f(x)] denotes the function induced by x+ f(x) on R[α].

Now define a function ψ : NR −→ Stα(R) by ψ(f) = [x + f(x)]. By Proposi-

tion 3.6, ψ is surjective. Let g ∈ NR. Then set F1 = [x + f(x)], F2 = [x + g(x)]

and F3 = [x + f(x) + g(x)]. By Proposition 3.8, F1 ◦ F2 = F3. Therefore

ψ(f + g) = ψ(f) ◦ψ(g), whence ψ is a homomorphism. Hence NR
/

kerψ ∼= Stα(R)

by the first isomorphism theorem.

Now, kerψ = {f ∈ NR : [x + f(x)] is the identity permutation on R[α]}. By

Lemma 3.13, N ′R ⊆ kerψ. On the other, if f ∈ kerψ, then x + f(x) induces the

identity on R[α]. Hence x + f(x) = x + h(x) for some null polynomial (on R[α])

h ∈ R[α][x] by Lemma 3.4. Thus f = h and f is a null polynomial on R[α]. Since

f ∈ R[x] we have f ∈ N ′R by Lemma 3.13. Therefore kerψ ⊆ N ′R. �

Remark 3.15. In [1], for the case R = Zpn the ring of integers modulo pn, it was

only proved that |Stα(Zpn)| = [NZpn
: N ′Zpn

], for every n > 1, and it was unclear
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whether Stα(Zpn)and NZpn
/N ′Zpn

are isomorphic or not. But, now Proposition 3.14

tells us they are isomorphic via a map induced by the function ψ defined in the

above proof, when NR satisfies FDP.

Corollary 3.16. Let R be a local ring with nonzero maximal ideal m. The function

ψ : NR −→ Stα(R), defined by ψ(f) = [x+ f(x)] for every f ∈ NR, is a homomor-

phism if and only if NR satisfies FDP.

Proof. (⇐) Follows by the same argument given in the proof of the previous propo-

sition.

(⇒) Assume that ψ is a homomorphism. Let f, g ∈ NR. Put F1 = [x+ f(x)], F2 =

[x+ g(x)] and F3 = [x+ f(x) + g(x)]. Then F1, F2, F3 ∈ Stα(R) by Corollary 3.12.

We now consider ψ(f+g) = [x+f(x)+g(x)] = F3. But, since ψ is a homomorphism

by assumption, we have that ψ(f + g) = ψ(f) ◦ψ(g) = F1 ◦F2. Thus F1 ◦F2 = F3.

Now, for every a, b ∈ R, we have

F1 ◦ F2(a+ bα) = a+ bα+ b(g′(a) + f ′(a) + f ′(a)g′(a))α,

and F3(a+ bα) = a+ bα+ b(f ′(a) + g′(a))α.

Hence bf ′(a)g′(a)α = 0 for every a, b ∈ R, which implies that f ′(a)g′(a) = 0 for

every a ∈ R. Thus f ′g′ ∈ NR, and so NR satisfies FDP. �

Remark 3.17. The function ψ defined in Corollary 3.16 seems natural in the sense

that it sends every polynomial g ∈ NR to the function induced by x + g(x) over

R[α], however, we notice the following.

(1) When R = Fq, the function ψ is not defined. For instance, take f(x) =

xq − x ∈ NFq
, but F = [f(x) + x] = [xq] 6∈ Stα(Fq) since F is not a

permutation as F (0) = F (α) = 0 (compare this with Remark 2.13-(1)).

(2) If R = Z8, the function ψ can be defined by Corollary 3.12. But, by

Remark 2.13-(2), NZ8
does not satisfy FDP. So ψ is not a homomorphism

by Corollary 3.16.

Applying Proposition 3.14 to Corollary 2.14 gives the following result.

Corollary 3.18. Let p be a prime number and n a positive integer.

(1) If p > 2, then Stα(Zpn) ∼= NZpn

/
N ′Zpn

for every 1 < n ≤ p+ 1.

(2) If p = 2, then Stα(Z4) ∼= NZ4

/
N ′Z4

.

We conclude the paper by showing that the null ideal on dual numbers satisfies

FDP. For this we recall the following fact from [1].
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Lemma 3.19. [1, Theorem 3.5] Let R be a commutative ring and let A = R[α] be

the ring of dual numbers over R. Let f = f1 + f2 α, where f1, f2 ∈ R[x]. Then

f ∈ NA if and only if f1 ∈ N ′R and f2 ∈ NR.

Proposition 3.20. Let R be a commutative ring and let A = R[α] be the ring of

dual numbers over R. Then NA satisfies FDP.

Proof. Let f, g ∈ NA. Then f = f1+f2 α and g = g1+g2 α for some f1, f2, g1, g2 ∈
R[x] such that f1, g1 ∈ N ′R and f2, g2 ∈ NR by Fact 3.2 and Lemma 3.19, respec-

tively. But then f ′1g
′
1 ∈ N ′R and f ′1g

′
2 + f ′2g

′
1 ∈ NR. Thus, by Lemma 3.19,

f ′g′ = f ′1g
′
1 + (f ′1g

′
2 + f ′2g

′
1)α ∈ NA. �
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[4] W. Nöbauer, Über die Ableitungen der Vollideale, Math. Z., 75 (1961), 14-21.

[5] M. W. Rogers and C. Wickham, Polynomials inducing the zero function on

local rings, Int. Electron. J. Algebra, 22 (2017), 170-186.

Amr Ali Al-Maktry

Institute of Analysis and Number Theory (5010)

Technische Universität Graz

kopernikusgasse 24/II

8010 Graz, Austria

e-mail: almaktry@math.tugraz.at


