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Abstract. Let R be a commutative ring with identity, S a multiplicatively

closed subset of R, and M be an R-module. In this paper, we study and in-

vestigate some properties of S-primary submodules of M . Among the other

results, it is shown that this class of modules contains the family of primary

(resp. S-prime) submodules properly.
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1. Introduction

Throughout this article, all rings are commutative with identity elements and

all modules are unital modules. N, Z, and Q will denote respectively the natural

numbers, the ring of integers and the field of quotients of Z.
Consider a non-empty subset S of R. We call S a multiplicatively closed subset

of R if (i) 0 /∈ S, (ii) 1 ∈ S, and (iii) ss′ ∈ S for all s, s′ ∈ S [12]. Note that

S = R− p is a multiplicatively closed subset of R for every prime ideal p of R. Let

N and K be two submodules of an R-module M and J an ideal of R. Then the

residual N by K and J is defined as follows:

(N :R K) = { r ∈ R | rK ⊆ N},

(N :M J) = {m ∈ M | Jm ⊆ N}.

Particularly, we use AnnR(M) instead of (0 :R M) and (N :M s) instead of

(N :M Rs), where Rs is the principal ideal generated by an element s ∈ R. The

sets of prime ideals and maximal ideals of R are denoted by Spec(R) and Max(R),

respectively.

A submodule P of M is called prime if P ̸= M and whenever r ∈ R and e ∈ M

satisfy re ∈ P , then r ∈ (P :R M) or e ∈ P . The set of all prime submodules of M

is denoted by Spec(M) [3, 7].

In [11], the authors introduced the concept of S-prime submodules and investi-

gated some properties of this class of modules. Let S be a multiplicatively closed
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subset of R and P be a submodule of M with (P :R M)∩S = ∅. Then P is said to

be an S-prime submodule if there exists s ∈ S such that whenever rm ∈ P , where

r ∈ R and m ∈ M , then sr ∈ (P :R M) or sm ∈ P . Particularly, an ideal I of R is

said to be an S-prime ideal if I is an S-prime submodule of the R-module R.

The notion of S-primary submodule was introduced in [5]. Let S be a multiplica-

tively closed subset of R and P be a submodule of M with (P :R M)∩S = ∅. Then
P is said to be an S-primary submodule if there exists s ∈ S such that whenever

rm ∈ P , where r ∈ R and m ∈ M , then sr ∈
√

(P :R M) or sm ∈ P .

In this paper, we will study the family of S-primary submodules extensively and

investigate some of their properties. In fact, this family of modules is a generaliza-

tion of primary (resp. S-prime) submodules.

Among the other results, we provide some notions that each one is equivalent

to S-primary (Theorem 2.2). Examples 2.4 and 2.5 show that these new modules

contain the family of primary and S-prime submodules properly. Further it is

proved that if P is an S-primary submodule of M , then S−1P is also an S-primary

submodule of S−1M (Proposition 2.7). Example 2.8 shows that the converse is not

true in general. Also we show that S-primary submodules has a good behavior with

Cartesian products (Theorems 2.20 and 2.21). Moreover, we provide some useful

characterization concerning S-primary submodules (Theorems 2.17, 2.24 and 2.25).

2. Main results

Definition 2.1. Let S be a multiplicatively closed subset of R and P be a sub-

module of M with (P :R M)∩S = ∅. Then P is said to be an S-primary submodule

of M if there exists s ∈ S such that whenever rm ∈ P , where m ∈ M and r ∈ R,

then sr ∈
√
(P :R M) or sm ∈ P [5, Definition 2.27]. In particular, we say that an

ideal I of R is an S-primary ideal if I is an S-primary submodule of R-module R.

Theorem 2.2. Let S be a multiplicatively closed subset of R. For a submodule P

of an R-module M with (P :R M) ∩ S = ∅, the following are equivalent:

(a) P is an S-primary submodule of M ;

(b) There exists s ∈ S such that for every r ∈ R, the endomorphism

r : s(M/P ) → s(M/P ) given by sm = sm + P 7→ rsm = rsm + P is

injective or (rs)t(M/P ) = (0) for some t ∈ N;
(c) There exists s ∈ S such that whenever rN ⊆ P , where N is a submodule of

M and r ∈ R, then sr ∈
√

(P :R M) or sN ⊆ P ;

(d) There exists s ∈ S such that whenever JN ⊆ P , where N is a submodule

of M and J is an ideal of R, then sJ ⊆
√
(P :R M) or sN ⊆ P .
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Proof. (a)⇒(b) By hypothesis, there exists s ∈ S such that for every r ∈ R and

m ∈ M if rm ∈ P , then we have sm ∈ P or sr ∈
√
(P :R M). Now for each

r ∈ R, we define the endomorphism r : s(M/P ) → s(M/P ) by sm+P 7→ rsm+P .

We show that this endomorphism is injective or rs ∈
√
(P :R M). Assume rs /∈√

(P :R M). Then we show the other part holds. To see let rsm = rsm+P = P =

0. So we have (rs)m ∈ P . So by hypothesis, sm ∈ P or s(rs) = rs2 ∈
√
(P :R M).

We conclude sr ∈
√
(P :R M), which is a contradiction. Hence sm ∈ P , as required.

(b)⇒(a) It is clear.

(a)⇒(c) It is clear.

(c)⇒(d) Let JN ⊆ P , where J is an ideal of R and N is a submodule of M . We

will show that there exists s ∈ S such that sN ⊆ P or sJ ⊆
√
(P :R M). Clearly,

we have rN ⊆ P for every r ∈ J . So by part (c), there exists s ∈ S such that

sN ⊆ P or sr ∈
√
(P :R M) for every r ∈ J , as desired.

(d)⇒(a) Take r ∈ R and m ∈ M with rm ∈ P . Now, put J = Rr and N = Rm.

Then we can conclude that JN = Rrm ⊆ P . By assumption, there is an s ∈ S so

that sJ = Rrs ⊆
√
(P :R M) or sN = Rsm ⊆ P and so either sr ∈

√
(P :R M) or

sm ∈ P , as required. □

Lemma 2.3. Let M be an R-module and S a multiplicatively closed subset of R.

Then we have the following.

(a) If P is a primary submodule of M such that (P :R M) ∩ S = ∅, then P is

an S-primary submodule of M .

(b) If P is an S-primary submodule of M and S ⊆ u(R), where u(R) denotes

the set of units in R, then P is a primary submodule of M .

Proof. This is clear. □

By setting S = {1}, we conclude that every primary submodule is an S-primary

submodule by Lemma 2.3. The following example shows that the converse is not

true in general.

Example 2.4. Consider the Z-module M = Q⊕ (
⊕n

i=1 Zpi
), where pi are distinct

positive prime integers. Take the submodule P = (0) and the multiplicatively

closed subset

S = {1, pm1
1 pm2

2 ...pmn
n | ∀i ∈ {1, 2, ..., n}, mi ∈ N ∪ {0} }.

First note that (P :Z M) = (0) and p1p2...pn(0, 1, 1, ..., 1) = (0, 0, 0, ..., 0) ∈ P .

Since p1p2...pn /∈
√

(P :Z M) and (0, 1, 1, ..., 1) /∈ P , P is not a primary submodule
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of M . Put s = p1p2...pn and let

k(
a

b
, x1, x2, ..., xn) = (

ka

b
, kx1, kx2, ..., kxn) ∈ P,

where k ∈ Z and (ab , x1, x2, ..., xn) ∈ M . Then ka = 0. This yields that k = 0

or a = 0. If k = 0, there is nothing to prove. Thus assume that a = 0. Then

s(ab , x1, x2, ..., xn) ∈ P . Therefore, P is an S-primary submodule of M .

We recall that a submodule P of an R-module M is S-prime if there exists

s ∈ S such that whenever rm ∈ P , where r ∈ R and m ∈ M , then sr ∈ (P :R M)

or sm ∈ P [11]. Clearly, every S-prime submodule is S-primary. The following

example shows that the converse is not true in general.

Example 2.5. Consider M = Z4 as a Z-module. Set S = Z\2Z and P = (0). Thus

we have (P :Z M) = 4Z and 2.2 ∈ (0). Since for every s ∈ S, 2s /∈ (P :Z M) and

s.2 /∈ P , P is not an S-prime submodule of M . Put s = 1 and let ka = 0. If a = 0,

there is nothing to prove. Thus assume that a ̸= 0. Then k = 2k′ for some k′ ∈ Z.
This implies that k ∈

√
(P :Z M). Therefore, P is an S-primary submodule of M .

Remark 2.6. Let S be a multiplicatively closed subset of R. Recall that the

saturation S∗ of S is defined as

S∗ = {x ∈ R | x
1
is a unit of S−1R}.

It is obvious that S∗ is a multiplicatively closed subset of R containing S [6].

Proposition 2.7. Let S be a multiplicatively closed subset of R and M be an

R-module. Then we have the following.

(a) If S1 ⊆ S2 are multiplicatively closed subsets of R and P is an S1-primary

submodule of M , then P is an S2-primary submodule of M in case

(P :R M) ∩ S2 = ∅.
(b) P is an S-primary submodule of M if and only if P is an S∗-primary

submodule of M .

(c) If P is an S-primary submodule of M , then S−1P is a primary submodule

of S−1R-module S−1M .

Proof. (a) It is clear.

(b) Assume that P is an S-primary submodule of M . We need to prove that

(P :R M) and S∗ are disjoint. Suppose there exists x ∈ (P :R M)∩S∗. As

x ∈ S∗, x
1 is a unit of S−1R and so (x1 )(

a
s ) = 1 for some a ∈ R and s ∈ S.

This yields that us = uxa for some u ∈ S. Now we have that us = uxa ∈
(P :R M)∩S, a contradiction. Thus (P :R M)∩S∗ = ∅. Now as S ⊆ S∗, by
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part (a), P is an S∗-primary submodule of M . Conversely, assume that P

is an S∗-primary submodule of M . Let rm ∈ P , where r ∈ R and m ∈ M .

Then there exists x ∈ S∗ such that xr ∈
√

(P :R M) or xm ∈ P . As x
1 is

a unit of S−1R, there exist u, s ∈ S and a ∈ R such that us = uxa. Put

us = s′ ∈ S. Then note that s′r = (us)r = uaxr ∈
√
(P :R M) or s′m ∈ P .

Therefore, P is an S-primary submodule of M .

(c) Let ( rs )(
m
t ) ∈ S−1P , where r

s ∈ S−1R and m
t ∈ S−1M . Then urm ∈ P

for some u ∈ S. Since P is an S-primary submodule of M , there is an

s′ ∈ S so that s′ur ∈
√
(P :R M) or s′m ∈ P . This yields that r

s = s′ur
s′us ∈

S−1
√
(P :R M) ⊆

√
(S−1P :S−1R S−1M) or m

t = s′m
s′t ∈ S−1P . Hence,

S−1P is a primary submodule of S−1M . □

The following example shows that the converse of part (c) of Proposition 2.7 is

not true in general.

Example 2.8. Consider the Z-module M = Q. Take the submodule N = Z and

the multiplicatively closed subset S = Z − {0} of Z. Then (N :Z M) = (0). Let s

be an arbitrary element of S. Choose a prime number p with gcd(p, s) = 1. Then

note that p 1
p = 1 ∈ N . But sp /∈

√
(N :Z M) and s

p /∈ N , it follows that N is

not an S-primary submodule of M . Since S−1Z = Q is a field, S−1(Q) is a vector

space. Therefore the proper submodule S−1N is a primary submodule of S−1Q.

Proposition 2.9. Suppose f : M → M ′ is an R-homomorphism. Then we have

the following.

(a) If P ′ is an S-primary submodule of M ′ provided that (f−1(P ′) :R M)∩S =

∅, then f−1(P ′) is an S-primary submodule of M .

(b) If f is an epimorphism and P is an S-primary submodule of M with

ker(f) ⊆ P , then f(P ) is an S-primary submodule of M ′.

Proof. (a) Let rm ∈ f−1(P ′) for some r ∈ R and m ∈ M . This yields

that f(rm) = rf(m) ∈ P ′. Since P ′ is an S-primary submodule of M ′,

there is an s ∈ S so that sr ∈
√
(P ′ :R M ′) or sf(m) ∈ P ′. Now we

will show that (P ′ :R M ′) ⊆ (f−1(P ′) :R M). Take x ∈ (P ′ :R M ′).

Then we have xM ′ ⊆ P ′. Since f(M) ⊆ M ′, we conclude that f(xM) =

xf(M) ⊆ xM ′ ⊆ P ′. This implies that xM ⊆ f−1(f(M)) ⊆ f−1(p′)

and thus x ∈ (f−1(P ′) :R M). Hence we have sr ∈
√
(f−1(P ′) :R M) or

sm ∈ f−1(P ′). It follows that f−1(P ′) is an S-primary submodule of M .

(b) First note that (f(P ) :R M ′) ∩ S = ∅. Otherwise there would be an

s ∈ (f(P ) :R M ′) ∩ S. Since s ∈ (f(P ) :R M ′), sM ′ ⊆ f(P ), but then
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f(sM) = sf(M) = sM ′ ⊆ f(P ). By taking their inverse images under f ,

we have

sM ⊆ sM + ker(f) ⊆ f−1(f(P )) = P + ker(f) = P.

That means s ∈ (P :R M), which is a contradiction. Now take r ∈ R

and m′ ∈ M ′ with rm′ ∈ f(P ). As f is an epimorphism, there is an

m ∈ M such that m′ = f(m). Then rm′ = rf(m) = f(rm) ∈ f(P ). Since

Ker(f) is a subset of P , we get rm ∈ P . As P is an S-primary submodule

of M , there is an s ∈ S so that sr ∈
√
(P :R M) or sm ∈ P . Since√

(P :R M) ⊆
√

(f(P ) :R M ′), we have sr ∈
√
(f(P ) :R M ′) or f(sm) =

sf(m) = sm′ ∈ f(P ). Accordingly, f(P ) is an S-primary submodule of

M ′. □

Corollary 2.10. Let S be a multiplicatively closed subset of R and take a submodule

L of M . Then we have the following.

(a) If P ′ is an S-primary submodule of M with (P ′ :R L)∩ S = ∅, then L∩P ′

is an S-primary submodule of L.

(b) Suppose that P is a submodule of M with L ⊆ P . Then P is an S-primary

submodule of M if and only if P/L is an S-primary submodule of M/L.

Proof. (a) Consider the injection i : L → M defined by i(m) = m for all

m ∈ L. Then note that i−1(P ′) = L∩P ′. Now we will show that (i−1(P ′) :R

L) ∩ S = ∅. Assume that s ∈ (i−1(P ′) :R L) ∩ S. Then we have sL ⊆
i−1(P ′) = L∩P ′ ⊆ P ′. This implies that s ∈ (P ′ :R L)∩S, a contradiction.

The rest follows from Proposition 2.9 (a).

(b) Assume that P is an S-primary submodule ofM . Then consider the canoni-

cal homomorphism π : M → M/L defined by π(m) = m+L for all m ∈ M .

By Proposition 2.9 (b), P/L is an S-primary submodule of M/L. Con-

versely, assume that P/L is an S-primary submodule of M/L. Let rm ∈ P

for some r ∈ R and m ∈ M . This yields that r(m + L) = rm + L ∈ P/L.

As P/L is an S-primary submodule of M/L, there is an s ∈ S so that

sr ∈
√
(P/L :R M/L) =

√
(P :R M) or s(m+L) = sm+L ∈ P/L. There-

fore, we have sr ∈
√

(P :R M) or sm ∈ P . Hence, P is an S-primary

submodule of M . □

An R-module M is said to be a multiplication module if for every submodule N

of M there exists an ideal I of R such that N = IM [4].

Proposition 2.11. Let M be an R-module and S be a multiplicatively closed subset

of R. The following statements hold.
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(a) If P is an S-primary submodule of M , then (P :R M) is an S-primary ideal

of R.

(b) If M is a multiplication module and (P :R M) is an S-primary ideal of R,

then P is an S-primary submodule of M .

Proof. (a) Let xy ∈ (P :R M) for some x, y ∈ R. Then xym ∈ P for all

m ∈ M . As P is an S-primary submodule, there exists s ∈ S such that

sx ∈
√
(P :R M) or sym ∈ P for all m ∈ M . If sx ∈

√
(P :R M), there is

nothing to prove. Suppose that sx /∈
√
(P :R M). Then sym ∈ P for all

m ∈ M so that sy ∈ (P :R M). Therefore, (P :R M) is an S-primary ideal

of R.

(b) Let J be an ideal of R and N a submodule of M with JN ⊆ P . Then we

can conclude that J(N :R M) ⊆ (JN :R M) ⊆ (P :R M). As (P :R M) is

an S-primary ideal of R, there is an s ∈ S so that s(N :R M) ⊆ (P :R M)

or sJ ⊆
√
(P :R M). Thus, we can conclude that sN = s(N :R M)M ⊆

(P :R M)M = P or sJ ⊆
√
(P :R M). Therefore, by Theorem 2.2 (d), P

is an S-primary submodule of M . □

Remark 2.12. (a) Assume that M is a multiplication R-module and K,L are

two submodules of M . The product of K and L is defined as KL = (K :R

M)(L :R M)M [1].

(b) LetM be anR-module andN a submodule ofM . The radical ofN , denoted

by rad(N), is the intersection of all prime submodules of M containing N ;

that is, rad(N) =
⋂
{P | N ⊆ P, P ∈ Spec(M)} [8].

As an immediate consequence of the Proposition 2.11 and Theorem 2.2 (d), we

have the following explicit result.

Corollary 2.13. Suppose that M is a multiplication R-module and P a submodule

of M provided that (P :R M)∩S = ∅, where S is a multiplicatively closed subset of

R. Then the following are equivalent:

(a) P is an S-primary submodule of M ;

(b) There exists s ∈ S such that whenever LN ⊆ P , where L and N are

submodules of M , then s(L :R M) ⊆
√

(P :R M) or sN ⊆ P .

Corollary 2.14. Suppose that M is a finitely generated multiplication R-module

and P is a submodule of M provided that (P :R M) ∩ S = ∅, where S is a multi-

plicatively closed subset of R. Then the following are equivalent:

(a) P is an S-primary submodule of M ;
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(b) There exists s ∈ S such that whenever LN ⊆ P , where L and N are

submodules of M , then sL ⊆ rad(P ) or sN ⊆ P .

Proof. (a)⇒(b) Assume that LN ⊆ P , where L and N are submodules of M .

By Remark 2.12 (a), LN = (L :R M)N ⊆ P . Then there exists s ∈ S so that

s(L :R M) ⊆
√
(P :R M) or sN ⊆ P by Theorem 2.2 (d). SinceM is multiplication,

by [4, Theorem 2.12], we have s(L :R M)M = sL ⊆
√

(P :R M)M = rad(P ) or

sN ⊆ P .

(b)⇒(a) Assume that JN ⊆ P , where N is a submodule of M and J is an ideal

of R. Set K := JM . As M is a multiplication module, Then we have

KN = (K :R M)(N :R M)M = J(N :R M)M = JN ⊆ P.

By assumption, there exists s ∈ S so that sK ⊆ rad(P ) or sN ⊆ P . As M is

finitely generated, by [9, Thoerem 4.4], sK ⊆ rad(P ) implies that

sJ ⊆ (sK :R M) ⊆ (rad(P ) :R M) =
√
(P :R M).

Therefore P is an S-primary submodule of M by Corollary 2.13. □

Remark 2.15. (a) Let M be an R-module and p be a maximal ideal of R.

In [4], Tp(M) is defined as follows

Tp(M) = { m ∈ M | (1− r)m = 0 for some r ∈ p}.

Clearly Tp(M) is a submodule of M . An R-module M is said to be p-cyclic

provided there exist q ∈ p and m ∈ M such that (1− q)M ⊆ Rm [4].

(b) Let M be an R-module. Then M is a multiplication R-module if and only

if for every maximal ideal p of R either M = Tp(M) or M is p-cyclic [4,

Theorem 1.2].

Lemma 2.16. Let S be a multiplicatively closed subset of R, p be an S-primary

(resp. S-prime) ideal of R and M be a faithful multiplication R-module. Then

there exists an s ∈ S such that whenever am ∈ pM , where a ∈ R and m ∈ M , then

sa ∈ √
p (resp. sa ∈ p) or sm ∈ pM .

Proof. It is enough to prove it for S-primary submodules. The technique is similar

for S-prime. As p is an S-primary ideal, there exists s ∈ S, whenever rr′ ∈ p, where

r, r′ ∈ R, then sr ∈ √
p or sr′ ∈ p. Let a ∈ R andm ∈ M satisfy am ∈ pM . Suppose

sa /∈ √
p. Set K := (pM :R sm). Assume that K ̸= R. Then there exists a maximal

ideal Q of R so that K ⊆ Q. m /∈ TQ(M), since otherwise, there exists q ∈ Q such

that (1 − q)m = 0 and so (1 − q)sm = 0. This implies that (1 − q) ∈ K ⊆ Q, a

contradiction. Since M is Q-cyclic, by [4, Theorem 1.2], there exist m′ ∈ M and
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q ∈ Q such that (1−q)M ⊆ Rm′. In particular, (1−q)m = s′m′, (1−q)am = p′m′

for some s′ ∈ R and p′ ∈ p. Thus (as′ − p′)m′ = 0. Now (1 − q)(AnnR(m
′))M ⊆

(AnnR(m
′))Rm′ = 0 implies (1 − q)AnnR(m) ⊆ AnnR(M) = 0, because M is

faithful, and hence (1 − q)as′ = (1 − q)p′ ∈ p. As p is an S-primary ideal, ss′ ∈ p

or sa ∈ √
p or s(1− q)n ∈ p for some n ∈ N. But p ⊆ K ⊆ Q so that in each case,

we have a contradiction. It follows that K = R and sm ∈ pM , as required. □

In the following, the Theorem 2.11 in [11] will be extended by removing the

condition “finitely generated”.

Theorem 2.17. Let M be a multiplication R-module and P a submodule of M

provided that (P :R M) ∩ S = ∅, where S is a multiplicatively closed subset of R.

Then the following are equivalent:

(a) P is an S-primary (resp. S-prime) submodule of M .

(b) (P :R M) is an S-primary (resp. S-prime) ideal of R.

(c) P = IM for some S-primary (resp. S-prime) ideal I of R with Ann(M) ⊆
I.

Proof. (a)⇒(b) It is clear from Proposition 2.11 (a).

(b)⇒(c) It is clear.

(c)⇒(a) As M is a faithful multiplication R/AnnR(M)-module, by Corollary

2.10 (b), I/AnnR(M) is an S-primary (resp. S-prime) ideal of R/AnnR(M). Hence

P = IM is an S-primary (resp. S-prime) submodule of R/AnnR(M)-module M by

Lemma 2.16. Therefore, P is an S-primary (resp. S-prime) submodule of R-module

M , as required. □

Proposition 2.18. Let P be an S-primary submodule of multiplication R-module

M . Suppose that N ∩ L ⊆ P for some submodules N and L of M . Then sN ⊆ P

or sL ⊆ rad(P ) for some s ∈ S.

Proof. Since P is an S-primary submodule, there exists s ∈ S such that for every

r ∈ R and m ∈ M , if rm ∈ P , then sr ∈
√
(P :R M) or sm ∈ P . Let sN ⊈ P .

Then sm′ /∈ P for some m′ ∈ N . Take an element a ∈ (L :R M). This yields that

am′ ∈ (L :R M)N ⊆ L ∩ N ⊆ P . As P is an S-primary submodule of M and

sm′ /∈ P , we can conclude that sa ∈
√

(P :R M) so that s(L :R M) ⊆
√
(P :R M).

As M is a multiplication module, by [4, Theorem 2.12], we have

sL = s(L :R M)M ⊆
√
(P :R M)M = rad(P ). □

Lemma 2.19. Let R = R1 × R2 and S = S1 × S2 where Si is a multiplicatively

closed subset of Ri. Suppose p = p1 × p2 is an ideal of R. Then the following are

equivalent:
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(a) p is an S-primary ideal of R.

(b) p1 is an S1-primary ideal of R1 and p2 ∩ S2 ̸= ∅ or p2 is an S2-primary

ideal of R2 and p1 ∩ S1 ̸= ∅.

Proof. (a)⇒(b) Since (1, 0)(0, 1) = (0, 0) ∈ p, there exists s = (s1, s2) ∈ S so that

s(1, 0) = (s1, 0) ∈
√
p or s(0, 1) = (0, s2) ∈ p. Thus p1 ∩ S1 ̸= ∅ or p2 ∩ S2 ̸= ∅. We

may assume that p1 ∩ S1 ̸= ∅. As P ∩ S = ∅, we have p2 ∩ S2 = ∅. Let xy ∈ p2

for some x, y ∈ R2. Since (0, x)(0, y) ∈ p and p is an S-primary ideal of R. We get

either s(0, x) = (0, s2x) ∈ √
p or s(0, y) = (0, s2y) ∈ p and this yields s2x ∈ √

p2

or s2y ∈ p2. Therefore, p2 is an S-primary ideal of R2. In the other case, one can

easily show that p1 is an S-primary ideal of R1.

(b)⇒(a) Assume that p1 ∩ S1 ̸= ∅ and p2 is an S-primary ideal of R2. Then

there exists s1 ∈ p1 ∩ S1. Let (a, b)(c, d) = (ac, bd) ∈ p for some a, c ∈ R1 and

b, d ∈ R2. This yields that bd ∈ p2 and thus there exists s2 ∈ S2 so that s2b ∈
√
p2

or s2d ∈ p2. Put s = (s1, s2) ∈ S. Then note that s(a, b) = (s1a, s2b) ∈ √
p or

s(c, d) ∈ p. Therefore, p is an S-primary ideal of R. In other case, one can similarly

prove that p is an S-primary ideal of R. □

Theorem 2.20. Suppose that M = M1 × M2 and R = R1 × R2-module and

S = S1 × S2 is a multiplicatively closed subset of R, where Mi is a Ri-module and

Si is a multiplicatively closed subset of Ri for each i = 1, 2. Assume P = P1 × P2

is a submodule of M . Then the following are equivalent:

(a) P is an S-primary submodule of M .

(b) P1 is an S1-primary submodule of M1 and (P2 :R2 M2) ∩ S2 ̸= ∅ or P2 is

an S2-primary submodule of M2 and (P1 :R1
M1) ∩ S1 ̸= ∅.

Proof. (a)⇒(b) By Proposition 2.11, (P :R M) = (P1 :R1 M1) × (P2 :R2 M2) is

an S-primary ideal of R and so by Lemma 2.19, either (P1 :R1
M1) ∩ S1 ̸= ∅ or

(P2 :R2 M2) ∩ S2 ̸= ∅. We may assume that (P1 :R1 M1) ∩ S1 ̸= ∅. Now we will

show that P2 is an S2-primary submodule of M2. Let rm ∈ P2 for some r ∈ R2

and m ∈ M2. Then (1, r)(0,m) = (0, rm) ∈ P . As P is an S-primary, there is an

s = (s1, s2) ∈ S so that s(1, r) = (s1, s2r) ∈
√

(P :R M) or s(0 :R m) = (0, s2m) ∈
P . This implies that s2r ∈

√
(P2 :R2

M2) or s2m ∈ P2. Therefore, P2 is an S2 is

an S2-primary submodule of M2. In the other case, it can be similarly show that

P1 is an S1-primary submodule of M1.

(b)⇒(a) Assume that (P1 :R1 M1)∩S1 ̸= ∅ and P2 is an S2-primary submodule of

M2. Then there exists s1 ∈ (P1 :R1
M1)∩S1. Let (r1, r2)(m1,m2) = (r1m1, r2m2) ∈

P for some ri ∈ Ri and mi ∈ Mi, where i = 1, 2. Then r2m2 ∈ P2. As P2 is an

S2-primary submodule of M2, there is an s2 ∈ S2 so that s2r2 ∈
√
(P2 :R2 M2) or
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s2m2 ∈ P2. Now put s = (s1, s2) ∈ S. Then note that s(r1, r2) = (s1r1, s2r2) ∈√
(P :R M) or s(m1,m2) = (s1m1, s2m2) ∈ P1 × P2 = P . Therefore, P is an

S-primary submodule of M . Similarly, one can show that if P1 is an S1-primary

submodule of M1 and (P2 :R2
M2) ∩ S2 ̸= ∅, then P is an S-primary submodule of

M . □

Theorem 2.21. Let M = M1×M2×· · ·×Mn and R = R1×R2×· · ·×Rn-module

and S = S1 × S2 × · · · × Sn is a multiplicatively closed subset of R, where Mi is an

Ri-module and Si is a multiplicatively closed subset of Ri for each i = 1, 2, . . . , n.

Assume P = P1 × P2 × · · · × Pn is a submodule of M . Then the following are

equivalent:

(a) P is an S-primary submodule of M .

(b) Pi is an Si-primary submodule of Mi for some i ∈ {1, 2, . . . , n} and (Pj :Rj

Mj) ∩ Sj ̸= ∅ for all j ∈ {1, 2, . . . , n} − {i}.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then

(a)⇔(b) follows from Theorem 2.20. Assume that (a) and (b) are equivalent when

k < n. Now, we shall prove (a)⇔(b) when k = n. Let P = P1 ×P2 × · · · ×Pn. Put

P ′ = P1 × P2 × · · · × Pn−1 and S′ = S1 × S2 × · · · × Sn−1. Then by Theorem 2.20,

the necessary and sufficient condition for P = P ′ × Pn is an S-primary submodule

of M is that P ′ is an S-primary submodule of M ′ and (Pn :Rn
Mn) ∩ Sn ̸= ∅

or Pn is an S-primary submodule of Mn and (P ′ :R′ M ′) ∩ S′ ̸= ∅, where M ′ =

M1 ×M2 × · · · ×Mn−1 and R′ = R1 ×R2 × · · · ×Rn−1. The rest follows from the

induction hypothesis. □

Lemma 2.22. Suppose that P is an S-primary submodule of M . Then the following

statements hold for some s ∈ S.

(a) (P :M s′) ⊆ (P :M s) for all s′ ∈ S.

(b) ((P :R M) :R s′) ⊆ ((P :R M) :R s) for all s′ ∈ S.

Proof. (a) Take an element m′ ∈ (P :M s′), where s′ ∈ S. Then s′m′ ∈ P .

Since P is an S-primary submodule of M , there exists s ∈ S such that

ss′ ∈
√
(P :R M) or sm′ ∈ P . As (P :R M) ∩ S = ∅, we get sm′ ∈ P ,

namely m′ ∈ (P :M s).

(b) Follows from part (a). □

Proposition 2.23. Suppose that M is a finitely generated R-module, S is a multi-

plicatively closed subset of R, and P is a submodule of M satisfying (P :R M)∩S =

∅. Then the following are equivalent:

(a) P is an S-primary submodule of M .
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(b) S−1P is a primary submodule of S−1M and there is an s ∈ S satisfying

(P :M s′) ⊆ (P :M s) for all s′ ∈ S.

Proof. (a)⇒(b) It is clear from Proposition 2.7 (c) and Lemma 2.22.

(b)⇒(a) Take a ∈ R and m ∈ M with am ∈ P . Then a
1 .

m
1 ∈ S−1P . Since S−1P

is a primary submodule of S−1M and M is finitely generated, we can conclude

that a
1 ∈

√
(S−1P :S−1R S−1M) =

√
S−1(P :R M) or m

1 ∈ S−1P . Then ua ∈√
(P :R M) or u′m ∈ P for some u, u′ ∈ S. By assumption, there is an s ∈ S so

that (P :R s′) ⊆ (P :R s) for all s′ ∈ S. If ua ∈
√
(P :R M), then anM ⊆ (P :M

un) ⊆ (P :R s) for some n ∈ N and thus sa ∈
√
(P :R M). If u′m ∈ P , a similar

argument shows that sm ∈ P . Therefore, P is an S-primary submodule of M . □

Theorem 2.24. Suppose that P is a submodule of M provided (P :R M) ∩ S = ∅.
Then P is an S-primary submodule of M if and only if (P :M s) is a primary

submodule of M for some s ∈ S.

Proof. Assume (P :M s) is a primary submodule ofM for some s ∈ S. Let am ∈ P ,

where a ∈ R and m ∈ M . As am ∈ (P :M s), we get a ∈
√

((P :M s) :R M) or m ∈
(P :M s). This yields that as ∈

√
(P :R M) or sm ∈ P . Conversely, assume that

P is an S-primary submodule of M . Then there exists s ∈ S such that whenever

am ∈ P , where a ∈ R and m ∈ M , then sa ∈
√

(P :R M) or sm ∈ P . Now we

prove that (P :M s) is primary. Take r ∈ R and m ∈ M with rm ∈ (P :M s). Then

srm ∈ P . As P is S-primary, we get s2r ∈
√
(P :R M) or sm ∈ P . If sm ∈ P ,

then there is nothing to show. Assume that sm /∈ P . Then s2r ∈
√
(P :R M) and

hence sr ∈
√
(P :R M). Thus rn ∈ ((P :R M) :R sn) ⊆ ((P :R M) :R s) for some

n ∈ N, by Lemma 2.22. Thus, we can conclude that rn ∈ ((P :M s) :R M), namely

r ∈
√
((P :M s) :R M). Hence (P :M s) is a prime submodule of M . □

Theorem 2.25. Suppose that P is a submodule of M provided (P :R M) ⊆ Jac(R),

where Jac(R) is the Jacobson radical of R. Then the following statements are

equivalent:

(a) P is a primary submodule of M .

(b) (P :R M) is a primary ideal of R and P is an (R−m)-primary submodule

of M for each m ∈ Max(R).

Proof. (a)⇒(b) Since (P :R M) ⊆ Jac(R), (P :R M) ⊆ m for each m ∈ Max(R)

and hence (P :R M) ∩ (R−m) = ∅. The rest follows from Lemma 2.3 (a).

(b)⇒(a) Let am ∈ P with a /∈ (P :R M) for some a ∈ R and m ∈ M . Let

m ∈ Max(R). As P is an (R − m)-primary submodule of M , there exists sm /∈ m

such that asm ∈
√
(P :R M) or smm ∈ P . As (P :R M) is a primary ideal of R and
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sm /∈
√
(P :R M), we have asm /∈ (P :R M) and so smm ∈ P . Now consider the

set Ω = {sm | ∃ m ∈ Max(R), sm /∈ m and smm ∈ P}. Then note that (Ω) = R.

To see this, take any maximal ideal m′ containing Ω. Then the definition of Ω

requires that there exists sm′ ∈ Ω and sm′ /∈ m′. As Ω ⊆ m′, we have sm′ ∈ Ω ⊆ m′,

a contradiction. Thus (Ω) = R and this yields 1 = r1sm1 + r2sm2 + · · · + rnsmn

for some ri ∈ R and smi
/∈ mi with smi

m ∈ P , where mi ∈ Max(R) for each

i = 1, 2, ..., n. This yields that m = r1sm1m + r2sm2m + · · · + rnsmnm ∈ P .

Therefore, P is a primary submodule of M . □

Now we determine all primary submodules of a module over a quasi-local ring

in terms of S-primary submodules.

Corollary 2.26. Suppose M is a module over a quasi-local ring (R,m). Then the

following statements are equivalent:

(a) P is a primary submodule of M .

(b) (P :R M) is a primary ideal of R and P is an (R−m)-primary submodule

of M for each m ∈ Max(R).

Proof. This is clear from Theorem 2.25. □

Remark 2.27. (a) Suppose that M is an R-module. The idealization R(+)M

= {(a,m) | a ∈ R, m ∈ M} of M is a commutative ring whose addition

is component-wise and whose multiplication is defined as (a,m)(b,m′) =

(ab, am′ + bm) for each a, b ∈ R and m, m′ ∈ M . If S is a multiplicatively

closed subset of R and P is a submodule of M , then S(+)P = {(s, p) | s ∈
S, p ∈ P} is a multiplicatively closed subset of R(+)M [2, 10].

(b) Radical ideals of R(+)M have the form I(+)M , where I is a radical ideal

of R. If J is an ideal of R(+)M , then
√
J =

√
I(+)M . In particular, if I

is an ideal of R and N is a submodule of M , then
√
I(+)N =

√
I(+)M [2,

Theorem 3.2 (3)].

Proposition 2.28. Let M be an R-module and p be an ideal of R such that p ⊆
Ann(M). Then the following are equivalent:

(a) p is a primary ideal of R.

(b) p(+)M is a primary ideal of R(+)M .

Proof. This is straightforward. □

Theorem 2.29. Let S be a multiplicatively closed subset of R, p be an ideal of R

provided p ∩ S = ∅ and M be an R-module. Then the following are equivalent:

(a) p is an S-primary ideal of R.
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(b) p(+)M is an S(+)0-primary ideal of R(+)M .

(c) p(+)M is an S(+)M -primary ideal of R(+)M .

Proof. (a)⇒(b) Let (x,m)(y,m′) = (xy, xm′ + ym) ∈ p(+)M , where x, y ∈ R

and m,m′ ∈ M . Then we get xy ∈ p. As p is S-primary, there exists s ∈ S

such that sx ∈ √
p or sy ∈ p. Now put s′ = (s, 0) ∈ S(+)0. Then we have

s′(x,m) = (sx, sm) ∈ √
p(+)M =

√
p(+)M or s′(y,m′) = (sy, sm′) ∈ p(+)M .

Therefore, p(+)M is an S(+)0-primary ideal of R(+)M .

(b)⇒(c) It is clear from Proposition 2.7.

(c)⇒(a) Let xy ∈ p for some x, y ∈ R. Then (x, 0)(y, 0) ∈ p(+)M . Since

p(+)M is S(+)M -primary, there exists s = (s1,m1) ∈ S(+)M such that s(x, 0) =

(s1x, xm1) ∈
√
p(+)M =

√
p(+)M or s(y, 0) = (s1y, ym1) ∈ p(+)M and hence we

get s1x ∈ √
p or s1y ∈ p. Therefore p is an S-primary ideal of R. □

Remark 2.30. LetM be an R-module and let S be a multiplicatively closed subset

of R such that AnnR(M) ∩ S = ∅. We say that M is an S-torsion-free module in

the case that there is an s ∈ S such that if rm = 0, where r ∈ R and m ∈ M , then

sm = 0 or sr = 0 [11, Definition 2.23].

Proposition 2.31. Let M be an R-module. Assume that P is a submodule of M

and S is a multiplicatively closed subset of R such that AnnR(M)∩S = ∅. Then P

is an S-primary submodule of M if and only if the factor module M/P is a π(S)-

torsion-free R/
√

(P :R M)-module, where π : R → R/
√
(P :R M) is the canonical

homomorphism.

Proof. Suppose that P is an S-primary submodule of M . Let am = 0M/P , where

a = a+
√
(P :R M) and m = m+ P for some a ∈ R and m ∈ M . This yields that

am ∈ P . As P is S-primary, there exists s ∈ S such that sa ∈
√
(P :R M) or sm ∈

P . Then we can conclude that π(s)a = 0
R/

√
(P :RM)

or π(s)m = 0M/P . Therefore,

M/P is a π(S)-torsion-free R/
√

(P :R M)-module. For the other direction, suppose

that M/P is a π(S)-torsion-free R/
√

(P :R M)-module. Let am ∈ P ,where a ∈ R

and m ∈ M . Put a = a+
√
(P :R M) and m = m+P . Then note that am = 0M/P .

As M/P is a π(S)-torsion-free R/
√
(P :R M)-module, there exists s ∈ S such that

π(s)a = 0
R/

√
(P :RM)

or π(s)m = 0M/P . This yields that sa ∈
√

(P :R M) or

sm ∈ P . Accordingly, P is an S-primary submodule of M . □

Definition 2.32. Let M be an R-module and let S be a multiplicatively closed

subset of R such that AnnR(M) ∩ S = ∅. We say that M is a quasi S-torsion-free

module, if there exists s ∈ S such that whenever rm = 0, where r ∈ R and m ∈ M ,

then sm = 0 or (sr)t = 0 for some t ∈ N.
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According to Definition 2.32, Proposition 2.31 can be expressed as follows.

Proposition 2.33. Let M be an R-module. Assume that P is a submodule of M

and S is a multiplicatively closed subset of R such that AnnR(M) ∩ S = ∅. Then

P is an S-primary submodule of M if and only if the factor module M/P is a

quasi π′(S)-torsion-free R/(P :R M)-module, where π′ : R → R/(P :R M) is the

canonical homomorphism.

Theorem 2.34. Let M be a module over an integral domain R. The following are

equivalent:

(a) M is a torsion-free module;

(b) M is a quasi (R− p)-torsion-free module for each p ∈ Spec(R);

(c) M is a quasi (R−m)-torsion-free module for each m ∈ Max(R).

Proof. (a)⇒(b) It is clear.

(b)⇒(c) It is clear.

(c)⇒(a) Assume that a ̸= 0. Take m ∈ Max(R). As M is quasi (R−m)-torsion-

free, there exists sm ̸= m so that smm = 0 or (sma)t = 0 for some t ∈ N. As R

is an integral domain, (sma)t ̸= 0. Now, put Ω = { sm ∈ R | ∃m ∈ Max(R), sm /∈
m and smm = 0}. A similar argument in the proof of Theorem 2.25 shows that

Ω = R. Then we have (sm1
) + (sm2

) + · · · + (smn
) = R for some (smi

) ∈ Ω. This

implies that Rm =
∑n

i=1(smi)m = (0) and hence m = 0. This means M is a

torsion-free module. □
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