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Abstract. A ring is called left quasi-duo (left QD) if every maximal left ideal

is a right ideal, and it is called I-finite if it contains no infinite orthogonal set of

idempotents. It is shown that a ring is I-finite and left QD if and only if it is a

generalized upper-triangular matrix ring with all diagonal rings being division

rings except the lower one, which is either a division ring or it is I-finite, left

QD and left ‘soclin’ (left QDS). Here a ring is called left soclin if each simple

left ideal is nilpotent. The left QDS rings are shown to be finite direct products

of indecomposable left QDS rings, in each of which 1 = f1 + · · · + fm where

the fi are orthogonal primitive idempotents, with fk ≈ fl for all k, l, and ≈ is

the block equivalence on {f1, . . . , fm}.

A ring is shown to be left soclin if and only if every maximal left ideal is

left essential, if and only if the left socle is contained in the left singular ideal.

These left soclin rings are proved to be a Morita invariant class; and if a ring is

semilocal and non-semisimple, then it is left soclin if and only if the Jacobson

radical is essential as a left ideal.

Left quasi-duo elements are defined for any ring and shown to constitute

a subring containing the centre and the Jacobson radical of the ring. The

‘width’ of any left QD ring is defined and applied to characterize the semilocal

left QD rings, and to clarify the semiperfect case.
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1. Introduction

Throughout this paper every ring R is associative with nonzero unity, all modules

are unitary, and module morphisms are written opposite the scalars. We write J(R),

C(R), U(R) and I(R), respectively, for the Jacobson radical, the centre, the unit

group and the set of idempotents of R; we write Sl(R) and Sr(R) for the left and

right socles of R; and we write Zl(R) and Zr(R) for the left and right singular

ideals of R. We shall abbreviate these as J, Sl, Sr, Zl and Zr, respectively, when no
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confusion results. The ring of n×n matrices over R will be denoted by Mn(R), and

we denote the integers by Z and write Zn for the integers modulo n. Annihilators

are written l(X) and r(X), and A C R signifies that A is a two-sided ideal of R. If

N ⊆ M are modules we write N ⊆max M, N ⊆ess M, and N ⊆⊕ M, respectively,

to mean that N is a maximal (essential, direct summand) submodule of M. For

phrases p and q, p =: q means ‘q is defined to be p’. For a left ring-theoretic

condition c, a ring is called a c-ring if it is both a left and right c-ring.

A ring R is left duo [7] if every left ideal is an ideal. Our interest is in:

Definition 1.1. A ring R is called left quasi-duo (left QD) if every maximal left

ideal is an ideal.

These rings were introduced (and named) in 1995 by Yu [23] and then studied

for the next 10 years, notably in [9], [11], [12], and [14]. But the idea (not the name)

had also arisen in papers by Burgess and Stephenson [3] in 1979 and (independently)

by Nicholson [17] in 1997. Commutative, local, and left duo rings are all left QD,

but the converse is not true: If a ring D is division,

[
D D

0 D

]
is left QD with none

of these properties.

Section 1. Call an ideal A C R left-max if A is maximal in RR, and call a

simple module RK ideal-simple if l(k) = l(K) for all 0 6= k ∈ K. These notions

lead to quick proofs of many left QD properties, making the paper virtually self-

contained. For example, Mn(S) is never left QD. A ring is called I-finite1 if it

contains no infinite set of orthogonal idempotents, and the I-finite, semiprime, left

QD rings are described. The left-max ideals in a split-null extension

[
R V

0 S

]
are identified, a result that is used frequently. Using the remarkable Lam-Dugas

characterization of left QD rings [14, Theorem 3.2], left QD elements are defined

in any ring R and shown to comprise a subring Q(R) of R containing C(R) and

J(R). When R = M2(D), D division, the ring Q(R) is described.

Section 2. The width of a left QD ring is defined, used to classify the semilocal

left QD rings, determine the left-max ideals in a semiperfect ring R, and prove the

first main theorem of the paper:

Triangular Theorem. (Theorem 3.27) A ring R is left QD and I-finite if and only if

R is an n×n generalized upper triangular matrix ring where the diagonal rings are

all division except for the lower right one, which is I-finite, left QD and left ‘soclin’.

1 Also called orthogonally finite.
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Here we call a ring left soclin if every simple left ideal is contained in the Jacobson

radical. This focuses attention on characterizing the I-finite, left QD, left soclin

rings (left QDS rings).

Section 3. The left soclin rings are characterized in several ways, and proved to

constitute a Morita invariant class. No nonzero left soclin ring is semisimple; and

it is shown that a semilocal, non-semisimple ring is left soclin if and only if the

Jacobson radical is essential as a left ideal. An example is given of a left soclin ring

that is not right soclin.

Section 4. An I-finite, indecomposable, left QDS ring B is called a left brick if

B contains a set F = {f1, f2, . . . , fm} of orthogonal, primitive idempotents where

Σm
i=1fi = 1B and fi ≈ fj for all i, j, where ≈ is the block equivalence for B induced

by F. Furthermore, each corner fiBfi of B is a left QD ring that is either a division

ring or left soclin (not both), and in which the only idempotents are 0 and fi.

All left QDS rings are I-finite so we can use the block decomposition theorem

[1, Theorem 7.9] to refine the triangular theorem (Theorem 3.27) into the second

main theorem of the paper:

Structure Theorem. (Theorem 5.15) A ring R is I-finite and left QD if and only if the

diagonal corners are all division except the lower right one, which is

B1 ×B2 × · · · ×Bm where each Bk is a left brick.

2. Left quasi-duo rings

We begin with some new approaches to left quasi-duo rings, yielding new results

and quick proofs of the basic properties we need.

Definition 2.1. An additive subgroup A of a ring R is called left-max in R if

A C R is an ideal and A is maximal as a left ideal of R.

Thus, R is left QD if and only if every maximal left ideal of R is left-max. A

ring R is local if and only if J is left-max (or right-max) in R.

Proposition 2.2. Let R be a ring and let B C R. Then:

(a) If R is left QD then R/B is also left QD.

(b) R is left QD if and only if R/J is left QD.

(c) If B ⊆ J : (i) A is left-max in R ⇔ A/B is left-max in R/B.

(ii) R is left QD if and only if R/B is left QD.

Proof. If B ⊆ A ⊆ R then A is an ideal (respectively a maximal left ideal) of R if

and only if A/B has the same relationship to R/B. Since J ⊆ A for any left-max

ideal A of R, Proposition 2.2 follows. �
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Lemma 2.3. Left-max Lemma Let A C R be an ideal in a ring R. Then:

A is left-max in R ⇔ R/A is a division ring.

Proof. Let A C R be left-max. Suppose X 6= 0 is a left ideal of R/A, say X = L/A

where L is a left ideal of R. As A ⊆max
RR it follows that L = R. Hence X = R/A,

so R/A is a division ring.

Conversely, suppose R/A is a division ring, so R/A(R/A) is simple. The R- and

R/A-actions on R(R/A) agree:

r · (x+A) = rx+A = (r +A) · (x+A).

It follows that R(R/A) is simple, so A ⊆max
RR. �

If {Ai | i ∈ I} are ideals in a ring R such that ∩i∈IAi = 0, we say that R is a

subdirect product of its images R/Ai. A ring R is said to be reduced if it has

no nonzero nilpotent elements.

Proposition 2.4. Let R be a left QD ring. Then:

(a) [9, Corollary 2] R/J is a subdirect product of division rings.

(b) [23, Lemma 2.3] R/J is reduced, so all nilpotents of R are in J.

Proof. (a) Let {Ai | i ∈ I} be the left-max ideals of R, so each Ai C R and R/Ai

is division by Lemma 2.3. The map R→ ΠiR/Ai given by r 7→< r+Ai > is a ring

morphism with kernel J. Thus R/J is a subdirect product of its images R/Ai. This

proves (a).

(b) As R/J is reduced by (a), the rest is clear. �

A ring R is semiprime if it has no nonzero nilpotent ideals.

Proposition 2.5. If a ring R 6= 0 is left QD, I-finite and semiprime, then

R ∼= Dn × · · · ×D1 × S for some n ≥ 1

where each Di is a division ring, and either S = 0 or S is left QD, semiprime and

satisfies r(A) ⊆ A for every left-max ideal A of S.

Proof. Let A be left-max in R. As
(
A∩r(A)

)2 ⊆ A r(A) = 0, we have A∩r(A) = 0.

If r(A) * A we have R = r(A)⊕A ∼= D1 ×R1 where D1 = r(A) ∼= R/A is division

by Lemma 2.3, and R1
∼= A is left QD and semiprime. Now suppose that R1 6= 0

and A2 is left-max in R1 with r(A2) * A2. Then we obtain R ∼= D1 × D2 × R2

where D2 is division and R2 is left QD and semiprime. As R is I-finite this process

cannot continue, and the Proposition follows. �
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Lemma 2.6. The following are equivalent for a module Rm 6= 0 :

(1) l(m) C R. (2) rm = 0, r ∈ R ⇒ rRm = 0. (3) l(m) = l(Rm).

In this case R/l(m) ∼= end(Rm) as rings.

Proof. The proofs of (1)⇒(2)⇒(3)⇒(1) are omitted. For a ∈ R define

αa : Rm→ Rm by (rm)αa = ram for all r ∈ R.

Then αa is well defined by (2), and αa is R-linear. With this, define

θ : R→ end(Rm) by θ(a) = αa for all a ∈ R.

Then θ is a ring morphism, and ker(θ) = l(m) by (3). Finally, θ is onto. In fact, if

α ∈ end(Rm), and mα = am, a ∈ R, then α = αa because both maps are R-linear

and mαa = am = mα.2 �

Proposition 2.7. [9, Proposition 1] For a ring R, the following are equivalent:

(1) R is left QD.

(2) Every left primitive factor ring R/P is division.

So if R is left QD : R is left primitive ⇔ R is simple ⇔ R is division.

Proof. (1)⇒(2) Write S = R/P. As S is a left primitive ring, let Sm be a simple,

faithful left S-module. Hence lS(m) C S because S is left QD by (1) and Propo-

sition 2.2. But lS(m) = lS(Sm) by Lemma 2.6, so lS(m) = 0 because Sm is

faithful. Hence S ∼= S/lS(m) ∼= Sm, and it follows that S is division. This proves

(2).

(2)⇒(1) If M ⊆max
RR, write P = l(R/M) = {b ∈ R | bR ⊆M}, a left primitive

ideal of R. Hence R/P is division by (2), so RP ⊆max
RR. But P ⊆ M and so

M = P C R, proving (1).

The last statement means showing any left QD, left primitive ring is division.

But this follows by the proof of (1)⇒(2) with P = 0. �

Example 2.8. If F is a field define the Weyl algebra W (F ) = F [x, y], where x

and y are indeterminants over F and xy−yx = 1. Then W (F ) is a simple, noether-

ian domain [15, Page 19]. But W (F ) is neither left nor right QD by Proposition

2.7 because it is not a division ring.

If R and S are rings and RVS is a bimodule, write Λ =

[
R V

0 S

]
, a ring with

matrix operations, called the split-null extension of R× S over V. If U ∈M2(Z)

is invertible then detU = ±1 so U−1ΛU is defined and the map Λ 7→ U−1ΛU is a

2 Via (am)(bm) = abm, Rm becomes a ring isomorphic to end(Rm).
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ring isomorphism. We call Λ 7→ U−1ΛU a virtual isomorphism, and say U−1ΛU

a virtual copy of Λ. Taking U =

[
0 1

1 0

]
then U−1 = U so

[
R V

0 S

]
= Λ ∼= UΛ U =

[
S 0

V R

]
.

By Proposition 2.2, R × S is left QD if and only if R and S are left QD. This

extends to the following result which plays a basic role later.

Proposition 2.9. Let Λ =

[
R V

0 S

]
be split-null. Then:

(a) [11, Proposition 10]. Λ is left QD ⇔ R and S are left QD.

(b) J(Λ) =

[
J(R) V

0 J(S)

]
and Λ/J(Λ) ∼= R/J(R)× S/J(S).

(c) If R is left QD, the left-max ideals of Λ are MA =

[
A V

0 S

]
or MB =

[
R V

0 B

]
where A and B are left-max in R and S

respectively. Also, Λ/MA
∼= R/A and Λ/MB

∼= S/B as rings.

Proof. (a) and (b) The mapping

[
r v

0 s

]
7→
(
r+ J(R), s+ J(S)

)
is an onto ring

morphism Λ → R/J(R) × S/J(S) which has kernel

[
J(R) V

0 J(S)

]
= J(Λ). This

gives (b), then (a) using Proposition 2.2.

(c) Let X be left-max in Λ. As X C Λ, using a (virtual) copy of Goodearl [8,

Proposition 4.1(c)] there exist A C R, B C S and a sub-bimodule RPS ⊆ RVS

such that X =

[
A W

0 B

]
and AV + V B ⊆W. This latter condition implies that if

either A = R or B = S then W = V. But X is a maximal left ideal of Λ, so either

A 6= R and B = S, or B 6= S and A = R. It follows that there are two cases:

(i) X =

[
A V

0 S

]
or (ii) X =

[
R V

0 B

]
.

In Case (i) R/A ∼= Λ/X is division by Lemma 2.3, so A is left-max in R (again

by Lemma 2.3). Hence, X = MA in the notation of (c). Similarly, in Case (ii)

X = MB . This proves (c). �

However, ‘Left QD’ is not a Morita invariant. To see why requires the next

lemma (we omit the proof).

Lemma 2.10. If n ≥ 1 and R is a ring, denote Mn(R) = Λ, and regard Rn as

rows. If RM is any left module, let L(M) denote the lattice of submodules of M.

Define maps Φ and Θ as follows:
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Φ : L(ΛΛ)→ L(RR
n) by Φ(L) =

X ∈ Rn

∣∣∣∣∣∣∣
 X

0.
.
.

0

 ∈ L


for all left ideals L ⊆ Λ.

Θ : L(RR
n)→ L(ΛΛ) by Θ(X) =

 X

X.
.
.

X


for all submodules X ⊆ Rn. 3

Then Φ and Θ are mutually inverse, lattice isomorphisms.

Theorem 2.11. No matrix ring Mn(R) is left QD if n ≥ 2. So ‘left QD’ is not a

Morita invariant.

Proof. If M ⊆max
RR let M denote the set of n × n matrices with every entry

in column 1 from M, and the other columns arbitrary. Then M is a maximal left

ideal of Mn(R) by Lemma 2.10, but it is not a right ideal because n ≥ 2. �

A ring R is called semilocal if R/J is a semisimple ring. Assume that R/J ∼=
Πn

i=1Mni(Di) where Di is a division ring for each i. If R is left QD, then each

Mni
(Di) is left QD by Proposition 2.2, so each ni = 1 by Theorem 2.11 and we

have R/J ∼= Πn
i=1Di. This proves (1)⇒(2) in the following proposition, and (2)⇒(1)

is clear by Proposition 2.2.

Proposition 2.12. [14, Corollary 4.8(1)] If R is a ring then the following are

equivalent:

(1) R is semilocal and left QD.

(2) R/J is a finite direct product of division rings.

We have a more general version of this result in Theorem 3.8 below.

Theorem 2.11 shows that ‘left QD’ is not a Morita invariant, but we do have the

following result from [9]. Because this will be used repeatedly below, we include a

shorter (and simpler) proof.

Theorem 2.13. [9, Theorem 3] If R is left QD so also is eRe for any e2 = e ∈ R.

Proof. Write S = eRe and let X ⊆max
SS. Then RX ⊆ Re, and RX 6= Re

because RX = Re implies that

S = eRe = e(RX) = eR(eX) = SX = X, a contradiction.

3 In words: Φ(L) is the set of rows of matrices in L, and Θ(X) is the set of matrices with rows

from X.
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Hence, by Zorn’s lemma, choose RM such that RX ⊆ M ⊆max Re. But then

X = SX = eReX = eRX ⊆ eM ⊂ S as e /∈ M. Thus X = eM because eM is a

left ideal of S. Now write M̄ = M ⊕R(1− e), and observe

R

M̄
=
Re⊕R(1− e)
M ⊕R(1− e)

∼=
Re

M
.

Hence M̄ ⊆max
RR, so M̄ C R by hypothesis. Since M̄e = Me, we have M̄S = MS,

and so obtain

XS = (eM)S = eMSe = e(M̄S)e ⊆ eM̄e = eMe = Me = X.

This shows that X is a right ideal of S, as required. �

A ring R is called directly finite4 (DF) if the following equivalent conditions

are satisfied:

(1) ab = 1⇒ ba = 1. (2) aR = R⇒ Ra = R. (3)Ra = R⇒ aR = R.

The following result seems to have been first mentioned in [14].

Lemma 2.14. Every left QD ring is directly finite. The converse fails.

Proof. If aR = R and Ra 6= R let Ra ⊆ A where A ⊆max
RR. Then A C R, so

R = R2 = R(aR) ⊆ A, a contradiction. For the converse, if F is a field the ring

M2(F ) is DF but it is not left QD by Theorem 2.11.5 �

A ring R is left morphic, [18], if R/Ra ∼= l(a) for all a ∈ R. Examples: local

rings and [18, Example 4] unit-regular rings
(
that is if a ∈ R then a = aua with

u ∈ U(R)
)
.

Proposition 2.15. The following are equivalent for a ring R:

(1) R is left morphic, left QD, and semiperfect.

(2) R is a finite direct product of local rings.

Proof. (1)⇒(2) By [18, Theorem 29 ], R ∼= Πk
i=1Mni(Ri) where each Mni(Ri) is

left morphic and Ri
∼= eiRei for some local e2

i = ei ∈ R (that is eiRei is a local ring).

But R is left QD by (1), so each ni = 1 and consequently R ∼= Πk
i=1Ri

∼= Πk
i=1eiRei.

This proves (2).

(2)⇒(1) Left morphic rings are closed under direct products. �

4 Also called Dedekind finite.
5 M2(Z2) is directly finite and exchange, but it is not left QD.
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A ring is abelian6 if all idempotents are central. For left QD rings, the main re-

sult here involves the exchange rings. Crawley and Jónsson [5] defined the exchange

property for modules. Warfield [22] showed that RR has the exchange propery if

and only if the same is true of RR, and called R an exchange ring in this case.

In 1979, we had the following result:

Theorem 2.16. Burgess and Stephenson [3] Every abelian exchange ring is

left QD.

Note added in Proof: The proof of Theorem 2.16 uses sheaf-theoretical techniques.

A short direct proof using [16] was accepted by the Canadian Mathematical Bulletin

on August 6, 2018.

Note: Z is abelian and QD, but not exchange; and

[
Z2 Z2

0 Z2

]
is exchange and QD

but not abelian.

A ring R is called clean if each a ∈ R has the form a = e+ u where e2 = e and

u ∈ U(R). By [16, Proposition 1.8] every clean ring R is exchange; conversely if R

is abelian. (See [23, Theorem 4.2].)

Proposition 2.17. (1) Every clean ring is exchange.

(2) If R is exchange and left QD then R is clean.

Proof. (1) is [16, Proposition 1.8]. As to (2), let R be exchange and left QD. Then

R/J is also exchange by [16, Proposition 1.5] and left QD by Proposition 2.2(b).

But then R/J is reduced by Proposition 2.4(b), and so is abelian. Hence R/J is

clean again by [16, Proposition 1.8]. �

For another characterization of the left QD rings, a module RM is called very

semisimple (VSS) [17] if Rm is simple for all 0 6= m ∈M. These modules are all

homogeneous and semisimple, and it is proved that a ring is left QD if and only if

every homogeneous, semisimple left module is VSS. We give a much shorter proof.

Lemma 2.18. [17, Lemma 1] If RM is semisimple, then the following are equiva-

lent:

(1) M is very semisimple.

(2) If Rm1 and Rm2 are simple, m1,m2 ∈M, and m1 +m2 6= 0, then

R(m1 +m2) is simple.

6 This term was introduced in 1968 by Kaplansky in his “Rings of Operators”. In view of the

usage in group theory, a better term would be Abel, Drazin [6], 1958.
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Proof. (1)⇒(2) is clear. Given (2) and 0 6= m ∈ M, let m ∈ ⊕k
i=1Rxi. each Rxi

simple. Write m = m1 +m2 + · · ·+mk where mj ∈ Rxj for each j. We may assume

that each mj 6= 0, so Rmj = Rxj is simple. If k = 1 then Rm1 = Rx1 is simple. If

k = 2 then, as Rm1 ⊕Rm2 is direct, m1 +m2 6= 0 so Rm = R(m1 +m2) is simple

by (2).

If k = 3 then Rm = R
(
(m1 + m2) + m3

)
is simple in the same way because

(m1 +m2) +m3 6= 0. Continuing in this way proves (1). �

Lemma 2.19. [17, Proposition] Every VSS module is homogeneous.7

Proof. Assume RM is VSS. If Rm1 and Rm2 are simple, m1,m2 ∈ M, we show

that Rm1
∼= Rm2. We may assume Rm1 6= Rm2, so Rm1 ⊕ Rm2 is direct. Hence

m1 +m2 6= 0, so R(m1 +m2) is simple by Lemma 2.18.

Let πi : Rm1 ⊕Rm2 → Rmi be the projection, i = 1, 2. Then write

αi : R(m1 +m2)→ Rmi for the restriction of πi.

Then miαi = mi for each i, so each αi is an isomorphism by Schur’s lemma.

Hence Rm1
∼= R(m1 +m2) ∼= Rm2. �

The following well known lemma will be needed below.

Lemma 2.20. Let A,B C R where R(R/A) ∼= R(R/B). Then A = B.

Theorem 2.21. The following are equivalent for a ring R:

(1) R is left QD.

(2) Every homogeneous, semisimple left R-module is VSS.

(3) If K ∼= N are simple left R-modules then K ⊕N is VSS.

(4) If K is a simple left R-module then K ⊕K is very semisimple.

Proof. It is clear that (2)⇒(3)⇒(4).

(1)⇒(2) Let RM be homogeneous and semisimple, and let Rm1 and Rm2 be

simple, mi ∈ M, where m1 + m2 6= 0. By Lemma 2.18 it suffices to show that

R(m1 + m2) is simple. Observe that Rm1
∼= Rm2 because M is homogeneous, so

R/l(m1) ∼= R/l(m2). But l(mi) C R for each i by (1), so Lemma 2.20 implies that

l(m1) = l(m2). Hence l(m1 +m2) ⊇ l(m1) ∩ l(m2) = l(m1). As l(m1) ⊆max
RR

we have l(m1 +m2) = l(m1) is a maximal left ideal, as required.

(4)⇒(1) Let L ⊆max
RR, and consider RX = R/L ⊕ R/L. Given r ∈ R, write

x = (1 + L, r + L) ∈ X. To show that Lr ⊆ L it suffices to show that Lx = 0.

Suppose on the contrary that Lx 6= 0. Since X is homogeneous and semisimple, (4)

7 The converse fails as Z2 ⊕ Z3 is semisimple, but Zm is not simple if m = (1 + 2Z, 1 + 3Z).



ON I-FINITE LEFT QUASI-DUO RINGS 171

implies that Rx is simple. As Lx 6= 0, it follows that Lx = Rx, whence x = tx for

some t ∈ L. This means that (1 +L, r+L) = (t+L, tr+L), so 1 +L = t+L = L,

a contradiction. �

Remark. This proves again that R = Mn(D) cannot be left QD if D is division

and n ≥ 2. In fact, RR is semisimple but column 1 in R is not simple.

Left QD elements and the Lam-Dugas condition

To this point we have used only Definition 1.1 to study left QD rings. We begin

with an observation stemming from a remarkable theorem of Lam and Dugas [14,

Theorem 3.2].

Lemma 2.22. If R is a ring, the following conditions are equivalent for any element

q ∈ R:

QD1. Mq ⊆M for every maximal left ideal M of R.

QD2. R = Ra+R(1− aq) for any a ∈ R.
Then by Definition 1.1, R is left QD ⇔ QD2 holds for every q ∈ R.

Proof. QD1⇒QD2. Assume QD1. If a ∈ R and Ra + R(1 − aq) 6= R, let Ra +

R(1− aq) ⊆M, where M ⊆max
RR. Then aq ∈Mq ⊆M by QD1. But 1− aq ∈M

too, a contradiction.

QD2⇒QD1. Assume QD2. If M ⊆max
RR and Mq * M, then M + Mq = R,

say c+ aq = 1 where c, a ∈M. Hence

Ra+R(1− aq) = Ra+Rc ⊆M, contradicting QD2. �

Definition 2.23. If R is a ring, q ∈ R is called a left QD element of R if both

QD1 and QD2 hold.

Condition QD2 provides a completely new perspective on left QD rings. As an

illustration, if R is left QD, Lam and Dugas give a proof [14, Remark 4.4] that

R/J(R) is reduced using only QD2. Here is a similar proof that every left QD ring

R is directly finite.

Suppose aR = R, say ab = 1, a, b ∈ R. As b is left QD, QD2

holds with q = b, so R = Ra+R(1− ab) = Ra, as required.

Definition 2.24. If R is a ring, write Q(R) = {q | q is left QD in R}.

Lemma 2.25. Let R be a ring, Q = Q(R), J = J(R) and C = C(R).

(a) Q is a unital subring of R.

(b) R is left QD if and only if Q = R.
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(c) C ⊆ Q and J ⊆ J(Q).

(d) However, a left QD subring of R need not be contained in Q(R).

Proof. (a) This follows from QD1.

(b) R is left QD ⇔ Every q ∈ R is left QD ⇔ R = Q.

(c) If c ∈ C then Ra+R(1− ca) = R for all a, so c ∈ Q by QD2. If b ∈ J then

Ra + R(1 − ab) = R for all a, so J ⊆ Q. But then J is a quasi-regular ideal of Q,

so J ⊆ J(Q).

(d) If F is a field write R = M2(F ) and S =

[
F F

0 F

]
. Then S is a left QD

subring of R, but S * Q(R) because

Q(R) = C(R) =

{[
a 0

0 a

]∣∣∣∣ a ∈ F}—see Example 2.27(b) below. �

Proposition 2.26. Let R be a ring, Q = Q(R). Given B C R :

Define ϕ : Q→ Q(R/B) by ϕ(q) = q +B for all q ∈ Q.

(a) ϕ is a ring morphism, and ker ϕ = B.

(b) If B ⊆ J(R) then ϕ is onto.

(c) If B = J(R) : (i) ϕ : Q→ Q
(
R/J(R)

)
is onto with kernel J.

(ii) J(Q) = J.

Proof. Write R̄ = R/B, r̄ = r +B for r ∈ R, J = J(R) and Q = Q(R).

(a) We need only show ϕ is well defined, that is q̄ ∈ Q(R̄) when q ∈ Q. Given

ā ∈ R̄ we have Ra+R(1−aq) = R by QD2, so we have R̄ā+ R̄(1̄− āq̄) = R̄. Hence

q̄ ∈ Q(R̄), as required.

(b) Assume B ⊆ J. If x ∈ Q(R̄), say x = ȳ, y ∈ R, we prove ϕ is onto by showing

that y ∈ Q. To see this, fix a ∈ R. Since ȳ = x ∈ Q(R̄), we have R̄ā+R̄(1̄−āȳ) = R̄,

say ra+s(1−ay)−1 =: b ∈ B, r, s ∈ R. Because B ⊆ J we have u =: 1+b ∈ U(R),

so ra + s(1 − ay) = u. Hence we obtain (u−1r)a + (u−1s)(1 − ay) = 1. As a ∈ R
was arbitrary, this shows y ∈ Q(R), proving (b).

(c) For c(i), take B = J in (b). For c(ii): J ⊆ J(Q) by Lemma 2.25(c). Then

J = J(Q) as J(Q)/J is a quasi-regular ideal of R/J. �

Question 1. Is the converse true in Proposition 2.26(b)?

Example 2.27. Let D be a division ring, and write Λ = M2(D). Then:

(a) There exists u ∈ D, u 6= 0, such that Q(Λ) =

{[
a 0

0 u−1au

]∣∣∣∣ a ∈ D} .
(b) In particular Q(Λ) = C(Λ) if D is a field.
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Proof. As (a)⇒(b), we prove (a). Write M1 =

[
0 D

0 D

]
and M2 =

[
D 0

D 0

]
for the ‘standard’ maximal left ideals of Λ. Suppose λ =

[
a b

c d

]
. It is routine to

check that

M1λ ⊆M1 ⇔ c = 0, and M2λ ⊆M2 ⇔ b = 0.

So if λ ∈ Q(Λ) then λ =

[
a 0

0 d

]
is diagonal.

If M is a maximal left ideal of Λ then M =

[
X

X

]
by Lemma 2.10 where X is

a maximal D-submodule of D2, written as rows. Hence dimD(X) = 1 so X = Dv

where v = (p, q) 6= 0. If p = 0 or q = 0 we obtain M = M1 or M = M2 respectively.

But if p 6= 0 6= q, assume v = (1, u) where 0 6= u ∈ D, so X = Dv = {(d, du) | d ∈

D}, and we obtain a third maximal left ideal M3 =

{[
e eu

f fu

]∣∣∣∣ e, f ∈ D} . So if

λ =

[
a 0

0 d

]
∈ Q(Λ), it remains to show that

M3λ ⊆M3 ⇔ d = u−1au.

If M3λ ⊆ M3 then

[
1 u

1 u

] [
a 0

0 d

]
=

[
e eu

f fu

]
for some e, f ∈ D, and so (top

row) a = e and ud = eu, whence ud = au and d = u−1au.

Conversely, if λ =

[
a 0

0 u−1au

]
then[

e eu

f fu

]
λ =

[
e eu

f fu

] [
a 0

0 u−1au

]
=

[
ea eau

fa fau

]
∈M3

for all e, f ∈ D. Hence M3λ ⊆M3, and the proof is complete. �

Question 2. If Λ = Mn(F ), F a field, is Q(Λ) = C(Λ)?

For any n ≥ 2, if Λ = Mn(D), D a division ring, then Q(Λ) consists of diagonal

matrices as in paragraph 1 of the proof of Example 2.27.

Question 3. Describe the units and idempotents of Q(R).

Every left QD ring is directly finite (Lemma 2.14), but not conversely—M2(R)

is I-finite but it is not left QD by Theorem 2.11. However the left unimodularity

property in Condition 2 of the following result—stronger than directly finite—

actually characterizes the left QD rings.

Theorem 2.28. Lam-Dugas [14, Theorem 3.2] The following conditions are

equivalent for a ring R:

(1) R is left QD.

(2) a1R+ · · ·+ anR = R implies Ra1 + · · ·+Ran = R.
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(3) aR+ bR = R implies Ra+Rb = R.

(4) If RXR = R where X is a finite set, then RX = R.

In this case: (a) RaR = R, a ∈ R, implies a is a unit.

(b) ReR = R, e2 = e ∈ R, implies e = 1.

Proof. (1)⇒(2) Let a1R+ · · ·+ anR = R. If Ra1 + · · ·+Ran 6= R, let

Ra1 + · · ·+Ran ⊆M where M ⊆max
RR.

Then M C R by (1) so R = a1R+ · · ·+ anR ⊆M, a contradiction.

(2)⇒(3) This is clear.

(3)⇒(1) Always aR+ (1− aq)R = R, so Ra+R(1− qa) = R by (3). Thus QD2

holds for R, so R is left QD by Lemma 2.22.

(2)⇒(4) Let RXR = R and write 1 = Σirixisi, ri, si ∈ R, xi ∈ X. Thus

R = ΣrixiR so (2) gives R = ΣRrixi ⊆ RX.
(4)⇒(2) If Σn

i=1aiR = R then R = RXR where X = {a1, . . . , an}. By (4),

R = RX = Σn
i=1Rai.

Finally, with (4) and Lemma 2.14, (a) and then (b) are routine. �

The enigmatic condition QD2 is a first order statement, which plays a basic role

in another remarkable result of Lam and Dugas:

Theorem 2.29. [14, Corollary 3.6] If Q is the class of left QD rings, then:

(a) Q is closed under direct products, direct limits and ultraproducts.

(b) A direct product Πi∈IRi is in Q ⇔ each Ri is in Q.

(c) Let R be a finite subdirect product R ↪→ Πn
i=1R/Ai, Ai C R.

Then R is in Q ⇔ each R/Ai is in Q.

3. Width and the triangular theorem

In this section we introduce the ideal-simple left modules, a ‘dual’ of the left-max

ideals. This leads to a new classification of the left QD rings, and to a description

of the left-max ideals in a semiperfect ring. Finally, we present our first structure

theorem for I-finite left QD rings in terms of generalized upper triangular matrix

rings.

Ideal-simple modules

If R is a ring and RK is simple, Lemma 2.6 shows IS1 ⇔ IS2 where:

IS1: l(k) C R for all k ∈ K.

IS2: l(k) = l(K) for all 0 6= k ∈ K.
(§)
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Definition 3.1. RK is ideal-simple if RK is simple and (§) holds.

If RK is ideal-simple and RM ∼= RK, then RM is ideal-simple too.

These ideal-simple modules have two virtues for us. The first is that they provide

a new way to think about the left QD rings:

Theorem 3.2. The following conditions are equivalent for a ring R:

(1) R is left quasi-duo.

(2) Every simple left R-module is ideal-simple.

Proof. (1)⇒(2) If RK is simple and 0 6= k ∈ K then l(k) is a maximal left ideal

of R. Hence l(k) C R by (1), so (§) gives l(k) = l(K).

(2)⇒(1) Let M be a maximal left ideal of R. By (2), the simple module R/M is

ideal-simple. As R/M = R(1 +M), it follows that M = l(1 +M) = l(R/M) C R

by (§). This proves (1). �

The second virtue of the ideal-simple modules is that they serve as ‘duals’ of

the left-max ideals. More precisely: While Lemma 2.3 characterizes the ideals that

are left-max; condition (a) in the following Lemma characterizes the maximal left

ideals that are left-max.

Lemma 3.3. Let R be any ring. Then:

(a) Let A be a maximal left ideal of R. Then A is left-max in R if and only if

R(R/A) is ideal-simple.

(b) Let RK be a simple module. Then RK is ideal-simple if and only if l(K) is

left-max in R.

Proof. Let R denote a ring.

(a) Here R(R/A) is simple. We show: A C R ⇔ R/A is ideal-simple.

(⇒). First, A = l(R/A) because A C R. If 0 6= k ∈ R/A we have A = l(R/A) ⊆
l(k) 6= R. But A ⊆max

RR so l(k) = A = l(R/A). Hence R/A is ideal-simple by

(§).
(⇐). Here A = l(1 + A) and 0 6= 1 + A ∈ R/A. As R/A is ideal-simple, A C R

by (§).

(b) Now RK is simple. We show: RK is ideal-simple ⇔ l(K) is left-max.

(⇒) Let RK be ideal-simple. If 0 6= k ∈ K then l(k) = l(K) C R, so R/l(K) ∼=
Rk = K. Hence l(K) ⊆max

RR and so is left-max.

(⇐) Let l(K) be left-max in R. If 0 6= k ∈ K, then l(K) ⊆ l(k) 6= R, so

l(K) = l(k) as l(K) ⊆max
RR. By (§), RK is ideal-simple. �

Our next application of these ideas is to define the:
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Width of a left Quasi-duo ring

For a ring R, the isomorphism equivalence ∼= partitions the class of all simple

left R-modules. The equivalence class of RK, written

classRK = {RX | RX ∼= RK},

is called the isomorphism class of K.

Definition 3.4. Let R be a left QD ring, and write:

A(R) = {A | A is left-max in R}.
C(R) = {classRK | RK is ideal-simple}.

Write |X| for the cardinality of a set X.

Theorem 3.5. Width Theorem If R is left QD then |A(R)| = |C(R)| .

Proof. Write A(R) = A and C(R) = C. Lemma 3.3 shows that A is nonempty

if and only if C is nonempty. So we have two cases: |A| = 0 and |C| = 0, and

|A| 6= 0 and |C| 6= 0. In the first case, |A| = |C| is clear. In the second case define:

Φ : A → C and Ψ : C → A by:

Φ(A) = class(R/A) for all left-max A ∈ A.
Ψ(classK) = l(K) for any ideal-simple module RK ∈ C.

Claim. Ψ is well defined.

Proof. Suppose class(K) = class(N) where RK and RN are ideal-simple, K ∼= N.

Choose 0 6= k ∈ K and 0 6= n ∈ N, so l(k) = l(K) and l(n) = l(N). Then

R/l(K) = R/l(k) ∼= Rk = K and R/l(N) = R/l(n) ∼= Rn = N.

Hence R/l(K) ∼= K ∼= N ∼= R/l(N) as left R-modules. But then l(K) = l(N) by

Lemma 2.20. This proves the Claim.

To see that |A| = |C| we show Φ and Ψ are mutually inverse. To show Ψ◦Φ = 1A,

let A ∈ A. Then we have:

Ψ
(
Φ(A)

)
= Ψ

(
class(R/A)

)
= l(R/A) = A because A C R.

To prove Φ ◦ Ψ = 1C , let RK be ideal-simple and then choose 0 6= k ∈ K where

l(k) = l(K). Then:

Φ
(
Ψ(classK)

)
= Φ

(
l(K)

)
= class

(
R/l(k)

)
= class(Rk) = classK,

as required. This proves Theorem 3.5. �

Definition 3.6. Define the (left) width ω(R) of a left QD ring R by

ω(R) = |A(R)| = |C(R)| .
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Lemma 3.7.(a) If R is left QD then ω(R) = 1 if and only if R is local.

(b) If R ∼= S are left QD, then ω(R) = ω(S).

(c) If R is left QD then ω(R) = ω(R/J) where J = J(R).

(d) If R ∼= D1 × · · · ×Dn where each Di is a division ring,

then ω(R) = n.

Proof. (a) If ω(R) = 1 then |A(R)| = 1 so R is local (being left QD). The converse

is clear.

(b) Ring isomorphisms preserve left-max ideals.

(c) The map A 7→ A/J from A(R)→ A(R/J) is a bijection.

(d) The maximal ideals of R are D1×· · ·×D̂i×· · ·×Dn (where Di is omitted). �

The following theorem refines the characterization (in Proposition 2.12) of the

semilocal left QD rings as the rings R such that R/J is a finite direct product of

division rings.

Theorem 3.8. Let R be left QD. If n ≤ 1, the following are equivalent:

(1) R is semilocal of width n.

(2) R/J(R) is a direct product of n division rings.

(3) R has n maximal left ideals (respectively maximal right ideals).

(4) R has n isomorphism classes of simple left modules (respectively

simple right modules).

Proof. Write J(R) = J and R/J = R̄.

(1)⇒(2) Given (1), R̄ ∼= ⊕m
l=1Mni

(Di) where each Di is a division ring. As R̄

is left QD so also is each Mni(Di). Hence ni = 1 for each i by Theorem 2.11, so

R̄ is a product of m division rings. Now (2) follows because, using Lemma 3.7,

m = ω(R̄) = ω(R) = n.

(2)⇒(3) By (2), ω(R̄) = n by Lemma 3.7(d), so |A(R)| = ω(R) = n. As R is

QD, this proves (3).

(3)⇒(4) As R is left QD, this is by Theorem 3.5.

(4)⇒(1) By (4) and Theorem 3.2 we have |C(R)| = n, so |A(R)| = n by Theorem

3.5. If {A1, A2, . . . , An} are the distinct left-max ideals of R, then each R/Ai is

a division ring by Lemma 2.3 (as R is left QD). The map r 7→ 〈r +Ai〉 from

R → Πn
i=1R/Ai is a ring morphism with kernel J because R is left QD, and it

is onto by the Chinese remainder theorem because Ai + Aj = R whenever i 6= j.

Hence R/J ∼= Πn
i=1R/Ai is semilocal. Now ω(R) = n follows by Lemma 3.7(d). �

Corollary 3.9. A ring R is left QD of width 1 if and only if R is local.
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Question 4. Describe the left QD rings of width 2.

Here are two width 2 examples:

1) If D and B are division, any split-null extension of D × B is artinian with

J2 = 0.

2) The following example is a noetherian PID with J ⊃ J2 ⊃ · · · .

Example 3.10. If p 6= q are primes in Z write

Z(p,q) =: { n
m ∈ Z | p - m and q - m}.

Then Z(p,q) is a commutative (so quasi-duo), noetherian, semilocal, PID with

R/J ∼= Zp × Zq.

Proposition 3.11. [14, Question 7.7] The following are equivalent:

(1) Every left QD ring is also right QD.

(2) Every left primitive, right quasi-duo ring is a division ring.

Question 5. Lam-Dugas Are the statements in Proposition 3.11 true?

This question appears to be very difficult. However, Theorem 3.12 gives an

affirmative answer for semilocal rings:

Theorem 3.12. A semilocal ring is left QD ⇔ it is right QD.

Proof. If R is semilocal and left QD then R/J is a finite product of division rings.

In particular, R/J is left QD, so R is right QD. �

I-finite rings and frames

The set I(R) of all idempotents in a ring R is partially ordered by:

e ≤ f ⇔ e ∈ fRf.

Lemma 3.13. [19, Lemma B.6] For any ring R, the following are equivalent:

(1) R is I-finite (no infinite orthogonal set of idempotents).

(2) R has the ACC (equivalently the DCC) on idempotents.

(3) R has the ACC (equivalently the DCC) on direct summands

of RR (equivalently of RR).

Thus left (or right) artinian, noetherian, and finite dimensional rings are all I-

finite. If R/J(R) is I-finite so also is R; conversely if idempotents lift modulo J(R)

[19, Lemma B.7]. The condition ‘I-finite’ passes to subrings and corners. A ring R

is I-free if I(R) = {0, 1}. Minimal idempotents in I(R)r {0} are called primitive

idempotents in R, and we have:

0 6= e ∈ I(R) is primitive if and only if eRe is I-free.
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Definition 3.14. For n ≥ 1, a frame for a ring R is a set E = {e1, . . . , en} in R of

nonzero, orthogonal idempotents such that 1 = e1 +e2 + · · ·+en (to emphasize n, it

is called an n-frame). The rings eiRei are the corners of E. A frame of primitive

idempotents is a primitive frame.

Lemma 3.15. I-finite rings have primitive frames. The converse fails.8

Proof. As R has the DCC on idempotents, choose some minimal nonzero idem-

potent e1 6= 0 in R, so e1 is primitive. If e1 = 1 then {1} is a primitive frame.

Otherwise choose e2 minimal in (1− e1)R(1− e1). Then {e1, e2} is orthogonal and

e1 < e1 + e2. Write f2 = e1 + e2. If f2 = 1 we are done. If not continue in this way

to obtain idempotents e1 < f2 < g3 < · · · , violating the ACC for I(R).

As to the converse, Shepherdson [21] presents a domain D for which M2(D) is

not directly finite, and so not I-finite by Jacobson [10]. But M2(D) has a primitive

frame {e11, e22}. �

Semilocal rings are I-finite (R/J is artinian); not conversely (Z). So we cannot

replace ‘semilocal’ by ‘I-finite’ in Theorem 3.8(1) as the following example shows.

The socles of R are denoted Sl and Sr.

Example 3.16. Let R =

{[
n x y

0 n 0

0 0 z

]∣∣∣∣∣n ∈ Z; x, y, z ∈ Q

}
where, for clarity,

we write R as a split-null extension R =

[
S V

0 Q

]
where

S =

{[
n x

0 n

]∣∣∣∣n ∈ Z, x ∈ Q
}

and SVQ =

[
Q
0

]
.

(a) R is QD (left and right) and I-finite (in fact left noetherian),

but R is not semilocal.

(b) The left-max ideals of R are M =

[
S V

0 0

]
and, for various

primes p ∈ Z, Mp =

{[
pn x y

0 pn 0

0 0 z

]∣∣∣∣∣n ∈ Z; x, y, z ∈ Q

}
.

(c) ω(R) is not finite.

(d) Sl = 0.

(e) Sr =

[
0 0 Q
0 0 0

0 0 Q

]
is projective, homogeneous, and length 2

as a right R-module.

(f) J is not essential in RR.

8 The converse holds for exchange rings by [4, Proposition 3]
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Proof. Define φ : R→ Z×Q by φ

([
n x y

0 n 0

0 0 z

])
= (n, z), and observe that φ is

an onto ring morphism. As J(Z×Q) = 0 it follows that ker(φ) = J =

[
0 Q Q
0 0 0

0 0 0

]
.

In particular, R/J ∼= Z×Q.

(a) As R/J ∼= Z×Q is I-finite and QD, so also is R by Proposition 2.9. Clearly

R is not semilocal. Finally, R is noetherian because R/J is noetherian and J has

Q-dimension 2.

(b) and (c) By Proposition 2.9 the left-max ideals of S are M and the Mp where

p ∈ Z is a prime. Now (b) follows, and then (c) is clear.

(d) As Sl ⊆ r(J), we only show that soc
(
R
r(J)

)
= 0. First, if

[
n x y

0 n 0

0 0 z

]
∈

r(J) then 0 =

[
0 Q Q
0 0 0

0 0 0

][
n x y

0 n 0

0 0 z

]
=

[
0 Qn Qz

0 0 0

0 0 0

]
.

Hence r(J) ⊆

[
0 Q Q
0 0 0

0 0 0

]
= J. 9 Let Rγ ⊆ r(J) be simple where we write

γ =

[
0 u v

0 0 0

0 0 0

]
, u, v ∈ Q. Then Rγ =

{[
0 nu nv

0 0 0

0 0 0

]∣∣∣∣∣n ∈ Z

}
. Also, if nγ = 0,

n ∈ Z, then n = 0 (because one of u, v is nonzero in Q). Hence 0 ⊂ 2Rγ ⊂ Rγ, a

contradiction. This proves that Sl = 0.

(e) If i 6= j write εij ∈ R for the (i, j)-matrix unit, so

ε12R =

[
0 Q 0

0 0 0

0 0 0

]
, ε13R =

[
0 0 Q
0 0 0

0 0 0

]
and ε33R =

[
0 0 0

0 0 0

0 0 Q

]
.

For convenience, write PR = ε13R ⊕ ε33R =

[
0 0 Q
0 0 0

0 0 Q

]
. One verifies that ε13R

and ε33R are both simple so PR ⊆ Sr. Note that ε33R is projective (a summand of

RR), and that ε33R
ε13·→ ε13R is an R-isomorphism by Schur’s lemma. Hence PR is

projective and homogeneous of length 2. It remains to show that PR = Sr. To this

end, one verifies

Sr ⊆ l(J) =

[
0 Q Q
0 0 0

0 0 Q

]
= ε12R⊕ ε13R⊕ ε33R = ε12R⊕ PR.

9 In fact r(J) = J because J is nilpotent,
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But ε12R is not simple
(
because 0 6= 2(ε12R) ⊂ ε12R

)
, so ε12 ∈ l(J) r Sr. This

means that PR ⊆ Sr ⊂ l(J), where dimQ(PR) = 2 and dimQ
(
l(J)

)
= 3. 10 It

follows that PR = Sr, proving (e).

(f) ε33R is a simple right ideal of R, and J ∩ ε33R = 0. �

Semiperfect left quasi-duo rings

Note that Example 3.16 is left QD and I-finite, but not semilocal. Another

important example is Z(p,q) in Example 3.10, which is a semilocal, noetherian,

quasi-duo, PID, but idempotents do not lift modulo J. A ring R is semiperfect if

it is semilocal and idempotents lift modulo J ; equivalently if R has a frame with

local corners. A ring R is semipotent if, for any left (or right) ideal L * J, we

have 0 6= e2 = e ∈ L.

Lemma 3.17. Let R be a ring. Then:

(a) R is semiperfect ⇒ R is exchange ⇒ R is semipotent.

(b) R is semiperfect ⇔ R is exchange and I-finite

⇔ R is semipotent and I-finite.

Proof. (a) Use [4, Corollary 12] and [16, Proposition 1.9].

(b) This follows from (a) and [19, Theorem B.9]. �

Definition 3.18. A frame {e1, e2, . . . , en} for a ring R is J-central if

ek + J ∈ C(R/J) for each k.

Theorem 3.19. Given a ring R, the following conditions are equivalent:

(1) R is semiperfect and left quasi-duo.

(2) R has a J-central, local frame.

(3) R has a J-central frame E = {e1, e2, . . . , en} where each corner

(ei + J)(R/J)(ei + J) of R/J is a division ring.

When this is the case, the following conditions hold for any J-central local frame

{e1, e2, . . . , en} for R :

10 l(J) =

 0 Q Q
0 0 0

0 0 Q

 is a Q-vector space via

 0 x y

0 0 0

0 0 z

 · q =

 0 xq yq

0 0 0

0 0 zq

 .
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(a) The set of all distinct left-max ideals of R is {A1, . . . , An},
where Ai = R(1− ei)R+ J. In particular, ω(R) = n.

(b) Write Ki = Rei/Jei for k = 1, 2, . . . , n. Then {K1, . . . ,Kn}
is a system of distinct representatives of the isomorphism

classes of ideal-simple left R-modules, and Ki ↔ Ai is a

bijection {Ki | i = 1, 2, . . . , n} → {Ai | i = 1, 2, . . . , n}.

11

Proof. Write J = J(R), R̄ = R/J, and r̄ = r + J when r ∈ R. Observe:

If e2 = e ∈ R then ēR̄ē ∼= eRe/J(eRe) (via x↔ x̄). (*)

(1)⇒(2) As R is left QD, R̄ is a finite product of division rings, say:

R̄ = G1 ⊕ · · · ⊕Gn where each Gk C R̄ is a division ring.

Hence there is a frame {ē1, ē2, . . . , ēn} for R̄ where Gk = R̄ēk for each k and

ēk ∈ R̄ is a central idempotent in R̄. As idempotents lift modulo J, we may as-

sume that {e1, . . . , en} is a frame for R [19, Proposition B.5]. By (*) we have

ekRek/J(ekRek) ∼= ēkR̄ēk = Gk is a division ring for each k. Thus ekRek is local

for each k, that is {e1, . . . , en} is a local frame for R. This proves (2).

(2)⇒(3) By (2) let {e1, . . . , en} be a central, local frame for R. As each ekRek is

local, (*) gives ēkR̄ēk ∼= ekRek/J(ekRek) is a division ring. This proves (3).

(3)⇒(1) Given the situation in (3), the frame {e1, . . . , en} in (3) is local by (*),

so we obtain R is semiperfect. Moreover, {ē1, . . . , ēn} is a central frame for R̄, so

R̄ ∼= ē1R̄ē1 × · · · × ēR̄ē. Thus R̄ is left QD because each ēkR̄ēk is division by (3).

Hence R is left QD by Lemma 2.3, proving (1).

(a) By (3) let {e1, e2, . . . , en} be a local, J-central frame for R where each ēkR̄ēk

is a division ring. For each k define ϕk : R→ ēkR̄ēk by ϕk(r) = ēkr̄ēk. Then ϕk is

an onto ring morphism (ēk is central in R̄). Furthermore kerϕi = R(1 − ei)R + J

because

r ∈ kerϕi ⇔ ēir̄ēi = 0̄ ⇔ r̄ ∈ R̄(1̄− ēi)R̄ = R(1− ei)R.

Define Ai = R(1− ei)R+ J for i = 1, 2, . . . , n, so Ai = kerϕi.

Then each Ai is left-max in R by Lemma 2.3 because

R/Ai = R/kerϕi
∼= imϕi = ēkR̄ēk is a division ring.

Thus {A1, A2, . . . , An} ⊆ A(R). But ω(R) = ω(R̄) = n as R̄ = Πn
i=1ēiR̄ēi

(
in

the proof of (3)⇒(1)
)
. Hence |A(R)| = n, so it remains to show that these Ai are

distinct.

11 This shows that R is a basic semiperfect ring [13, Definition 25.5].
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Suppose, if possible, that Ai = Ak, i 6= k. Observe (1− ei)R(1− ei) has a frame

{e1, . . . , êi, . . . , en}, where êi missing. As k 6= i we have:

ek = ek(1− ei) ∈ R(1− ei)R ⊆ Ai = Ak.

But 1− ek ∈ Ak too, so Ak = R, a contradiction. So Ai 6= Ak after all, proving (a).

(b) Let RK = Rk be any simple module. As 1 = Σn
i=1ei, we have etk 6= 0 for

some t, so right multiplication Ret
·k→ Retk = K is epic. Hence ker(·k) ⊆max Ret.

But et is a local idempotent so ker(·k) = Jet by [19, Proposition B.2]. Thus

K ∼= Ret/ker(·k) = Ret/Jet = Kt.

With this, to prove (b) it remains to show that Ki = Kj implies i = j; that is

Rei/Jei ∼= Rej/Jej implies i = j. As Ai = Aj implies i = j, this holds by Lemma

2.20 if we can prove the:

Claim: Rei/Jei ∼= R/Ai as left modules for each i = 1, 2, . . . , n.

Proof. Define φi :R → Rei/Jei by φi(r) = rei + Jei for all r ∈ R. Then φi is

R-linear and epic, and :

r ∈ ker(φi)⇔ Rei = Jei ⇔ r ∈ R(1− ei) + J = R(1− ei)R+ J = Ai

because ei is J-central. This proves the Claim, and so proves (b). �

Question 6. If 1 ≤ k ≤ n, let M ⊆ RR be maximal with respect to ek /∈ M.

Must M = Ak?

The Triangular Theorem

In this section, describing the structure of an I-finite left QD ring R is reduced

to whether or not the left socle Sl of R is contained in the Jacobson radical J. We

need some notation and terminology.

Let R1, R2, . . . , Rn be rings and let Vij be an Ri-Rj bimodule whenever i 6= j. If

conditions on the Vij are such that the set

Gn(Ri;Vij) =


R1 V12 · · · V1n

V21 R2 · · · V2n

.

.

.
.
.
.

. . .
.
.
.

Vn1 Vn2 · · · Rn


is an associative ring with matrix operations, then we call Gn(Ri;Vij) a general-

ized n× n matrix ring over the Vi j .
12 Our interest lies in:

Definition 3.20. Let R1, R2, . . . , Rn be rings and let Vij be an Ri-Rj bimodule

whenever i 6= j. The generalized, n × n upper-triangular (UT) matrix ring

12 The prototype is endRM where M = M1 ⊕M2 ⊕ · · · ⊕Mn are R-modules, Ri = end(Mi)

and Vij = hom(Mi,Mj).
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UTn(Ri;Vij) is obtained from Gn(Ri;Vij) by insisting that Vij = 0 whenever i > j.

Here we write

UTn(Ri;Vij) =


R1 V12 · · · V1n−1 V1n

0 R2 · · · V2n−1 V2n

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · Rn−1 Vn−1 n

0 0 · · · 0 Rn

 .
If n = 1 we identify UT1(R1) = R1; and UT2(R1) is the split-null extension of

R1 ×R2 over V12. The following is a useful link between generalized UT rings and

split-null extensions.

Lemma 3.21.

[
R V W

0 S Z

0 0 T

]
∼=

[ [
R V

0 S

] [
W

Z

]
[ 0 0 ] T

]
as rings.

Proof.

[
r v w

0 s z

0 0 t

]
7→

[ [
r v

0 s

] [
w

z

]
[ 0 0 ] t

]
is a ring isomorphism. �

With Lemma 3.21 we can extend Proposition 2.9 to generalized UT matrix rings.

Here (a), (b) and (c) are due to Yu [23, Proposition 2.1].

Proposition 3.22. Let R = UTn(Ri;Vij) be an n×n generalized UT matrix ring.

Then:

(a) J(R) = UTn
(
J(Ri);Vij

)
.

(b) R/J(R) ∼= Πi

(
Ri/J(Ri)

)
.

(c) R is left QD if and only if each Ri is left QD.

(d) If R is left QD, the left-max ideals of R are

Mk = UTn(Ai;Vij) for k = 1, 2, . . . n,

where Ai = Ri for all i 6= k and Ak is a left-max ideal of Rk.

Proof. If n = 1 there is nothing to prove. If n ≥ 2 use induction on n, Propositions

2.5 and 2.9, and Lemma 3.21. �

There is another description for generalized UT matrix rings, using:

Definition 3.23. A frame {e1, e2, . . . , en} for R is upper triangular (UT) if

eiRej = 0 whenever i > j.

The name arises because the Pierce decomposition takes the form

R ∼=


e1Re1 e1Re2 · · · e1Ren−1 e1Ren

0 e2Re2 · · · e2Ren−1 e2Ren

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · en−1Ren−1 en−1Ren

0 0 · · · 0 enRen

 = UTn(eiRei; eiRej).
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R has a UT frame {e1, e2, . . . , en} ⇔ R ∼= UTn(Ri;Vij) for some Ri and Vij .

Lemma 3.24. Suppose E = {e1, e2, . . . , en} is a UT frame for a ring R. If {f1, f2}
is a UT frame for enRen then E′ = {e1, e2, . . . , en−1, f1, f2} is another UT frame

for R.

Proof. If n = 1 then e1 = 1 and there is nothing to prove. So assume n ≥ 2. We

have fj ∈ enRen for each j so fjen = fj = enfj . The fact that E′ is a UT frame

for R, follows from:

• For all i and j : fjRei = (fjen)Rei = fj 0 = 0 as E is a

UT frame for R;

• f2Rf1 = (f2en)R(enf1) = f2(enRen)f1 = 0 because {f1, f2}
is a UT frame for enRen. �

The left QD rings have a close connection with upper triangular rings, and

Lemma 3.26 below is the key to understanding why. We need the following well-

known result of Brauer from 1950 [2].

Lemma 3.25. Brauer’s Lemma If K ⊆ R is a simple left ideal then K2 = 0 or

K = Re, e2 = e.

Proof. If K2 6= 0 let Ka 6= 0, a ∈ K. Then Ka = K by simplicity, so a = ea,

0 6= e ∈ K. Then e2 − e ∈ B where B = {b ∈ K | ba = 0}. Since B is a left ideal

and B ⊂ K we have B = 0. But then e2 = e 6= 0 and Re ⊆ K, so Re = K by a

third appeal to simplicity. �

Lemma 3.26. Let R 6= 0 be a left QD ring which is not a division ring and where

Sl(R) * J(R). Then R has an upper triangular frame {e1, e2} such that:

e1Re1 is division, e2Re2 6= 0, and R ∼=
[

e1Re1 e1Re2

0 e2Re2

]
.

Proof. As Sl * J, there exists a simple left ideal K of R such that K * J. By

Brauer’s lemma we have K = Re where e2 = e ∈ R. Hence R(1− e) is a maximal

left ideal, so R(1− e) C R because R is left QD. In particular, (1− e)R ⊆ R(1− e),
so (1 − e)Re = 0. Next, eRe ∼= end(Re) is a division ring by Schur’s Lemma (Re

is simple). Finally, (1 − e)R(1 − e) 6= 0 because otherwise R = eRe is division,

contrary to our hypothesis.

If we write e1 = e and e2 = 1−e then e2Re1 = 0 so {e1, e2} is an upper triangular

frame for R. So the Pierce decomposition of R is

R ∼=
[

eRe eR(1− e)

0 (1− e)R(1− e)

]
=

[
e1Re1 e1Re2

0 e2Re2

]
. �



186 AYMAN M. A. HOROUB AND W. K. NICHOLSON

We can now prove the first Main Theorem of this paper.

Theorem 3.27. Triangular Theorem Conditions (1) and (2) are equivalent for

a ring R 6= 0 :

(1) R is left QD and I-finite.

(2) R ∼= UTn(Ri;Vij) is generalized upper triangular where n ≥ 1,

and either (a) or (b) holds:

(a) Ri is a division ring for each i = 1, 2, . . . , n;13

(b) Ri is division if i < n; and Rn 6= 0 is I-finite, left QD,

and satisfies Sl(Rn) ⊆ J(Rn).

Proof. (2)⇒(1) Given (2): R is I-finite and left QD because each Ri has these

properties (the proof of I-finiteness is routine; for left QD use (c) of Proposition

3.22).

(1)⇒(2) We assume that (2) is false, and search for a contradiction.

The following terminology simplifies the exposition:

• An I-finite, left QD ring will be called an IQD ring.

• With an eye on Lemma 3.26, call a ring T 6= 0 nice if T is IQD,

but T is not a division ring and Sl(T ) * J(T ). 14

• For a ring S, call a UT frame {e1, e2, . . . , en} strong if eiSei is

division, i < n, and enSen 6= 0.

Claim 1. Every IQD ring T 6= 0 is nice.

Proof. If T is a division ring then (2a) holds for n = 1 and R1 = T ; if Sl(T ) ⊆ J(T )

then (2b) holds for n = 1 and R1 = T. These are both contradictions as we are

assuming that (2) fails. It follows that T is not division and Sl(T ) * J(T ). This

proves Claim 1.

Claim 2. Suppose a ring S is IQD with a strong UT frame {e1, e2, . . . , en}. Then

S has another strong UT frame of the form {e1, e2, . . . , en−1, f1, f2}.

Proof. Write T = enSen. Then T is IQD (it is a corner of S), and so is nice by

Claim 1. Now Lemma 3.26 implies that T has a UT frame {f1, f2} where f1Tf1 is

division and f2Tf2 6= 0. But then {e1, e2, . . . , en−1, f1, f2} is a UT frame for T by

Lemma 3.24, proving Claim 2.

With these preliminaries, we can complete the proof of (1)⇒(2).

13 R semiperfect in this case.
14 T 6= 0 because Sl(0) = 0 = J(0).
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First, R is nice by Claim 1, so Lemma 3.26 implies that R has a UT frame {e1, e2}
such that e1Re1 is division and e2Re2 6= 0. In other words, {e1, e2} is a strong UT

frame for R. But then Claim 2 implies that R has a UT frame {e1, f1, f2}. Again

Claim 2 shows R has a UT frame {e1, f1, g1, g2}.

Once more, Claim 2 shows R has a UT frame {e1, f1, g1, h1, h2}.

This process continues to create a sequence of strong UT frames for R each con-

taining more orthogonal idempotents than those before. This contradicts the I-

finiteness hypothesis on R, and so proves the theorem. �

The answer to the Lam-Dugas Question is ‘yes’ for semilocal rings by Theorem

3.12. So we ask:

Question 7. Is every I-finite left QD ring a right QD ring?

Note that the answer to Question 5 is ‘yes’ by Theorem 3.27 if every I-finite, left

QD ring with Sl ⊆ J is right QD.

4. Left soclin rings

The Triangular Theorem focuses our attention on the I-finite, left QD rings R

satisfying Sl ⊆ J. So the next step is to study these rings.

Definition 4.1. A ring R will be called left soclin if Sl ⊆ J.

Clearly every ring with Sl = 0 (hence every domain) is left soclin. We refer to

semisimple rings as SS-rings. No nonzero SS-ring is left soclin because Sl = R

while J = 0. Hence:

Lemma 4.2. The only ring R that is both SS and left soclin is R = 0.

Even so, all non-SS, local rings are (left and right) soclin. However: If D is

division the ring

[
D D

0 D

]
is artinian and QD, but neither left nor right soclin;

while the Weyl Example (Example 2.8) is a simple noetherian domain (and so

soclin) but it is neither left nor right QD. Recall that a ring is I-free if 0 and 1 are

the only idempotents (for example domains and local rings).

The set of left soclin rings with Sl = 0 is vast including (in addition to domains)

semiprime rings, left nonsingular rings (Zl = 0) and polynomial rings.15

15 If K = R[x]k, deg(k) = n, then K = R[x](xn+1k) so k = g (xn+1k), g ∈ R[x]. Hence

n = deg(k) ≥ n+ 1.
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Example 4.3. If R is an I-free ring then R is division or R is left soclin, but not

both.

Proof. If R is not left soclin then Sl * J, so let K * J be a simple left ideal of

R. By Brauer’s lemma K = Re, e2 = e ∈ R. As e 6= 0 we have e = 1 because R

is I-free. But then R = Re = K and it follows that R is a division ring. The last

statement is by Lemma 4.2. �

Theorem 4.4. The following conditions are equivalent for a ring R 6= 0:

(1) R is left soclin.

(2) Every maximal left ideal of R is essential in RR.

(3) If M is a maximal left ideal of R then r(M) ⊆ Zl.

(4) Sl ⊆ Zl.

(5) No maximal left ideal of R is a direct summand of RR.

Proof. (1)⇒(2) Let M ⊆max
RR, and suppose RM ⊆ess

RR fails, say M ∩ L = 0

where L 6= 0 is a left ideal of R. As M is maximal, R = M ⊕ L, say M = Re and

L = R(1− e), e2 = e ∈ R. Thus RL is simple so L ⊆ J by (1). But then 1− e ∈ J,
so e = 1 and M = R, a contradiction.

(2)⇒(3) Let a ∈ r(M) so M ⊆ l(a). Hence (2) implies l(a) ⊆ess
RR, that is

a ∈ Zl.

(3)⇒(4) Given (3), suppose if possible that Sl * Zl, say K * Zl for some simple

left ideal K ⊆ R. Write K = Rk, so l(k) ⊆max
RR. By (3) this means rl(k) ⊆ Zl.

But k ∈ rl(k) always holds, so k ∈ rl(k) ⊆ Zl. As Zl C R this means K = Rk ⊆ Zl,

a contradiction.

(4)⇒(5) If (5) fails, let Re ⊆max
RR, e

2 = e. Then e 6= 1 so R(1− e) is a simple

left ideal. Hence R(1 − e) ⊆ Zl by (4). But then 1 − e ∈ Zl, a contradiction as

l(1− e) is not essential in RR.

(5)⇒(1) If (1) fails let K * J be a simple left ideal. By Brauer’s lemma K = Re

for some e2 = e ∈ R, so R(1 − e) is a maximal left ideal of R. This contradicts

(5). �

An image of a left soclin ring need not be left soclin. Indeed, if R is a non-SS,

local ring then R is soclin (left and right) but the division ring R/J is neither left

nor right soclin. However we do have:

Proposition 4.5. Let R = S × T be rings. Then:

R is left soclin ⇔ both S and T are left soclin.
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Proof. (⇒) We prove it for S. Suppose SK ⊆ S is simple. Then K × 0 is a simple

left ideal of R so, by hypothesis, K × 0 ⊆ J(R) = J(S)× J(T ). Hence K ⊆ J(S),

proving that S is left soclin.

(⇐) We work internally. Let R = A⊕B where A C R, B C R and both A and

B are left soclin as a rings. Then

Sl(R) = soc(RR) = soc(RA)⊕ soc(RB). 16.

Observe: J(R) = J(A)⊕ J(B) and Sl(R) = soc(RA)⊕ soc(RB).

We show soc(RA) ⊆ J(A). If RK ⊆ A, RK simple, 0 6= k ∈ K, then

K = Rk = (A⊕B )Rk = Ak ⊕Bk = Ak as Bk ⊆ BA = 0. �

While images of left soclin rings may not be left soclin, we do have

Theorem 4.6. Being left soclin is a Morita invariant. More precisely:

(a) If a ring R is left soclin and ReR = R where e2 = e ∈ R, then eRe is left

soclin. The condition ReR = R is necessary.

(b) If a ring R is left soclin, so also is Mn(R) for any n ≥ 1.

Proof. Let R denote a left soclin ring.

(a) If e2 = e ∈ R where ReR = R, write Q = eRe. If Qk is simple in Q, k ∈ Q,
observe that eRk = eR(ek) = Qk. It suffices to show Rk is simple—then Rk ⊆ J,

so Qk = eRk = (eRk)e ⊆ eJe = J(Q).

So choose 0 6= x ∈ Rk, say x = ak, a ∈ R. As ReR = R we have 0 6= x ∈ ReRx,
so ebx 6= 0 for some b ∈ R. Then

0 6= ebx = eb(ak) = eba(ek) ∈ Qk, so Qebx = Qk

because Qk is simple in Q. Hence k ∈ Rx so Rk ⊆ Rx, as desired.

For the last statement, let R = M2(Z2), e = e11, and use Lemma 4.2.

(b) We prove it for n = 2; the general case is analogous. Writing M2(R) = Λ, we

must show that if ΛK ⊆ Λ is simple then K ⊆ J(Λ). By Lemma 2.10, K =

[
X

X

]
where RX is a submodule of R2 (written as rows). Observe that RX is simple

because Y ⊂ X implies

[
Y

Y

]
⊂
[

X

X

]
= K. Hence

X ⊆ soc(R2) = soc(R⊕R) = soc(R)⊕ soc(R) = Sl ⊕ Sl.

But Sl ⊆ J by hypothesis, so each row of X has every entry from J. It follows that

K =

[
X

X

]
⊆M2(J) = J(Λ), as required. �

Turning to the semilocal case, the following result plays a role later.

16 In general if RM = RP⊕RQ then soc(RM) = soc(RP )⊕ soc(RQ).
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Theorem 4.7. Let R be a semilocal, non-SS ring. Then the following are equiva-

lent:

(1) R is left soclin.

(2) J ⊆ess
RR.

Proof. As R is semilocal, let J = M1 ∩M2 ∩ · · · ∩Mn, Mi ⊆max
RR.

(1)⇒(2) Given (1), each Mi ⊆ess
RR by Theorem 4.4(2), and (2) follows.

(2)⇒(1) By Theorem 4.4(2), J ⊆Mi for each i. �

Notes. • (1)⇒ (2) fails if R is merely I-finite—see Example 3.16(f).

• J ⊆ess
RR can fail even if R is artinian, QD and J ⊆ess RR,

see Example 4.9(g) below.

Question 8. If R is left QD, is J ⊆ess
RR ⇔ R is left soclin?

Example 4.9 below requires four well-known results:

Lemma 4.8. (a) If R is semilocal then Sl = r(J) and Sr = l(J).

(b) If R is semilocal and JM = 0, M a left module, then M is semisimple.

(c) For any ring R, SlZl = 0 and ZrSr = 0.

(d) If M ⊆max
RR, then either M ⊆εss

RR or M ⊆⊕ RR.

A ring R can be left soclin but not right soclin, as the next example shows

(among many other things).

Example 4.9. Let D be a division ring, and define a ring R as follows:

R =

{[
a b c

0 a 0

0 0 d

]∣∣∣∣∣ a, b, c, d ∈ D
}
.

(a) R is a semilocal (in fact artinian), QD ring of width 2.

(b) J =

[
0 D D

0 0 0

0 0 0

]
, and the only left-max ideals of R are

A1 =

[
0 D D

0 0 0

0 0 D

]
and A2 =

{[
a b c

0 a 0

0 0 0

]∣∣∣∣∣ a, b, c ∈ D
}
.

(c) R is left soclin but not right soclin—in fact Sl = J, and Sr ⊃ J.
Moreover: Sl = A1 ⊆ess

RR and Sr = l(J) = A1 ⊃ J.

(d) A1 ⊆ess
RR and A2 ⊆ess

RR. Also, A1 ⊆ess RR, but A2 is not essential in

RR.

(e) Sl = r(J) = J and Sr = l(J) = A1 ⊃ J.

(f) Zl = J and Zr =

[
0 D 0

0 0 0

0 0 0

]
. Both RZr and (Zr)R are simple.
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(g) J ⊆ess
RR but J is not essential in RR.

(h) r(A1) = J 6= 0 and r(A2) = 0.

Proof. Observe: R ∼=
[

S V

0 D

]
is the split-null extension of the local ring

S =:

{[
a b

0 a

]∣∣∣∣ a, b ∈ D} and the division ring D by SVD =

[
D

0

]
.

(a) We have J =

[
0 D D

0 0 0

0 0 0

]
by Proposition 2.9(b). Define

ϕ : R→ D ×D by ϕ

[
a b c

0 a 0

0 0 d

]
= (a, d).

Then ϕ is an onto ring morphism with ker(ϕ) = J, so R/J ∼= D ×D. Hence R is

semilocal, and R is QD of width 2 (by Proposition 2.2 and Theorem 3.8). Finally,

R is artinian because dim(DR) = 4.

(b) Write λ =

[
a b c

0 a 0

0 0 d

]
and define ϕ1, ϕ2 : R → D given by λ 7→ a, d

respectively. These maps are both onto ring morphisms, and the kernels are A1

and A2. Hence each Ai C R, and so is left-max in R by Lemma 2.3. As A1 6= A2,

and R has width 2 by (a), it follows that A(R) = {A1, A2}. But R is left QD by

(a), and so (b) follows because J = A1 ∩A2 =

[
0 D D

0 0 0

0 0 0

]
.

(c) As R is semilocal, and in view of Lemma 4.8(a), we compute r(J) and l(J)

using the following:[
0 D D

0 0 0

0 0 0

][
a b c

0 a 0

0 0 d

]
=

[
0 Da Dd

0 0 0

0 0 0

]
(*)

and

[
a b c

0 a 0

0 0 d

][
0 D D

0 0 0

0 0 0

]
=

[
0 aD aD

0 0 0

0 0 0

]
. (**)

So Sl = r(J) =

[
0 D D

0 0 0

0 0 0

]
= J and Sr = l(J) =

[
0 D D

0 0 0

0 0 D

]
= A1. As

A1 ⊃ J this shows that R is not right soclin by Definition 4.1. Finally, each

Ai ⊆ess
RR by Theorem 4.4(2).

(d) As R is left soclin by (c), each Ai ⊆ess
RR by Theorem 4.4(1). To see that

A1 ⊆ess RR we use the right version of Theorem 4.4(5) by showing that A1 6= φR

for any 0 6= φ2 = φ ∈ A1. Indeed, such a φ has the form φ =

[
0 0 q

0 0 0

0 0 1

]
where

q ∈ D, and φR =

[
0 0 qD

0 0 0

0 0 D

]
6= A1.
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Finally, A2 is not essential in RR as A2 = εR, ε = ε2 =

[
1 0 1

0 1 0

0 0 0

]
—A2 ⊆ εR

because α = εα for all α ∈ A2
17. This proves (d).

(e) These were proved in (*) and (**) above.

(f) By (*), (**) and Theorem 4.4(4), we have J = Sl ⊆ Zl. It follows that Zl = J

because R is semipotent (being exchange) so J ⊂ Zl would contradict the fact that

Zl is I-free.

Turning to Zr, write E =

[
0 D 0

0 0 0

0 0 0

]
and observe E = ε12R where ε12 is the

matrix-unit. Lemma 4.8(c) shows that ZrSr = 0, so Zr ⊆ l(Sr)
(e)
= l(A1) = E as

is easily verified. One also verifies that both ER and RE are simple, so Zr = 0 or

Zr = E; we claim Zr = E. As E = ε12R, to prove this it is enough to show that

that ε12 ∈ Zr, that is that r(ε12) ⊆ess RR. But r(ε12) = A1 so this follows by (d)

above.

(g) By (e) J = Sl, and Sl ⊆ess
RR as R is left artinian. This proves J ⊆ess

RR.

For the rest of (g), write K =

[
0 0 0

0 0 0

0 0 D

]
. Then K is a simple right ideal of R

and J ∩K = 0, so J is not essential in RR. This proves (g).

(h) To see r(A2) = 0, let A2ξ = 0, ξ =

[
x y z

0 x 0

0 0 w

]
. For a, b, c ∈ D,[

a b c

0 a 0

0 0 0

][
x y z

0 x 0

0 0 w

]
=

[
ax ay + bx az + cw

0 ax 0

0 0 0

]
= 0.

It follows that Dx = 0, then Dy = 0, and finally Dz + Dw = 0. Hence ξ = 0 as

required. One verifies that r(A1) = J. �

Recall that the Lam-Dugas question has an affirmative answer for semilocal

rings (Theorem 42). However the answer seems to be unknown when ‘semilocal’ is

replaced by ‘I-finite’. Hence we sharpen it:

Question 9. If R is left QD, I-finite and left soclin, is R right QD?

5. Left QDS rings

In this section the structure of the I-finite, left QD, left soclin rings is explored

further, and the second Main Theorem of the paper (Theorem 5.15) is proved. We

clearly need:

17 The nonzero idempotents in A2 are φq =

 1 0 q

0 1 0

0 0 0

 , q ∈ D, and φqR = A2.



ON I-FINITE LEFT QUASI-DUO RINGS 193

Definition 5.1. A ring will be called a left QDS ring if it is I-finite, left QD and

left soclin.

We begin with some basic properties of left QDS rings:

Lemma 5.2. (a) The class of left QDS rings is closed under full corners (Theorems

2.13 and 4.6), under direct factors (Propositions 2.9(a) and 4.5), but not under

images (Z→ Z2).

(b) If R = Πn
i=1Ri, then R is left QDS ⇔ each Ri is left QDS (Propositions

2.9(a) and 4.5).

(c) Every left QDS ring has a primitive frame (Lemma 3.15).

Because these left QDS rings are I-finite, the block decomposition theorem [1,

Theorem 7.9] applies. The next three results include a brief proof of this latter the-

orem for clarity, completeness and reference. This involves the choice of a primitive

frame E for the ring, and emphasizes the dependence upon E.

The E-Decomposition of a Ring

If E is a primitive frame for a ring R, define a relation ∼ on E by

e ∼ f ⇔ eRg 6= 0 and fRg 6= 0 for some g ∈ E. (†)

Then ∼ is reflexive and symmetric, so ≈ is an equivalence on E if:

e ≈ f ⇔ e ∼ g1 ∼ g2 ∼ · · · ∼ gt ∼ f for some gi ∈ E. (††)

Definition 5.3. For a frame E, ≈ is the E-equivalence on E.18

Lemma 5.4. If E is a primitive frame for R, and e, f ∈ E, then:

(a) e ∼ e ; eRf 6= 0 ⇒ e ∼ f ; and e ∼ f ⇒ e ≈ f.
(b) Let c2 = c ∈ C(R). If e ∈ E, ec = 0 or ec = e.

(c) Let c2 = c ∈ C(R). If e ∼ f, then:

(i) ec = 0 ⇔ fc = 0 and (ii) ec = e ⇔ fc = f.

(d) Condition (c) holds with ∼ replaced by ≈ .

Proof. (a) eRe 6= 0; eRf 6= 0 and fRf 6= 0; and e ∼ e ∼ f.
(b) This is because (ec)2 = ec ∈ eRe, and e is primitive.

(c) We need only prove (⇒) in each case—interchange e and f. As e ∼ f, we

have eRg 6= 0 and fRg 6= 0 for some g ∈ E.
(i) (⇒) Let ec = 0. If fc 6= 0 then fc = f by (b), so 0 6= fRg = (fc)Rg =

fR(gc). Thus gc 6= 0, so gc = g again by (b). But then, 0 6= eRg = eR(gc) =

(ec)Rg = 0Rg, a contradiction.

18 This is usually called the block equivalence for R induced by E.
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(ii) (⇒) Let ec = e. If fc 6= f, then fc = 0 by (b), from which ec = 0 by (i).

This is the desired contradiction.

(d) As per (††), let e ∼ g1 ∼ g2 ∼ · · · ∼ gt ∼ f where e, f, gi ∈ E. Using (c)

repeatedly: ec = 0 ⇒ g1c = 0 ⇒ · · · ⇒ fc = 0. �

Definition 5.5. Let {E1, E2, . . . , Em} be the partition of the frame E into

≈-equivalence classes. For 1 ≤ p ≤ m, define:

cp = Σ{e | e ∈ Ep}—the sum of the idempotents in Ep.

Because E is a frame for R, {c1, c2, · · · , cm} is also a frame for R (called the E-

block-frame for R), and the corners cpRcp (denoted Bp = cpRcp) are called the

E-blocks of R.

Lemma 5.6. Let B1, B2, . . . , Bm be the E-blocks of a ring R induced by a primitve

frame E, and let Bp = cpRcp for 1 ≤ p ≤ m.
(a)Ep is a primitive frame for Bp = cpRcp, for all p = 1, 2, . . . ,m.

(b) If e, f ∈ E then e ≈ f ⇔ e and f lie in the same E-block.

(c) {c1, c2, · · · , cm} ⊆ C(R) ⇔ EpREq = 0 when p 6= q.19

(d)Each idempotent ck is central in R for 1 ≤ p ≤ m.

20

Proof. (a) Write Ep = {f1, . . . , fk}, so cp = Σk
i=1fi. Given fj , 1 ≤ j ≤ k, we have

fjcp = Σk
i=1fjfi = fj . Similarly cpfj = fj so each fj ∈ Bp. Hence Ep is a frame for

Bp; it is primitive because Ep ⊆ E.

(b) (⇒) Let e ≈ f, so e, f ∈ Ep for some p. Use (a).

(⇐) Suppose e 6≈ f, say e ∈ Ep1 and f ∈ Ep2 , p1 6= p2. By (a), e ∈ cp1Rcp1 and

f ∈ cp2Rcp2 , a contradiction.

(c) (⇒) Suppose {c1, c2, · · · , cm} ⊆ C(R). If e ∈ Ep, f ∈ Eq, and p 6= q, then

(a) shows that eRf = (cpe)R(fcq) = eRfcpcq = 0.

(⇐) If EpREq = 0 whenever p 6= q then, using (a),

cpRcq ⊆ Σp,q{eRf | e ∈ Ep, f ∈ Eq} = 0

because p 6= q. cpr = (cpr)1 = cpr(c1 + · · · + cm) = cprcp for r ∈ R. Similarly

rcp = cprcp, so cp ∈ C(R).

(d) By (c), we show that EpREq = 0 when p 6= q. If e ∈ Ep and f ∈ Eq, then

e 6≈ f because Ep and Eq are distinct ≈-equivalence classes. But then eRf = 0 by

Lemma 5.4(a). �

20 This is valid for any equivalence on E in place of ≈ .
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Theorem 5.7. E-Block Decomposition21 Let E = {e1, e2, · · · , en} be a primi-

tive frame for a ring R, with E-block-frame {c1, c2, . . . , cm}.
(a) If e, f ∈ E, then: e ≈ f ⇔ e and f are in the same E-block Bp.

(b) Each E-block Bp = cpRcp is indecomposable as a ring.

(c) Each cp is central in R.

Thus the (unique) decomposition of the ring R as a direct product of indecomposable

rings is

R = c1Rc1+̇c2Rc2+̇ · · · +̇cmRcm ∼= B1 ×B2 × · · · ×Bm († † †)

where, for p = 1, 2, . . .m, the Bp = cpRcp are the E-blocks of R.

Proof. Again, let E1, E2, . . . , Em be the ≈-equivalence classes in E.

(a) This is by Lemma 5.6(b).

(b) If 0 6= c2 = c is central in cpRcp, we show c = cp. As c = cpc = Σ{fc | f ∈
Ep}, we have fc 6= 0 for some f ∈ Ep (as c 6= 0). Then ec = e for every e ∈ Ep by

Lemma 5.4(c), applied to the ring cpRcp. Hence (b) follows from

c = cpc = Σ{ec | e ∈ Ep} = Σ{e | e ∈ Ep} = cp,

proving (b).

(c) This is by Lemma 5.6(d).

Finally († † †) holds because RR = ⊕m
j=1Bj and each Bj C R. �

Definition 5.8. Condition († † †) is called the E-block decomposition of a ring

R with a primitive frame E.

Let R have a primitive frame E, so each E-block Bp = cpRcp of R has a related

primitive frame Ep ⊆ E by Lemma 5.6. Our goal now is to understand how E-

properties of R pass between Ep-properties of Bp. To describe this we use the

following notation:

Definition 5.9. Given a primitive frame E for a ring R, we write:

e ∼ f as e ∼ f (mod E) and e ≈ f as e ≈ f (mod E).

Proposition 5.11 below captures the nature of this relationship; the following

lemma is critical.

Lemma 5.10. Let R be a ring with primitive frame E, and E-equivalence classes

E1, E2, . . . , Em. Fix p ∈ {1, 2, . . . ,m} and let e, f ∈ Ep. Then:

e ∼ f (mod Ep) in Bp ⇔ e ∼ f (mod E) in R.

21 Often called simply the Block Decomposition
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Proof. (⇒) Let e ∼ f (mod Ep), say eBpg 6= 0 and fBpg 6= 0 where g ∈ Ep. As

Ep ⊆ E, we get e ∼ f (mod E).

(⇐) Let e ∼ f (mod E), say eRh 6= 0 and fRh 6= 0 with h ∈ E. Then:

(i) h ∈ Bp. As h ∈ E = ∪Ek we have h ∈ Eq for some q. Note that Eq ⊆ Bq.

If q 6= p, e = e2 ∈ EqEp ⊆ BqBp = (cqRcq)(cpRcp) = 0, a contradiction. So q = p,

and h ∈ Ep ⊆ Bp.

(ii) eBph 6= 0. By the above, h ∈ Ep ⊆ Bp so h = cph. Similarly

e = ecp so 0 6= eRh = (ecp)R(cph) = e(cpRcp)h = eBph.

(iii) fBph 6= 0. The proof is similar to (ii).

Now, statements (ii) and (iii) show that e ∼ f (mod Ep). �

Proposition 5.11. Let R be a ring with primitive frame E, and E-equivalence

classes E1, E2, . . . , Em. Fix p ∈ {1, 2, . . . ,m} and let e, f ∈ Ep.

(a) e ≈ f (mod Ep) in Bp ⇔ e ≈ f (mod E) in R.

(b) Ep = E ∩Bp for each p = 1, 2, . . . ,m.

Proof. (a) Let e ≈ f (mod Ep). By (†), and then Lemma 5.10, we have

e ∼ g1 ∼ · · · ∼ gt ∼ f (modEp) then e ∼ g1 ∼ · · · ∼ gt ∼ f (mod E).

So e ≈ f (mod E) as required. The converse is similar.

(b) We have Ep ⊆ E∩Bp because Ep ⊆ E by definition, and Ep ⊆ Bp by Lemma

5.6(a). Conversely, let e ∈ E ∩Bp. Then we have e ∈ E = ∪kEk, say e ∈ Eq ⊆ Bq

for some q; we show q = p. But if p 6= q then e = e2 ∈ BpBq = 0, a contradiction.

So q = p, as required. �

Left Bricks

We now return to the study of QDS rings, and of some “building blocks” that

are indecomposable left QDS rings, and which we call left “bricks”.

If R is left QDS with a primitive frame E, the core of Theorem 5.7 is that the

E-block-frame {c1, c2, . . . , cm} lies in the centre C(R) of R. Hence we again obtain

equation († † †) :

R ∼= B1 ×B2 × · · · ×Bm where cpRcp = Bp for each p.

So describing the left QDS rings becomes describing the E-blocks Bp.

Properties of the E-blocks Bp which will be needed:

1) Bp is a corner of R by († † †).
2) Bp is I-finite (as R is I-finite).

3) Bp is left QD (by 1) and Theorem 2.13).

4) Bp is left soclin (by 1) and Theorem 4.6).
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5) Bp is indecomposable as a ring by Theorem 5.7(b).

6) Bp has a primitive frame Ep = {f1, f2, . . . , ft} ⊆ E by

Lemma 5.6(a)—see Definition 5.5 and Lemma 5.6(a).

7) The E-equivalence for Bp induced by Ep is the restriction

of ≈ to Ep by Proposition 5.11.

8) fk ≈ fl for all k, l, where ≈ is the Ep-equivalence for

Bp induced by Ep (by Proposition 5.11).

9) Properties 2), 3), 4), and 5) show that each Bp is an

indecomposable left QDS ring.

Definition 5.12. Let R be a ring with a primitive frame E, and let ≈ be the

E-equivalence for R.

(a) Call R a left brick if it is an indecomposable left QDS ring and

has a primitive, homogeneous E-frame.

(b) Here, we call E a homogeneous frame if f ≈ g for all f, g ∈ E.

Clearly the frame {1} is always homogeneous. But if e2 = e then both e and

1− e cannot belong to any homogeneous, primitive frame. [ If eg = (1− e)g then

1 − 2e = 0, so g = 0. ] The E-blocks in Theorem 5.7 have homogeneous primitive

frames by Theorem 5.7(b).

Example 5.13. Examples of left bricks :

(a) Every E-block Bp arising as in († † †) is a left brick by

Theorem 5.7. Conversely every left brick B arises in this

way (by Theorem 5.7 applied to R = B).

(b) Every left soclin ring that is not a division ring is a left

brick (Example 4.3).

(c) No division ring is a left brick (left bricks are left soclin).

(d) All local rings R with J(R) 6= 0 are left bricks.

(e) Every non-soclin, QD domain is a left brick.

(f) All PIDs are bricks.

(g) The semilocal ring Z(p,q) in Example 3.10 is a brick.

(h) In Example 5.17 below we present a left brick that is not a

right brick.

These left bricks will be our chief concern in the sequel. One main reason for

this is the following characterization of the left QDS rings.
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Proposition 5.14. The following are equivalent for a ring R:

(1) R is a left QDS ring.

(2) R is a finite direct product of left bricks.

Proof. (1)⇒(2) Given (1), († † †) shows that R ∼= B1 ×B2 × · · · ×Bm where each

Bp has the following properties:

• Bp is an indecomposable left QDS ring by 2), 3), 4), and 5), and

• Bp has a homogeneous frame Ep by 6) and Theorem 5.7(b).

That is these Bp are all left bricks, proving (2).

(2)⇒(1) Suppose R ∼= B1 × B2 × · · · × Bm where each Bp is a left brick. Then

R is: I-finite by 2); left QD by 3), and left soclin by Proposition 4.5. �

Of course, the primary goal of this paper is to determine the structure of all

I-finite left QD rings. We began this task with the Triangular Theorem (Theorem

3.27–called the first Main Theorem). After incorporating Definition 5.1 of the left

soclin rings, this theorem becomes:

A nonzero ring R is I-finite and left QD if and only if R ∼= UTn(Ri;Vij) is

generalized upper triangular, where n ≥ 1 and either

(a) Ri is a division ring for each i = 1, 2, . . . , n; or

(b) Ri is a division ring for each i < n, and Rn 6= 0 is a

left QDS-ring.

Combining this with Proposition 5.14 yields our second Main Theorem:

Theorem 5.15. Structure Theorem The following conditions are equivalent for

a ring R 6= 0 :

(1) R is left QD and I-finite.

(2) R ∼= UTn(Ri;Vij) is generalized upper triangular where n ≥ 1

and either (a) or (b) holds:

(a) Ri is division for each i = 1, 2, . . . , n; or

(b) Ri is division if i < n; and Rn 6= 0 is a finite direct

product of left bricks.

Thus, the description of the I-finite, left QD rings amounts to describing the left

bricks.

Here are some related remarks. Suppose B is a left brick B with a primitive,

homogeneous, block frame

F = {f1, f2, . . . , ft}.

This leads to a representation of B as a generalized t× t matrix ring
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B ∼= endD

(
Df1 ⊕Df2 ⊕ · · · ⊕Dft

) ∼=


f1Bf1 f1Bf2 · · · f1Bft

f2Bf1 f2Bf2 · · · f2Bft

.

.

.
.
.
.

. . .
.
.
.

ftBf1 ftBf2 · · · ftBft

 .
Here each fiBfi is indecomposable (as fi is primitive), it is left QD by Theorem

2.13, and the primitive frame {1, fi} is homogeneous (1 ∼ fi because 1fi = fifi).

Moreover, Example 4.3 shows that each fiBfi is either division or left soclin (not

both). It follows that, after relabeling, there exists k ∈ Z with 1 ≤ k ≤ t where

f1Bf1, · · · , fkBfk are division, and fk+1Bfk+1, · · · , ftBft are left soclin left bricks.

This combines with the following fact: For e2 = e, f2 = f in B,

eBf ∼= homeRe(Be,Bf) via a 7→ λa : Re→ Rf, where xλa = xa.

With this it remains to use the homogeneity of ≈ in B to discover more about the

structure of the ring in (*).

Examples of these left soclin left bricks include:

• any I-free left soclin ring that is not division;

• all left QD domains (including all PIDs);

• the semilocal ring Z(p,q) in Example 3.10; and

• local rings with J 6= 0 (the only semiperfect examples).

Question 10. Describe the semiperfect left bricks:—see [13, Theorem 22.6] for the

artinian case.

A left QDS brick that is not a right QDS brick

Lemma 5.16. Let Γ =

[
R V

0 S

]
be a split-null extension where R and S are both

I-free. Given v, w ∈ V, use the notations:

0̂ =

[
0 0

0 0

]
, 1̂ =

[
1 0

0 1

]
, εv =

[
1 v

0 0

]
and φw =

[
0 w

0 1

]
.

(a) I(Γ) = {0̂, 1̂, εv, φw} where v and w range independently over V.

(b) 1̂− εv = φ(−v) for all v ∈ V.
(c) φwεv = 0̂ for all v, w ∈ V.
(d) εvφw = 0̂ ⇔ v + w = 0 ⇔ φw = 1̂− εv.
(e) Each εv and each φw is a primitive idempotent.

(f) The only frames for Γ are {1̂}, {0̂, 1̂}, and for some v ∈ V,
{εv, 1̂− εv} = {εv, φ−v}.

(g) If V 6= 0 the frame {εv, 1̂− εv} = {εv, φ−v} is homogeneous for

each v ∈ V.
(h) Γ is indecomposable as a ring.
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Proof. (a) If ε =

[
e v

0 f

]
in Γ, then ε2 = ε if and only if e2 = e, f2 = f and

ev+ vf = v. As R and S are both I-free then e = 0, 1 in R and f = 0, 1 in S. These

four cases lead to I(Γ) ⊆ {0̂, 1̂, εv, φw}. The other inclusion is because {0̂, 1̂, εv,

φw} consists of idempotents

(b), (c), and (d) Given (a), these are routine.

(e) Suppose λ2 = λ ≤ εv where λ 6= 0̂. Then λεv = λ = εvλ and λ 6= 1̂. So (c)

implies λ 6= φw for all w ∈ V. Hence (a) shows that λ = εv′ for some v′ ∈ V. But

then εv is primitive because

λ = λεv = εv′εv =

[
1 v′

0 0

] [
1 v

0 0

]
=

[
1 v

0 0

]
= εv.

Turning to φw, suppose µ2 = µ ≤ φw where µ 6= 0̂. Again µ 6= 1̂, and µ 6= εv for

all v ∈ V by (c). So (a) implies that µ = φw′ with w′ ∈W, and so, as required, we

obtain

µ = φwµ = φwφw′ =

[
0 w

0 1

] [
0 w′

0 1

]
=

[
0 w

0 1

]
= φw.

(f) Let E be a frame for Γ, and assume that both E 6= {1̂} and E 6= {0̂, 1̂}.
Observe that: 0̂ /∈ E—as 0̂ belongs to no frame; and 1̂ /∈ E as then E = {1̂}.
Hence, by (a), E = {εv1 , εv2 , . . . , φw1 , φw2 , . . . }. But εvεv′ 6= 0 whenever v 6= v′,

and φwφw′ 6= 0 when w 6= w′. It follows that E = {εv, φw} for some v, w ∈ V.

Finally, this means that εv + φw = 1̂, so φw = 1̂− εv by (b). This proves (f).

(g) We must show that εv ≈ φ−v; that is we must find γ ∈ Γ such that εvΓγ 6= 0

and φ−vΓγ 6= 0. It turns out that γ = φ−v does it. Certainly φ−vΓφ−v 6= 0 as it

contains φ−v 6= 0. And εvΓφ−v 6= 0 because, if 0 6= x ∈ V by hypothesis, we have

εv

[
1 x

0 1

]
φ−v =

[
0 x

0 0

]
6= 0.

(h) Suppose ψ2 = ψ =

[
e z

0 f

]
∈ C(Γ), Then e2 = e, f2 = f, and z = 0 as ψ

commutes with

[
1 0

0 0

]
. Then e ∈ C(R), f ∈ C(S) and ev = vf for all v ∈ R as

ψ commutes with each

[
r v

0 s

]
. Moreover, as R and S are both I-free, ψ takes

one of the following forms

[
0 x

0 0

]
,

[
1 v

0 0

]
,

[
0 w

0 1

]
or

[
1 v

0 1

]
. But then the

fact that ψ is central shows easiy that ψ = 0̂ or ψ = 1̂, proving (h). �

Example 5.17. Let R =

{[
a b c

0 a 0

0 0 d

]∣∣∣∣∣ a, b, c, d ∈ D
}

from Example 4.9, where

D is division ring. Then R is a left QDS brick that is not a right QDS brick.
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Proof. Clearly R =

[
S V

0 D

]
is the split-null extension of the local ring S ={[

a b

0 a

]∣∣∣∣ a, b ∈ D} and the division ring D over the bimodule SVD =

[
D

0

]
.

Since both S and D are I-free, Lemma 5.16 applies to R. Hence we conclude:

• R is a QD ring by Example 4.9(a).

• R is left soclin by Example 4.9(c).

• R has a primitive, homogeneous frame by Lemma 5.16(e) and 5.16(g).

• R is indecomposable as a ring by Lemma 5.16(h).

Hence R is a left QDS brick by Definition 5.12. But R is not right soclin, again by

Example 4.9(c), so it is not a right QDS brick. This completes the proof. �
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