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ABSTRACT 
Metals are one of the most important building materials of modern times. Especially the production and 
metalworking process of flat metal sheets is very sensitive. Control of the manufacturing process affects not only 
the intermediate products but also the quality of final products. Early detection of defects on steel plate surfaces is 
an important task in industrial production. Process control and mistake detection have traditionally been done 
manually by experts. However, this method is not proper in terms of both time and cost. With the industrial 
revolution IR 4.0, machine learning (ML) techniques have been developed to solve fault detection problems in 
products. This study focuses on developing basic machine learning methods for the detection of six different error 
classes that may occur during production on steel surfaces. Five standard ML models: LD, KNN, DT, SVM, RF, 
and deep learning (DNN) model: one-dimensional DNN was developed for the classification problem. The UCI 
steel plate deformation data set was used as the experimental data set. Five performance criteria: Accuracy, 
Sensitivity, Specificity, Precision, and F1 value were used to determine the success of the methods. The success 
rates of LD, KNN, DT, SVM, RF and DNN classification methods were 90.136%, 91.7880%, 93.013%, 93.287%, 
95.479%, 96.986%, respectively. The results show the significant impact of the machine learning approach on the 
steel plate fault diagnosis problem. 
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Çelik Levha Arıza Tespiti için Makine Öğrenimi Algoritmalarının 
Karşılaştırmalı Analizi  

 
ÖZET 

Metaller, modern zamanların en önemli yapı malzemelerinden biridir. Özellikle yassı metal sacın üretim ve işleme 
süreci oldukça hassastır. Üretim sürecinin kontrolü sadece ara ürünlerin değil, aynı zamanda son ürünlerinde 
kalitesini etkiler. Çelik levha yüzeylerinde oluşan hataların erken tespiti, endüstriyel üretimde önemli bir görevdir. 
Geleneksel olarak süreç kontrolü ve hata tespiti uzman kişiler tarafından manuel olarak yapılmaktadır. Ancak bu 
yöntem hem zaman hem de maliyet açısından uygun değildir. Sanayi devrimi IR 4.0 ile ürünlerde hata tespit 
problemlerini çözmek için makine öğrenimi (ML) teknikleri geliştirilmiştir. Bu çalışma, çelik yüzeyde üretim 
esnasında oluşabilecek altı farklı hata sınıfının tespiti için temel makine öğrenme yöntemleri geliştirmeye 
odaklanmıştır. Sınıflandırma problemi için beş standart ML modeli: LD, KNN, DT, SVM, RF ve bir derin öğrenme 
(DNN) modeli: tek boyutlu DNN geliştirilmiştir. Deneysel veri seti olarak UCI çelik plaka deformasyon veri seti 
kullanılmıştır. Yöntemlerin başarısını tespit etmek için beş performans kriteri: Doğruluk, Duyarlılık, Özgüllük, 
Kesinlik, F1 değeri kullanılmıştır. LD, KNN, DT, SVM, RF ve DNN sınıflandırma yöntemlerinin başarı oranları 
sırasıyla 90.136%, 91.780%, 93.013%, 93.287%, 95.479%, 96.986% olarak elde edilmiştir. Sonuçlar, makina 
öğrenmesi yaklaşımının çelik levha arıza teşhis problemindeki önemli etkisini gösterilmiştir. 
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I. INTRODUCTION 
 
A. BACKGROUND  
 
Steel is one of the most widely used and most important buildings/industrial producing materials. 
However, flat steel sheet production and processing are very difficult and demanding. In many steps, 
from casting to drawing, pressing, cutting, and folding into rolls, machines come into contact with the 
steel surface, which can cause some deformations on the steel plate surface. These defects on the steel 
surface not only reduce the production quality but also affect the corrosion and wear resistance of the 
product during the use phase [1]. Detection of defects and malfunctions in metal materials is an 
important research topic in materials science [2], [3]. Early detection of manufacturing defects and 
malfunctions is an important task in industrial production and can save time and money [4], [5]. 
Traditional methods have been used for many years to detect errors such as pastry, Z-scratch, K-scratch, 
stains, and pollution, which are some of the defects that may occur in steel plates during production. 
The experts would manually examine the plates according to the characteristics of the product to be 
released and create a malfunction report [6], [7]. However, this method is both time-consuming and 
costly, as it is possible that defects could be overlooked [7]. 
 
With the Industrial Revolution (IR) 4.0, digital transformation has taken place and computerized support 
software based on image processing has been used in fault diagnosis and quality control stages, as in 
many areas (robotics, intelligent systems, human-computer interaction, and additive manufacturing, 
etc.) [8], [9]. Thanks to computer vision and automatic fault detection systems, the product can be 
analyzed quickly at every stage on the production line, and even the smallest defects can be detected 
with fault diagnosis algorithms. [10]. Error detection algorithms are basically based on data mining 
techniques [11]. It uses historical fault databases to develop algorithms, which can detect surface errors 
and classify them by type. However, variations of defects on steel surfaces (pastry, Z-Scratch, K-
Scratch, Stains, etc.) are also most variable, making it difficult to develop high-performance 
classification algorithms. Researchers continue to work to develop software that will provide high 
performance on small datasets. 
 
This study focuses on the development of feature selection and machine learning algorithms for the 
detection of six surface defects in steel plates. LD, KNN, DT, SVM, RF, and DNN methods were used 
for classification. The performances of the classifiers were compared by calculating five performance 
evaluation parameters: Accuracy, Sensitivity, Specificity, Precision, and F1 score. 
 
B. RELATED WORKS 
  
Halawani [1] used the Random Subspace and AdaBoost method, one of the Decision Tree (DT) 
ensembles, for the estimation of steel plate errors and achieved a success rate of over 80%. It also showed 
that removing unimportant features from datasets improves the performance of the classifier.  Abdullahi 
et al. [4] used ML, LR, NB, and SVM models for the classification problem of steel surface 
deformations. And they tested the success of their method with three criteria. These are accuracy, 
precision, and recall values. They achieved the highest success with the Logistic regression (LR) model 
and reported an accuracy rate of 94.5% and a precision score of 0.756.  Nkonyana et al. [5] in their 
studies, made the fault classification of real steel surface data obtained from the industry environment 
by using RF, ANN, and SVM methods. They used 27 features to detect seven different surface defects 
and presented the results as a confusion matrix. They reported that the RF model was more successful 
than the other two models. They achieved the accuracy of 0.778 with RF.   Zhao et al. [12] proposed a 
back propagation neural network (BPNN) to classify steel plate faults. Also, they analyzed the effect of 
eliminating outliers with the LOF method. They achieved 94.57% accuracy rate using LOF+BPNN. 
Kharal et. al. [13], performed the classification of faults on steel surfaces by using the optimized RF and 
LR models. With these methods, they achieved success of 94.18% and 89.13%, respectively.  
Tian et al. [14] used the SVM method for the classification problem of seven types of failures of steel 
surfaces. They used GA, GS and PSO optimization methods in their studies and stated that they reached 



 1580 

a maximum classification accuracy of 94.6%, 95.2% and 88% with each method. They showed that the 
GS method was more effective than GA and PSO. Jain et al. [15] developed a predictive analysis method 
using data mining. In their study, they used decision tree, neural network model and linear regression 
classifiers. They reported that the decision tree model produced higher accuracy. With DT, NN, LR 
models, 94.38%, 83.87% and 72.64% classification success were obtained, respectively.  Chen [16] used 
a set of classical machine learning algorithms based on decision trees (Decision Tree, Adaboosting, 
Bagging, Random Forest). They used 10-fold cross-validation rate in analysis. The used dataset includes 
6 different types of steel plate defects Pastry, Z_Scratch, K_Scatch, Stains, Dirtiness, Bumps. It is 
reported that the bagging algorithm outperformed other methods and achieved 96.30% and 90% 
accuracy in the training and test set, respectively.  Jui-Sheng Chou et al. [17] combined five methods. 
These were firefly algorithm (FA), metaheuristic intelligence, decomposition approaches, one-to-one 
(OAO) method and least squares support vector machine (LSSVM) methods. With this method, they 
performed multi-class error detection in steel plates with an accuracy of 91.085%.  Mohamed Gamal et 
al. [18] multilayer perceptron (MLP), Recurrent Neural Networks (RNN), Decision Trees, Random 
Forest (RF), k-Nearest Neighbor (KNN) Support Vector Machine (SVM), Naive, Bayes and Logistic 
Regression (LR) methods were used to detect anomaly problem in steel plate production. They reported 
that they achieved the highest classification success with the DT method with 91.14%. 
 
 

II. MATERIAL AND METHOD 
 

A. STEEL FAULT DATASET  
 
In this study, the "Faulty Steel Plates" dataset shared with the researchers in the Kaggle and UCI 
Machine Learning dataset bank was used to determine the type of surface defects in stainless steel plates. 
This dataset was obtained from the studies of the Semeion Research Sciences Center. The dataset 
contains the numerical values of 27 features that express the geometric shape and outline of the surface 
defects. Data for the classification of seven defects on steel plates are not labeled. The class set is in 
Table 1 and the feature set is summarized in Table 2 [19]. 
 

Table 1. Faults class and account of subject [19]. 
 

Fault Class Pastry 
 

Z_Scratch 
 

K_Scatch 
 

Stains 
 

Dirtiness 
 

Bumps 
 

Common 
Fault 

Data Number of Class 158 190 391 72 55 402 673 
 
 

Table 2. Features in Sakar’s dataset [19]. 
 

Features  No Feature  Features No Feature 
1 X_Minimum 15 Edges_Index 
2 X_Maximum 16 Empty_Index 
3 Y_Minimum 17 Square_Index 
4 Y_Maximum 18 OutsideXIndex 
5 Pixels_Areas 19 EdgesXIndex 
6 X_Perimeter 20 EdgesYIndex 
7 Y_Perimeter 21 Outside Global Index 
8 Sum of Luminosity 22 LogOfAreas 
9 Minimum of Luminosity 23 LogXIndex 
10 Maximum of Luminosity 24 LogYIndex 
11 Length of Conveyer 25 Orientation_Index 
12 Type Of Steel_A300 26 Luminosity_Index 
13 Type Of Steel_A400 27 Sigmoid Of Areas 
14 Steel Plate Thickness   
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After the analyzing dataset, it was seen that the number of data in each class was numerically out of 
proportion (Table 1). And also, it has been stated that fault class 7 is not a specific type of fault in the 
dataset description file. It is a combination of many different faults from fault classes 1 to 6.  For this 
reason, it is difficult to select examples of class 7 (a common fault) from other types of faults.  In addition, 
the examples in class 7 faults do not share certain characteristics. Since some of the samples in class 7 
fault have similar characteristics to the samples from other classes, it reduces the classification success. 
For this reason, in some studies in the literature, class 7 (common fault) studies were excluded to increase 
the classification success [14]. Similarly, class 7 data (a common fault) was left out within the scope of 
this study. After the analyzing dataset, it was seen that the dataset contains outliner values. The boxplot 
provides a visualization of the statistics for the four features(Figure1).  The bottom and top of each 
rectangular box represent the border of the 25th and 75th percentiles of the data for that sample, 
respectively, and the data in this range in the rate. The red line in the middle of the box is the median 
value of that feature. The dashes at the top and bottom of the box and the horizontal line at the end 
represent the normally distributed maximum and minimum values of the data. The red '+' symbols outside 
this horizontal line indicate the outliner values. The outliner values seen in Figure 1 were excluded from 
the data set as they would reduce the classification success. But any feature selection method didn't use, 
all features in the dataset were given as input to the classification algorithm. 
 

 
Figure 1. Description of Xmin, Xmax, Ymin, Ymax values, and outliers. 

 
The balance value calculated with the help of Equation 1, considering the number of elements in the 
classes of the original data set, is 12,236. Ci expression in Equation (1) represents the decision class in 
the data set. Maxi{|Ci|} and Mini{|Ci|} expressions represent the classes with the most and least tags 
among the examples of the decision class [20, 21]. After excluding class 7 from the original dataset and 
removing outliers with reference to the first four features in the first six classes, the calculated balance 
value of the remaining dataset is 7.21 (Table 3). Calculated 𝜌 value is greater than 1. This situation is not 
ideal, but the Dirtiness class has very few data compared to other classes. Therefore, it is necessary to 
make the data set very small in order to reach equilibrium level 1. This was not preferred because it would 
negatively affect training success. 
 
𝐵𝑎𝑙𝑎𝑛𝑐𝑒	𝐿𝑒𝑣𝑒𝑙	(𝜌) = 	!"#!{|&!|}

!()!{|&!|}
                                                                                                                 (1)  

 
Table 3. Faults class and account of subject. 

 
Dataset  

 
Number of 

Dataset 
Attributes 

 

Number of 
Samples 

 

Number of 
Classes 

 

Balance 
Level 

Original dataset  27 1650 7 12.236 
Dropout outliner and balanced dataset 27 730 6 7.21 
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B. CLASSIFICATION METHODS 
 
Support Vector Machines (SVMs) are learning machines that use the inductive principle of Structural 
Risk Minimization (SRM) to achieve a high level of generalization over a small number of learning 
patterns. SVM is an effective learning method for identifying patterns in complex data sets that are 
difficult to evaluate [22]. The support vector machine algorithm seeks a hyperplane in an N-dimensional 
space (N — the number of features) that clearly classifies the data points. There are numerous possible 
hyperplanes that could be used to separate the classes of data points. The goal is to find planes with the 
greatest margin, that is, the greatest distance between data points in each class [22].  
 
Decision Tree (DT) is a type of supervised machine learning in which data is continuously split based on 
a specific parameter. Two entities can be used to explain the tree: decision nodes and leaves. Decision 
trees are one of the most extensively used methods in classification models. Because it is a simpler 
technique to configure and comprehend, gives model transparency, and has a visual presentation [23]. 
 
K-Nearest Neighborhood (KNN) The K-Nearest Neighbor (KNN) method is a non-parametric 
classification algorithm. The KNN model is easy as it is based on basic mathematical foundations. And 
it is widely used in many industries. The basic principle is based on the assumption that the class of an 
unknown variable will be the same as that of its nearest neighbors. The average of the current states of 
the k nearest elements in the training dataset is used to calculate the prediction result. The number of 
neighbors is indicated by the letter "k" in the method name. The k number is very important when it 
comes to determining the optimum categorization or estimation. It can use trial-and-error or cross-
validation approaches to choose the correct k number [24]. The class of data is determined by averaging 
the k data points calculated as the closest distance of the training set. The threshold value is calculated 
before the found value is interpreted. 
                                          
Linear Discriminant (LD) is to define a relationship between a categorical dependent variable and more 
than one independent variable. Two-group problems are relatively easy in LD analysis. A linear 
discriminant function passing through the means of the two groups is defined to distinguish the subjects 
between the two groups. When there are more than two groups, the number of groups minus one function 
definition is made for the classification problem. Linear discriminant analysis is evaluated separately for 
each of the groups. Explanatory variables are assumed to have a normal distribution with equal covariance 
matrices. The estimated coefficient for an independent variable in each case is multiplied by the event's 
score on that variable, and these results are added to the constant. The result gives the discriminant score 
for the condition [4].  
 
Random Forest - Boosted Tree (RF) The RF model is a method of creating a decision ensemble (forest) 
consisting of multiple decision trees. The RF model is a combination of hundreds of decision trees, and 
to obtain a comprehensive result, the decision results from all trees are evaluated with a majority voting 
method to produce the final result of the decision tree [13]. 
 
A one-dimensional Deep Neural Network (DNN) model was created for the classification of the steel 
fault feature dataset. The network consists of 7 layers in total. The input layer is the layer where selected 
steel fault features are entered. Data were normalized using Z-score normalization in the input layer. 
Next, a fully connected layer with output size 50 followed by a batch normalization layer and a ReLU 
layer was added. The batch normalization layer stabilizes the learning process and significantly 
decreases the number of training cycles required to form deep networks [25]. For classification, another 
fully connected layer with an output size corresponding to the number of included classes 6 is added to 
the network. And finally, the network is completed with one softmax layer and one classification layer.  
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Table 4. Algorithm parameters that are employed in the suggested method's classification algorithms. 
 

DT LD 
Model Type: Medium Tree 
Max. number of split: 20 

Split Criterion: Gini’s diversity 
Surrogate:  off 

Model Type: Linear Discriminant 
Covariance structure: Full 

 

SVM RF 

Type: Linear 
Kernel Function: Polynomial 

Polynomial Order: 3 
Kernel Scale:  Auto 

Box Constraint Level : 1 

Number of neurons in the ith layer :100 
Activation function: ReLu 

The solver weight optimization: Adam 
Penalty parameter: 0.0001 

Batch size :200 
Output Function: Majority Voting 

KNN DNN 

Type: Fine 
Distance: City block 

Number of Neighbors: 1 
Distance Weight: Equal 

Standardize: True 

 

Feature Input Layer(numFeatures,'Normalization', 'zscore') 
Fully Connected Layer :50 
Batch Normalization Layer 

Relu Layer 
Fully Connected Layer :numClass 

Softmax Layer 
Classification Layer 

    
D. PERFORMANCE EVALUATION METHODS (PEM) 
 
To compare the performance of machine learning algorithms, a variety of standard evaluation 
methodologies such as precision, sensitivity, accuracy, and F1 score were used. The number of 
successfully predicted cases is known as true positives (TP), whereas the number of incorrectly predicted 
instances is known as false negatives (FN). True negatives (TN) are the number of negative cases that 
were successfully predicted, while false positives (FP) are the number of negative instances that were 
wrongly predicted. And also, we use the confusion matrix to show how our methods predict our data. 
The confusion matrix is a numerical table used to demonstrate the classification model output effects on 
the test data known from the goal labels.  Performance evaluation metrics used in this study is given in 
Table 5 [23]. 
 

Table 5. Lookup table of performance evaluation metrics used in this study. 
 

Performance Metric Acronym Equation  

Positive Predictive Value PPV  
Precision 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

The ratio of positive samples that are predicted 
correctly out of all the samples predicted to be 
positive. 

Negative Predictive Value NPV 𝑇𝑁
𝑇𝑁 + 𝐹𝑁 

The ratio of negative samples that are predicted 
correctly out of all the samples that are predicted 
to be negative. 

True Positive Rate TPR 
Sensitivity 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 The ratio of TP outcomes to the total number of 

actual positive samples. 
True Negative Rate 
 

TNR 
Specificity 

𝑇𝑁
𝑇𝑁 + 𝐹𝑃 The ratio of TP outcomes to the total number of 

actual negative samples. 

Single class Accuracy ACC 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

The ratio of TP outcomes to the total number of 
actual positive samples. 

Multi class Accuracy ACC 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

The ratio of the number of correct predictions 
made by the method out of the total number of 
predictions made. 

F1-Score F1 2𝑥
𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅 The weighted average between the PPV and TPR 

scores. 

 
 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
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For this task, we used a PC, which has a 3.60 GHz Intel i7-7700 CPU and 16 GB of RAM. This PC runs 
Windows 10.1. We used the Matlab 2022a trial use version program.  In the proposed method, 10-fold 
cross-validation was used to obtain validation results from classifiers. Accuracy, Sensitivity, Specificity, 
Precision, and F1 were calculated after the classifiers ran 100 iterations. 
 
The average accuracy values obtained for each surface deformation class are listed in Table 6. For each 
classification algorithm, the highest success was obtained in the detection of Stains failure and the lowest 
success in the detection of Pastry failure. Confusion matrices for each classifier showing the number of 
correct and incorrect predictions of our classification model were calculated and presented in Figure 2. 

 
Table 6. Each Class Self Accuracy of classification methods after running 100 iterations. 

 

 
For the 100 iterations, the maximum accuracy of the LD, KNN, DT, SVM, RF, and DNN classification 
methods were obtained respectively 90.136%, 91.780%, 93.013%, 93.287%, 95.479%, and 96.986%. 
F1 score, Specialty, Sensitivity, and Precision values for each method are given in Table 7. As can be 
seen from the results, the highest success percentage was obtained with the RF method.  

 
Table 7. Performance values for each classification after running 100 iterations. 

 
Classifier Metric Accuracy Sensitivity Specificity Precision F1 

LD Best 90.136 83.267 84.888 84.134 84.070 
Min 88.767 81.375 83.097 82.328 82.227 

Mean 89.397 83.007 84.637 83.927 83.814 
Std 0.302 0.257 0.205 0.196 0.223 

KNN Best 91.780 87.159 87.055 86.002 87.107 
Min 90.684 86.647 86.585 85.394 86.616 

Mean 91.386 87.075 86.991 85.922 87.033 
Std 0.199 0.169 0.131 0.166 0.150 

DT Best 93.013 89.302 88.827 88.472 89.064 
Min 91.369 87.648 87.713 87.226 87.680 

Mean 92.082 89.054 88.655 88.205 88.854 
Std 0.378 0.242 0.166 0.238 0.204 

SVM Best 93.287 89.289 88.449 88.024 88.867 
Min 92.328 88.103 87.467 86.923 87.784 

Mean 92.782 89.135 88.328 87.888 88.730 
Std 0.227 0.333 0.266 0.300 0.299 

RF Best 95.479 93.179 92.375 92.093 92.775 
Min 93.561 91.973 91.343 90.969 91.657 

Mean 94.395 93.053 92.275 91.986 92.662 
Std 0.338 0.363 0.298 0.324 0.329 

DNN Best 96.986 95.546 94.871 94.753 95.157 
Min 96.164 94.494 93.476 93.313 93.982 

Mean 96.575 95.106 94.522 94.401 94.813 
Std 0.223 0.453 0.494 0.515 0.453 

 
 
 
 
 

  

Class / Self 
Mean Accuracy 

LD KNN DT SVM RF DNN 
Pastry 

 
0.6667 0.8167 0.7500 0.7000 0.8000 0.900 

Z_Scratch 
 

0.8994 0.7673 0.9497 0.9497 0.9623 0.974 
K_Scatch 

 
0.97729 0.9729 0.9910 0.9789 0.9940 0.997 

Stains 
 

0.9677 0.8387 0.9516 0.9839 1.000 1.00 
Dirtiness 

 
0.8261 0.6522 0.8478 0.9348 0.9130 0.913 

Bumps 
 

0.7606 0.6479 0.8169 0.6761 0.8732 0.9014 
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(a)                                                                                               (b) 

  
                                        (c) (d) 

  
(e) (f) 

 
Figure 2. Validation Confusion matrices of the classification methods after running 100 iterations a) DT b) LD 

c) SVM d) KNN e) RF f) DNN. 
 

The results of the classification algorithm studies using the same steel surface deformation dataset in 
Table 8 were compared with the results of this study. It is seen that the proposed RF and DNN model 
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outperforms the more successful than Tian's optimized SVM model, also without the need for any 
optimization method. The reason for this is that in Tian's study, 7 classes that contain common data are 
considered as a class with separate features. In addition, the estimation of outliers applied before the 
classification step in this study and their removal from the dataset significantly increased the success. 
 

Table 8. Comparison of this study classification performance with related works. 
 

References Classification Method Accuracy (%) 
Sami M. Halawani [1] 

 
DT 80 

Abdullahi et al. [4] LR 94.5 
Zhao et al.[12] Back Propagation Neural Network 

(BPNN) 
94.57 

Kharal [13] RF 94.18 
 LR 89.13 

Tian et al. [14] 
GA with SVM 94.6 
GS with SVM 95.2 

PSO with SVM 88 

Sanjay Jain [15] 
DT 94.38 

MLP 83.87 
LR 72.64 

 Chen [16] DT 90 
Chou et al. [17] LSSVM 91.085 
Gamal et al.[18] DT 91.14 

This study 

LD 90.136 
KNN 91.780 
DT 93.013 

SVM 93.287 
RF 95.479 

DNN 96.986 

 
 

IV. CONCLUSION 
 

In this study, LD, KNN, DT, SVM, RF, and DNN classification methods were developed. Twenty-seven 
geometric features for automatic detection of deformations on steel surfaces were used. As a result of 
the study, it was analyzed that the LD classifier had the lowest classification accuracy at 90.136%. The 
highest classification accuracy was obtained with the DNN classifier as 96.986%. It has been shown 
that the developed methodical approach has achieved such high success that it can be a decision support 
mechanism that helps experts in product quality control units in steel plate production facilities. 
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