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Abstract  Keywords 

The aim of this work is to design a control system based on modern control 
methods to control flight formations of quadrotor unmanned aerial vehicles. A 
leader-follower methodology is implemented where the leader vehicle has some 
predefined trajectory, and the follower vehicles are controlled in order to track 
the leader while keeping a constant displacement. The formation control 
system, responsible for the vehicle formation, considers, at first, only the motion 
at a constant height, and secondly, the three-dimensional motion. In both cases, 
the nonlinear control laws are derived based on Lyapunov stability theory and 
the Backstepping method. The control laws are validated in simulation, resorting 
to a realistic environment and vehicle models. 

 
 
Unmanned Aerial Vehicle 
Leader-follower 
Lyapunov stability 
Backstepping 
 

 Time Scale of Article 

 
 
Received 16 January 2022 
Revised until 20 March 2022  
Accepted 9 April 2022 
Online date 28 June 2022 
 

 

1. Introduction 

Unmanned Air Vehicles (UAVs), which were originally 
developed for military purposes, have now been devoted 
to a myriad of other uses, ranging from aerial 
photography, goods delivery, agriculture, mapping and 
surveillance, pollution monitoring, or infrastructure 
inspections. When appropriately synchronized, a swarm 
of UAVs can perform much more complex tasks with 
gains in efficiency and robustness. As an example, 
(Bacelar, Cardeira, & Oliveira, 2019) describes how it is 
possible to deploy two UAVs to carry heavy loads 
cooperatively. (Rosalie, et al., 2017) presents a strategy 
for area exploration and mapping carried out by a swarm 
of autonomous UAVs. For policing and surveillance 

missions in areas where the communication range is 
limited, (Scherer & Rinner, 2020) discusses how efficient 
a network of UAVs can be in covering the area. For 
agriculture applications, (Ju & Son, 2018) delve deeply 
into the advantages of using multiple UAVs with 
distributed control for better performance. 

Most of the examples shown apply different concepts of 
formation and resort to different techniques of how to 
control it. The control structure can be either 
centralized or decentralized. The centralized solutions 
rely on only one agent performing all computations and 
assigning the other agents their respective tasks. The 
centralized algorithms are generally easier to design but 
more difficult to implement due to the heavy 
computational burden. Also, communication is critical as 
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(Das, et al., 2002) consider that if the communication link 
between the central agent and any other agent fails, the 
entire formation is broken. The decentralized solutions 
break down the computational burden into smaller 
problems to be solved by each of the agents. In this case, 
the control laws are derived for each agent or subgroup 
of agents. The decentralized algorithms are expectedly 
more intricate to design, but their implementation is 
more reliable, efficient, and robust. 

In terms of the approaches to formation control, the 
most relevant concepts are the leader-follower, the 
virtual leader, and the behavior-based. In the leader-
follower case, as defined by (Shao, Xie, & Wang, 2007), a 
formation is achieved when each follower drives into the 
desired position with respect to the leader, which has 
some known trajectory. In the second case, the virtual 
leader describes a reference trajectory, and the 
formation is achieved when all the vehicles in the swarm 
follow the leader in a rigid structure, maintaining a rigid 
geometric shape with respect to one another and to a 
reference frame, according to (Leonard & Fiorelli, 2001). 
The behavior-based formation control approach defines 
different control behaviors for different situations of 
interest, and the control action for each vehicle is a 
weighted average of the control for each behavior, as 
explained by (Balch & Arkin, 1998). 

Contrary to many strategies found in the literature, 
which define the displacement in the inertial frame, this 
paper implements this method for the 2D motion and 
expresses the displacement in the follower’s body frame 
through decentralized onboard sensors. Moreover, 
given that the follower vehicles track a real-time 
reference provided by their controllers, they do not need 
any clue about the leader’s path, which can be 
unparameterized. For the 3D case, a centralized 
approach has been chosen for computational efficiency. 

2. Quadrotor Model 

Let {I} be an orthonormal reference frame according to 
the North-East-Down (NED) coordinate system, fixed at 
some point constant along the time. Let {B} be another 
orthonormal reference frame centered at point 𝒑. The 
orientation of {B} with respect to {I} is given by the roll, 
pitch, and yaw angles 𝝀 ≔ (ϕ, θ, ψ) that represent the 
rotation about their respective axes. The rotation matrix 
from {B} to {I} is given by an orthogonal matrix  

𝑹 ≔ 𝑹(𝝀) ∈ 𝑆𝑂(3) = {𝑿 ∈ ℝ3×3: 𝑿𝑿𝑇 = 𝑿𝑇𝑿 = 𝑰3, |𝑿| = 1}. (1) 

From the definition of 𝑹, its derivative is �̇� = 𝑹𝑺(𝛚), with 
𝛚 the angular velocity of {B} expressed in {B}. Let 𝒑 be 
the quadrotor’s position and 𝒗 its velocity in {I}. The 
kinematics of the rigid body, for any θ ≠ (2𝑘 + 1)𝜋

2
, ∀𝑘 ∈

ℤ, can be written as 

{
�̇� = 𝒗

�̇� = 𝑸(𝝀)𝝎 
 (2) 

with  

𝑸(𝝀) = (

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛 𝜙

0 𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃

). (3) 

Let 𝑚 be the mass of the quadrotor and 𝐽 ∈ ℝ3×3 its 
inertia tensor. From the conservation of linear and 
angular momentum in inertial frames, the complete 
dynamics of the rigid body in {I} is given by  

{
𝑚�̇� = 𝒇

𝑱�̇� = −𝑺(𝝎)𝑱𝝎 + 𝒏
 (4) 

where 𝒇 is the sum of external forces applied on the 
quadrotor expressed in {I} and 𝒏 the sum of external 
moments expressed in {B} and 𝑺(𝛚) is a skew-symmetric 
matrix such that 𝑺(𝒙)𝒚 = 𝒙 × 𝒚 for any 𝒙, 𝒚 ∈ ℝ3. 

A quadrotor is made of two pairs of counter-rotating 
rotors, assumed equal and equally spaced, as 
represented in figure 1. The forces applied on the 
quadrotor include its weight, aligned with the inertial 
frame 𝑧 axis pointing downwards, and the total thrust 
force 𝑇 = ∑ 𝑇𝑖

4
𝑖=1  along the body 𝑧 axis, pointing upwards. 

Relative to {I}, it is given by  

𝒇 = 𝑚𝑔𝒆𝟑 − 𝑇𝑹𝒆3 (5) 

The moments applied on the quadrotor originated from 
the different thrust forces produced by each rotor and 
the reaction torque generated by the rotors rotating. For 
the purpose of this work, which by no means intends to 
be a fastidious description of the quadrotor dynamics, 
the thrust force and reaction torque of each rotor are 
assumed proportional to its angular speed squared, such 
that the sum of external moments relative to {B} is  

𝒏 = (

0 𝑙 0 −𝑙
𝑙 0 −𝑙 0
𝑐𝑄

𝑐𝑇
−
𝑐𝑄

𝑐𝑇

𝑐𝑄

𝑐𝑇
−
𝑐𝑄

𝑐𝑇

)(

𝑇1
𝑇2
𝑇3
𝑇4

) (6) 

where 𝑙 is the quadrotor radius, i.e. the distance between 
the center of mass and the center of each rotor. 

 

Fig. 1. Simplified representation of a quadrotor with 
forces and moments on each rotor. 
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3.Horizontal Formation Control 

A trajectory tracking controller is implemented to make 
the follower track the leader while keeping a constant 
offset in its reference frame. Assuming the motion at 
constant height, Eqs. (2) and (4) can be simplified for a 
purely kinematic model given by 

{

�̇� = 𝑢 𝑐𝑜𝑠 𝜓 − 𝑣 𝑠𝑖𝑛 𝜓
�̇� = 𝑢 𝑠𝑖𝑛 𝜓 + 𝑣 𝑐𝑜𝑠 𝜓

�̇� = 𝑟

 (7) 

with only two independent equations. Given that we 
ultimately wish to control the force and the torque, it is 
wise to select the input vector (�̇�, �̇�)𝑇 (or alternatively 
(�̇�, �̇�)𝑇). So, the kinematics can also be written as 

{
�̇� = 𝑹𝒗

�̇� = 𝑟
 (8) 

with 𝒗 ≔ 𝑣𝒆1 the horizontal velocity and 𝑹 ≔ 𝑹(ψ) the 
horizontal rotation matrix from the body-fixed 
reference frame to the inertial frame. If 𝚫 = (Δ𝑥 , Δ𝑦)

𝑇
 is 

the desired displacement and 𝒑, 𝒄 ∈ ℝ2 the follower’s and 
leader’s positions, respectively, the position error 𝒛1 ∈
ℝ2, expressed in the follower’s reference frame, can be 
written as 

𝒛1 = 𝑹
𝑇(𝒄 − 𝒑) − 𝚫 (9) 

and its derivative as 

𝒛1̇ = 𝑹
𝑻�̇� − 𝒗 − 𝑺(𝑟)(𝒛1 + 𝚫). (10) 

An equilibrium point different from zero 𝒛𝑒 ∈ ℝ2 for the 
error system above makes 𝒛1̇ = 0. By making the 
appropriate change of coordinates, one can obtain the 
error system with an equilibrium point at the origin. We 
now want to derive a control law to stabilize the system 
around this equilibrium point. Let 𝑉1: ℝ2 → ℝ be a 
continuously differentiable Lyapunov function such that  

𝑉1(0) = 0, 𝑉1(𝒛1) > 0∀𝒛1 ≠ 0 and ‖𝒛1‖ → ∞ ⇒ 𝑉1(𝒛1) → ∞ 
given by 𝑉1 = 1 2⁄ ‖𝑧1‖

2. Its derivative is 

𝑉1̇ = 𝒛1
𝑇(𝑹𝑇�̇� − 𝒗 − 𝑺(𝑟)𝚫) (11) 

Adding and subtracting a term 𝑘1‖𝒛1‖2 yields 

𝑉1̇ = 𝑘1‖𝒛1‖
2 + 𝒛1

𝑇𝒛2 (12) 

where a new error 𝒛2 = 𝑘1𝒛1 + 𝑹𝑇�̇� − 𝒗 − 𝑺(𝑟)𝚫 was 
introduced. To apply backstepping with one step, we 
define the continuously differentiable Lyapunov 
function 𝑉2: ℝ

4 → ℝ such that 𝑉2(0) = 0, 𝑉2(𝒛1, 𝒛2) >

0∀(𝒛1, 𝐳2) ≠ 0 and ‖(𝒛1, 𝒛2)‖ → ∞ ⇒ 𝑉2(𝒛1, 𝒛2) → ∞ given 
by 𝑉2(𝒛1, 𝒛2) = 𝑉1(𝒛1) + 1 2⁄ ‖𝒛2‖

2. Its derivative is 

𝑉2̇ = 𝑉1̇ + 𝒛2
𝑇 [𝑘1𝒛1̇ + 𝑹

𝑻�̈� − 𝑺(𝑟)𝑹𝑻�̇� − (
1 −Δ𝑦
0 Δ𝑥

) (�̇�
�̇�
)] (13) 

If the accelerations �̇�, �̇� are considered inputs of the 
system, the control law should be 

(�̇�
�̇�
) = (

1 −Δ𝑦
0 Δ𝑥

)
−1

(𝑘1𝒛1̇ + 𝑹
𝑻�̈� − 𝑺(𝑟)𝑹𝑻�̇� + 𝒛1 + 𝑘2𝒛2) (14) 

which is well-defined for Δ𝑥 ≠ 0. Under this control law, 
the error system can be written in the strict-feedback 
form (Khalil, 2014) as 

{
𝒛1̇ = −(𝑺(𝑟) + 𝑘1𝑰2)𝒛1 + 𝒛2

𝒛2̇ = −𝒛1 − 𝑘2𝒛2
 (15) 

and the derivative of 𝑉2 becomes 

𝑉2̇ = −𝑘1‖𝒛1‖
2 − 𝑘2‖𝒛2‖

2 (16) 

which is negative for (𝒛1, 𝒛2) ≠ 0 if 𝑘1, 𝑘2 > 0. Thus, 
according to the Barbashin-Krasovskii theorem (Khalil, 
2014), the error system is globally asymptotically stable 
around the origin. 

Consider the existence of an unknown external 
acceleration disturbance 𝒅 ∈ ℝ2 expressed in {B} such 
that 

𝒛2̇ = 𝑘1𝒛1̇ + 𝑹
𝑻�̈� − 𝑺(𝑟)𝑹𝑇�̇� − �̇� − 𝑺(�̇�)𝚫 + 𝑹𝒅 (17) 

Additionally, assume the controller has an estimator �̂� ∈
ℝ2 such that 

(�̇�
�̇�
) = (

1 −Δ𝑦
0 Δ𝑥

)
−1

(𝑘1𝒛1̇ +𝑹
𝑻�̈� − 𝑺(𝑟)𝑹𝑻�̇� + 𝒛1 + 𝑘2𝒛2 +𝑹�̂�)(18) 

Expressing the estimation error by �̃� = 𝒅 − �̂� and the 
error state 𝒛 = (𝒛1, 𝒛2)

𝑇, the error dynamics can be 
written in state-space as �̇� = 𝑨𝒛 + 𝑩�̃� with  

𝑨 = (
−(𝑺(𝑟) + 𝑘1𝑰2) 𝑰2

−𝑰2 −𝑘2𝑰2
) 

and 

𝑩 = (
02×2
𝑹
) 

Let 𝑉3: ℝ6 → ℝ be a continuously differentiable Lyapunov 
function such that 𝑉3(0) = 0, 𝑉3(𝒛, �̃�) > 0∀(𝒛, �̃�) ≠ 0 and 
‖(𝒛, �̃�)‖ → ∞ ⇒ 𝑉3(𝒛, �̃�) → ∞ given by 𝑉3(𝒛, �̃�) = 𝑉2(𝒛) +
1

2𝑘𝑑
‖�̃�‖

2
. Its derivative is 

𝑉3̇(𝒛, �̃�) = 𝒛𝑇𝑨𝒛 + 𝒛𝑇𝑩�̃� + 1

𝑘𝑑
�̃�𝑻�̇̃� (19 

The first term of 𝑉3̇ is negative for all 𝒛 ≠ 0 as it has 
already been proved the error system converges under 
the control law from Eq. (14). As of the remaining two 
terms, 𝑉3̇ gets negative for all (𝒛, �̃�) ≠ 0 if they sum to 
zero. If the disturbance is assumed constant, then �̇̃� =
−�̇̂� and the adaptation law for the estimator is 

�̇̂� = 𝑘𝑑𝑩
𝑇𝒛 (20) 

Now that we have the tracking control and the 
disturbance estimation, we must study the stability of 
the system comprised of both the position error and the 
disturbance estimation error simultaneously. This 
system is given by 

https://doi.org/10.23890/IJAST.vm03is01.0102


Ferreira et al., IJAST, Volume 3, Issue 1, 2022, DOI: 10.23890/IJAST.vm03is01.0102 

16 

(
�̇�

 �̇̃�
) = (

𝑨 𝑩
−𝑘𝑑𝑩

𝑇 02×2
) (
𝒛
 �̃�
) (21) 

Let Ω = {(𝒛, �̃�) ∈ ℝ6: 𝑉3(𝒛, �̃�) ≤ 𝑐} for any 𝑐 ∈ ℝ+. The set 
Ω is bounded since 𝑉3 is radially unbounded and, from 
Lyapunov’s direct method (Khalil, 2014), it is positively 
invariant with respect to the dynamics (21). Let 𝐸 be the 
set of all points in Ω where 𝑉3̇(𝒛, �̃�) = 0. This set is given 
by 𝐸 = {(𝒛, �̃�) ∈ ℝ6: 𝒛 = 0}. Let 𝑀 be the largest invariant 
set contained in 𝐸. By LaSalle’s theorem (Khalil, 2014), 
every solution with the initial condition in Ω approaches 
𝑀 as 𝑡 → ∞. Since for any (𝒛, �̃�) ∈ ℝ6 there exists a 𝑐 > 0 
such that (𝒛, �̃�) ∈ Ω, we have that any solution converges 
to 𝑀. From its invariance, we have that �̇� = 0 ⇔ �̃� = 𝟎𝟐×𝟏 
for all (𝒛, �̃�) ∈ 𝑀. Therefore, (𝒛, �̃�) = 0 is the only element 
in 𝑀 and the system is globally asymptotically stable 
around the origin. 

3.1. Closed-loop system 

After deriving a control law, it is of interest to study the 
stability of the closed-loop system, i.e., the formation of 
one leader and one follower. When the position error is 
identically zero, 𝒛1 = 𝒛1̇ = 0, and Eq. (10) becomes  

𝑹𝑇�̇� − 𝒗 − 𝑺(𝑟)𝚫 = 0. (22) 

Assuming a general leader’s trajectory �̇� =

𝐶(𝑐𝑜𝑠 ψ𝑐 , 𝑠𝑖𝑛 ψ𝑐)
𝑇, the closed-loop equation (22) can be 

expanded to isolate the control variables as 

(
𝑣
𝑟
) = (

𝐶 cos(ψ − ψ𝑐) − 𝐶Δ𝑦 Δ𝑥 sin(ψ − ψ𝑐)⁄

−𝐶 Δ𝑥 𝑠𝑖𝑛(ψ − ψ𝑐)⁄
). (23) 

These equations describe a nonlinear periodic system 
with dynamics for ψ and output 𝑣. It is asymptotically 
stable around the points 

ψ∗ = ψ𝑐 + 2𝑘π,  ∀𝑘 ∈ ℤ (24) 

within the region of convergence 

ψ ∈]ψ𝑐 + (2𝑘 − 1)π, ψ𝑐 + (2𝑘 + 1)π[,  ∀𝑘 ∈ ℤ (25) 

In conclusion, the follower can have a heading difference 
relative to the leader of up to 180°. The bigger the 
difference, the slower the convergence is to the desired 
heading. In the limit, if a follower is set to track a leader 
describing a linear path, starting in the opposite heading, 
it will not converge. 

4. Three-dimensional Formation Control 

The motion of the quadrotor at constant height has been 
studied, and a controller for the simplified model has 
been derived using the backstepping method applied to 
the position error. This method is now used to derive a 
similar nonlinear controller for the complete model. The 
dynamics from Eqs. (2) and (4) can be written in a state-
space form  �̇� = 𝑓(𝑿, 𝑼) by introducing the state vector 
𝑿 = (ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, 𝑧, �̇�, 𝑥, �̇�, 𝑦, �̇�) and the input vector 𝑼 =
(𝑇, 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧), according to (Bouabdallah & Siegwart, 

2005). Defining the constants 𝑎ϕ = (𝐽𝑦 − 𝐽𝑧) 𝐽𝑥⁄ , 𝑎θ =
(𝐽𝑧 − 𝐽𝑥) 𝐽𝑦⁄ , 𝑎ψ = (𝐽𝑥 − 𝐽𝑦) 𝐽𝑧⁄ , 𝑏ϕ = 1 𝐽𝑥⁄ , 𝑏θ = 1 𝐽𝑦⁄  and 
𝑏ψ = 1 𝐽𝑧⁄ , the dynamics becomes 

𝑓(𝑋, 𝑈) =

{
 
 
 
 
 
 

 
 
 
 
 
 

ϕ̇

𝑎ϕθ̇ψ̇ + 𝑏ϕ𝑛𝑥

θ̇
𝑎θϕ̇ψ̇ + 𝑏θ𝑛𝑦

ψ̇

𝑎ψϕ̇θ̇ + 𝑏ψ𝑛𝑧
�̇�

𝑔 − 𝑇/𝑚 𝑐𝑜𝑠 ϕ 𝑐𝑜𝑠 𝜃
�̇�

𝑇/𝑚 𝑢𝑥
�̇�

𝑇/𝑚 𝑢𝑦

 (26) 

with 𝑢𝑥 = 𝑐𝑜𝑠 ϕ 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 ϕ 𝑠𝑖𝑛 𝜓 and 𝑢𝑦 =

𝑐𝑜𝑠 ϕ 𝑠𝑖𝑛 θ 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 ϕ 𝑐𝑜𝑠 𝜓. The system as it is posed 
highlights an important relationship between the 
position and attitude of the quadrotor: the position 
components depend on the angles; however, the 
opposite is not true. In other words, the way the position 
evolves is a consequence of the attitude of the 
quadrotor. However, the attitude is oblivious to its 
position. The overall system can be thought of as the 
result of two semi-decoupled subsystems: the 
translation and the rotation – for which two controllers 
are designed separately. 

4.1. Attitude Control 

Let 𝑧ϕ = ϕ𝑟𝑒𝑓 − ϕ ∈ ℝ be the roll angle error. Let 𝑉ϕ: ℝ →
ℝ be a continuously differentiable Lyapunov function 
such that 𝑉ϕ(0) = 0, 𝑉ϕ(𝑧ϕ) > 0∀𝑧ϕ ≠ 0 and ‖𝑧ϕ‖ → ∞ ⇒

𝑉ϕ(𝑧ϕ) → ∞ given by 𝑉ϕ = 1 2⁄ ‖𝑧ϕ‖
2
. Its derivative is 

𝑉ϕ̇ = 𝑧ϕ(ϕ̇𝑟𝑒𝑓 − ϕ̇) (27) 

If ϕ̇ is controlled to be 

ϕ̇ = ϕ̇𝑟𝑒𝑓 + 𝑘ϕ𝑧ϕ (28) 

then 𝑉ϕ̇ = −𝑘ϕ𝑧ϕ
2 . Let now 𝑧ϕ̇ ∈ ℝ be the roll rate error 

given by 

𝑧ϕ̇ = ϕ̇ − ϕ̇ref − 𝑘ϕ𝑧ϕ (29) 

and the augmented Lyapunov function 𝑉ϕ̇: ℝ2 → ℝ, in the 
same conditions as above, given by 

𝑧ϕ̇ = ϕ̇ − ϕ̇ref − 𝑘ϕ𝑧ϕ (30) 

with its derivative given by 

�̇�ϕ̇ = −𝑘ϕ𝑧ϕ
2 + 𝑧ϕ̇(𝑎ϕθ̇ψ̇ + 𝑏ϕ𝑛𝑥 − ϕ̈𝑟𝑒𝑓 − 𝑘ϕ�̇�ϕ). (31) 

If the control law for 𝑛𝑥 is chosen to be 

𝑛𝑥 = 1/𝑏ϕ(ϕ̈𝑟𝑒𝑓 + 𝑘ϕ�̇�ϕ − 𝑎ϕθ̇ψ̇ − 𝑘ϕ̇𝑧ϕ̇), (32) 

Then 
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�̇�ϕ̇ = −𝑘ϕ𝑧ϕ
2 − 𝑘ϕ̇𝑧ϕ̇

2 , (33) 

which is negative for (𝑧ϕ, 𝑧ϕ̇) ≠ 0 if 𝑘ϕ, 𝑘ϕ̇ > 0. Thus, 
according to the Barbashin-Krasovskii theorem (Khalil, 
2014), the roll error system is globally asymptotically 
stable around the origin. Following the same 
backstepping procedure for the remaining angular 
variables, an attitude controller is derived as 

{

𝑛𝑥 = 1/𝑏ϕ(ϕ̈𝑟𝑒𝑓 + 𝑘ϕ�̇�ϕ − 𝑎ϕθ̇ψ̇ − 𝑘ϕ̇𝑧ϕ̇)

𝑛𝑦 = 1/𝑏θ(θ̈𝑟𝑒𝑓 + 𝑘θ�̇�θ − 𝑎θϕ̇ψ̇ − 𝑘θ̇𝑧θ̇)

𝑛𝑧 = 1/𝑏ψ(ψ̈𝑟𝑒𝑓 + 𝑘ψ�̇�ψ − 𝑎ψϕ̇θ̇ − 𝑘ψ̇𝑧ψ̇)

 (34) 

with gains 𝑘ϕ, 𝑘ϕ̇, 𝑘θ, 𝑘θ̇, 𝑘ψ, 𝑘ψ̇ > 0. 

As stated in Section 2, the quadrotor model is well 
defined for any θ ≠ (2𝑘 + 1)𝜋

2
, ∀𝑘 ∈ ℤ. It is important to 

remember that, because of the singularities of the Euler 
angles and the topological limitations of 𝑆𝑂(3) group, 
this attitude controller is almost globally stable. 

4.2. Position Control 

A similar backstepping approach will next be followed for 
controlling the quadrotor position. Let 𝑧z = z𝑟𝑒𝑓 − z ∈ ℝ 
be the altitude error. Let 𝑉ϕ = 1/2𝑧z

2 be a Lyapunov 
function, in the same conditions as above, with 
derivative 

𝑉ż = 𝑧z(ż𝑟𝑒𝑓 − ż) (35) 

If ż is controlled to be 

ż = ż𝑟𝑒𝑓 + 𝑘z𝑧z (36) 

then 𝑉ż = −𝑘z𝑧z
2. Let now 𝑧ż be the vertical speed error 

given by 

𝑧ż = ż − żref − 𝑘z𝑧z (37) 

and the augmented Lyapunov function 𝑉ż: ℝ2 → ℝ, in the 
same conditions as above, given by 

𝑉ż = 𝑉z + 1/2𝑧ż
2 (38) 

with its derivative given by 

�̇�ż = −𝑘z𝑧z
2 + 𝑧ż(𝑔 − 𝑇/𝑚 𝑐𝑜𝑠 ϕ𝑐𝑜𝑠 θ − z̈𝑟𝑒𝑓 − 𝑘z�̇�z). (39) 

If the control law for 𝑇 is chosen to be 

𝑇 = 𝑚/(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃)(𝑔 − z̈𝑟𝑒𝑓 − 𝑘z�̇�z − 𝑘ż𝑧ż), (40) 

Then 

�̇�ż = −𝑘z𝑧z
2 − 𝑘ż𝑧ż

2 (41) 

which is negative for (𝑧z, 𝑧ż) ≠ 0 if 𝑘z, 𝑘ż > 0. Thus, 
according to the Barbashin-Krasovskii theorem (Khalil, 
2014), the altitude error system is globally asymptotically 
stable around the origin. Following the same 
backstepping procedure for the remaining position 
variables, a position controller is derived as 

{

𝑇 = 𝑚/(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃)(𝑔 − z̈𝑟𝑒𝑓 − 𝑘z�̇�z − 𝑘ż𝑧ż)

𝑢𝑥 = 𝑚/𝑇(ẍ𝑟𝑒𝑓 + 𝑘x�̇�x − 𝑘ẋ𝑧ẋ
𝑢𝑦 = 𝑚/𝑇(ÿ𝑟𝑒𝑓 + 𝑘y�̇�y − 𝑘ẏ𝑧ẏ

 (42) 

with gains 𝑘x, 𝑘ẋ, 𝑘y, 𝑘ẏ, 𝑘z, 𝑘ż > 0. 

To feed the attitude controller with the roll and pitch 
reference values, it is assumed the quadrotor does not 
perform complex maneuvers, thereby keeping ϕ and θ 
small enough. From the definitions of 𝑢𝑥 and 𝑢𝑦 it can be 
written 

(
θ𝑟𝑒𝑓
ϕ𝑟𝑒𝑓

) = (
𝑐𝑜𝑠 ψ 𝑠𝑖𝑛 ψ
𝑠𝑖𝑛 ψ − 𝑐𝑜𝑠 ψ

) (𝑢𝑥
𝑢𝑦
) (43) 

 

Fig. 2. 3D controller scheme. 
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The attitude controller also requires the derivative and 
second derivative of the reference Euler angles. These 
derivatives could be explicitly computed from the 
system (43); however, that would require measurements 
of the acceleration and its derivative, which are in all 
likelihood unavailable. Numerical differentiation of the 
reference roll and pitch is suggested by (Alcocer, 
Valenzuela, & Colorado, 2016) and adapted to  

�̇�𝑟𝑒𝑓 ≈
𝜙𝑟𝑒𝑓(𝑡)−𝜙𝑟𝑒𝑓(𝑡−𝛥𝑡)

𝛥𝑡
 (44) 

And 

�̇�𝑟𝑒𝑓 ≈
𝜃𝑟𝑒𝑓(𝑡)−𝜃𝑟𝑒𝑓(𝑡−𝛥𝑡)

𝛥𝑡
 (45) 

respectively, where Δ𝑡 is the sampling period. The 
second derivative of the reference angles can be 
computed likewise. The controller scheme is depicted in 
Fig. 2. 

5. Simulation Results 

Several simulations have been carried out for the 
developed architectures. This section presents an 
illustrative simulation for both the 2D and 3D 
controllers, where the physical parameters are shown in 
SI units. 

The first simulation consists of a formation of two 
vehicles – one leader and one follower – in the two-
dimensional space. The follower is intended to track a 
leader in a circular path with a radius 2 𝑚 and angular 
speed 1 𝑚/𝑠. The displacement is Δ = (1,1) and the gains 
are 𝑘1 = 𝑘2 = 𝑘𝑑 = 0.5. The disturbance intensity is 𝑑 =
(1,1). Figure 3 shows the simulation position as the 
follower starts from outside the leader’s circle and 
converges to a trajectory where it sees the leader at the 
position (1,1) in its reference frame. Position and 
estimation error convergence is guaranteed after about 
10 seconds. Figure 4 shows the speed convergence for a 
uniform circular motion and the heading angle bounded 
between −180° and 180°. 

 

Fig.3. 2D simulation – position and tracking and 
estimation error. 

 

 

Fig.4. 2D simulation – speed and heading angle. 

For the three-dimensional case, the complete model 
simulation considers a formation of one leader and two 
followers, each of them with equal controllers and 
departing from the same place. The heavy quadrotor 
model developed by (Pounds, Mahony, & Corke, 2010) 
was used. The attitude gains are all equal to 1, and the 
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position gains are 𝑘𝑥 = 𝑘𝑦 = 2.2, 𝑘�̇� = 𝑘�̇� = 0.18, 𝑘𝑧 =

0.5, 𝑘�̇� = 0.2.  The first follower keeps a displacement of 
Δ1 = (1,1,0) and the second follower keeps a 
displacement of Δ2 = (2,2,0). White Gaussian noise is 
added to the sensors of the followers with a signal-to-
noise ratio equal to 45 dB. Figure 5 displays the position 
of the vehicles and the actuation on each rotor, 
respectively, for a 100-second simulation. It is possible 
to see the thrust forces for each rotor converging to a 
constant value as the quadrotor tilts and banks. Figure 6 
shows the horizontal speed – converging to a uniform 
circular motion at constant height – and the distance 
from the followers to the leader at each time instant. 
This plot converges to the desired value after 50 
seconds, which bears testimony to the fact that the 
position error system converges to zero. 

 

Fig.5. 3D simulation – position and actuation. 

 

Fig.6. 3D simulation – speed and displacement. 

It is important to recall the assumption that the noise is 
both white and Gaussian. In fact, this assumption, 
however suitable for the simulation under analysis, is not 
completely accurate in a real environment. Firstly, the 
real noise is never completely white because the power 
spectral density is not necessarily constant for all 
frequencies. Secondly, the real noise is never completely 
Gaussian, given that a Gaussian distribution allows 
infinite frequency values, which is certainly not verifiable 
in a physical environment. 

6. Concluding Remarks 

This work proposes an approach to the problem of flight 
formation by solving the trajectory tracking problem of 
quadrotor unmanned aerial vehicles. The formation is 
conceived as a leader vehicle being followed by a 
follower vehicle that keeps a constant displacement 
between them. The backstepping method has been 
applied to derive nonlinear control laws, and the stability 
concerns have been addressed through Lyapunov 
stability theory. 

The control solution is twofold. Firstly, only the motion 
at constant height was considered. In this case, the 
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controller is purely kinematic but robust to constant 
acceleration disturbances, and the stability of the error 
system is globally asymptotic. The dynamic behavior of a 
closed-loop formation comprised of one leader and one 
follower is shown to be periodic. A formal proof of 
asymptotic stability within a certain region of 
convergence is also provided for this closed loop.  

Secondly, a complete three-dimensional model was 
considered. This model is both kinematic and dynamic 
and takes into account the relevant inputs from the 
rotors spinning. The error system is also proved globally 
asymptotically stable.  

A relevant simulation study has been carried out to attest 
to the performance of the control laws developed 
previously. For the motion at a constant height, the 
follower was intended to track a leader in a circular path. 
For the complete model simulation, two followers take 
part in the formation with noisy measurements from the 
sensors. 

Possible avenues for future work could include 
validation in real quadcopters, estimating variables 
unavailable to the followers, incorporating collision 
avoidance techniques, and applying varying 
disturbances. 
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