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Synchronization of Gursey System  

Eren TOSYALI*1, Fatma AYDOĞMUŞ2 

 

Abstract 

Gursey Model, the only possible four-dimensional pure spinor model, proposed as a possible 

basis for a unitary description of elementary particles. The model exhibits chaotic behaviors 

depending on the system parameter values. In this study, we investigate the synchronization of 

chaotic dynamic in the Gursey wave equation that has particle-like solutions derived classical 

field equations. Numerical results for synchronization of the Gursey system are performed to 

indicate the accuracy of the used method.   
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1. INTRODUCTION 

The field equation proposed by Feza Gursey in 

1956 is the first nonlinear spinor wave equation 

with conformal invariance [1]. Gursey Model is 

the first 4D conformal invariant fermionic model 

[1]. The exact solution of 4D Gursey Model via 

Heisenberg ansatz was found by Kortel. This 

exact solution had instantonic character [2]. 

Instantons are corresponding to classical 

topological solution with zero energy for the QCD 

(Quatum Chromo Dynamic) field equations [3].  

In addition, soliton-type solutions are found by 

adding the mass term to the equation for certain 

values of the coupling constant [4, 5]. Also, 

soliton solutions of the expanded form of Gursey 
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wave equation and Wu-Yang type monopole 

solutions were found [1, 4].  

In nature, systems are well described by nonlinear 

equations, which have rich solutions such as 

regular or chaotic behavior. Therefore, chaos and 

nonlinear dynamics are widely used in many 

applied fields, from natural science (physics, 

biology …) to social science [6]. The Gursey 

system exhibits regular or chaotic behaviors 

depending on the system parameters. Recently, 

many studies have been done on the dynamics of 

the Gursey wave equation [7 - 9].  

Synchronization in chaotic systems has been a 

topic of great interest in recent years. The first 

study on the coupling and synchronization of 
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identical chaotic systems was by Pecora-Carroll 

[10]. After the Pecora-Caroll studies, identical 

chaotic systems’ synchronization problems get 

much popular in this field. Especially, active 

control method is used to synchronize chaotic 

flows and maps such as Lorenz, Duffing, Gross-

Pitaevskii Equation (Bose-Einstein Condensate) 

and HIV-AIDS dynamical system [11-18]. In this 

paper, master-slave synchronization based on 

open-plus-closed-loop (OPCL) method is used to 

synchronize chaotic dynamic of Gursey wave 

equation. The OPCL method was proposed by 

Jackson and Grosu in 1995 [19]. They applied this 

method to synchronize chaotic identical Lorenz, 

Duffing and Chua systems. The effectiveness of 

the method was also investigated for complex 

network and hyper chaotic maps [20, 21]. In this 

paper, the synchronized and unsynchronized 

phase space diagrams and control-activated 

diagrams are given to show the effectiveness of 

the used method. 

2. GURSEY MODEL 

Gursey spinor wave equation is  

𝑖𝜕𝜓 + 𝑔(�̅�𝜓)𝜓 = 0. (1) 

here the fermion field ψ has scale dimension 
3

2
 and 

𝑔 is the positive dimensionless coupling constant. 

The Heisenberg ansatz [22].  

ψ = [ixμ γμχ(𝑠) + ϕ(𝑠)]𝐶, (2) 

here 𝐶 is an arbitrary spinor constant; χ(𝑠) and 

ϕ(𝑠) are real functions of  𝑠 = 𝑥μ = 𝑟2 +

𝑡2(𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 𝑥4 = 𝑡) in the 

Euclidean space-time, i.e. 𝑟2 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2. 

Inserting Eq. (2) into Eq. (1) we obtain the 

following nonlinear differential equations system 

4𝜒(𝑠) + 2𝑠
𝑑𝜒(𝑠)

𝑑𝑠
− 𝛼[𝑠𝜒(𝑠)2 +

𝜙(𝑠)2]
1

3𝜙(𝑠) = 0 (3a) 

2 
𝑑𝜙(𝑠)

𝑑𝑠
+ α[sχ(s)2 + ϕ(s)2 ]

1

3𝜒(𝑠) = 0, (3b) 

here α = 𝑔(𝐶̅𝐶)
1

3 for short. Substituting χ =
𝐴𝑠−𝜎𝐹(𝑢) and ϕ = 𝐵𝑠−𝜏 𝐺(𝑢), 𝑢 = ln 𝑠 and τ =

3

4
 and 𝐴2 = 𝐵2 [2], the dimensionless form of the 

nonlinear coupled differential equations system is 

obtained as  

2
𝑑𝐹(𝑢)

𝑑𝑢
+

3

2
𝐹(𝑢) − 𝛼(𝐴𝐵)

1

3[𝐹(𝑢)2 +

𝐺(𝑢)2]
1

3𝐺(𝑢) = 0, (4a) 

2
𝑑𝐺(𝑢)

𝑑𝑢
−

3

2
𝐺(𝑢) + 𝛼(𝐴𝐵)

1

3[𝐹(𝑢)2 +

𝐺(𝑢)2]
1

3𝐹(𝑢) = 0. (4b) 

Here 𝐹 and 𝐺 are dimensionless functions of 𝑢 

and 𝐴, 𝐵 are constants [7]. 

3. MASTER SLAVE SYNCHRONIZATION 

METHOD 

In this section, we describe our master-slave 

synchronization process based on OPCL method 

to synchronize identical systems. Let us consider 

two identical systems and relate them some 

coupling function. Systems are defined on ℝ3, so 

they have three degrees of freedom. The 

generalized coordinates for master system are 

described by 𝒙 ≡ (𝑥, 𝑦, 𝑧) and slave system 𝒙𝑠 ≡
(𝑥𝑠, 𝑦𝑠, 𝑧𝑠). Their evolution is described by the 

same vector field 𝑓: ℝ3 → ℝ3, then we have 

�̇�(𝑡) = 𝑓(𝑥(𝑡)) (7a) 

�̇�𝑠(𝑡) = 𝑓(𝑥𝑠(𝑡)), (7b) 

The difference between master and slave systems 

named error function is given by 𝒙 − 𝒙𝑠, with 

coefficients dependent on the master variables 

[23, 24], that is, 

𝒌(𝑥). (𝒙 − 𝒙𝑠) =

(

𝑘11(𝑥) 𝑘12(𝑥) 𝑘31(𝑥)

𝑘21(𝑥) 𝑘22(𝑥) 𝑘32(𝑥)

𝑘31(𝑥) 𝑘23(𝑥) 𝑘33(𝑥)
) . (

𝑥 − 𝑥𝑠

𝑦 − 𝑦𝑠

𝑧 − 𝑧𝑠

). (8) 

This coupling function 𝒌(𝑥). (𝒙 − 𝒙𝑠) is added to 

the slave subsystem. Therefore, this function 

generates a response which synchronize master 

and slave system 

�̇�(𝑡) = 𝑓(𝒙(𝑡)) (9a) 
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�̇�𝑠(𝑡) = 𝑓(𝒙𝑠(𝑡)) + 𝑘(𝑥). (𝒙 − 𝒙𝑠), (9b) 

If 𝛏(𝑡) = 𝒙(𝑡) − 𝒙𝑠(𝑡)  go to zero, the system will 

reach asymptotically stable, implying that the 

states 𝒙(𝑡) and 𝒙𝑠(𝑡) will approach each other 

which means master and slave system is 

synchronized along the flow. If the regularity 

class of 𝑓 is at least 𝐶1, this is an easy 

consequence of the Mean Value Theorem in 

several variables and a judicious choice of the 

matrix k [21]: We consider it equal to 

𝑘 = 𝑑𝒙(𝒕)𝒇 − 𝑯, (10) 

where 𝑑𝒙(t)𝒇 is the differential of the vector field 

𝒇 evaluated along the trajectory 𝒙(𝑡) of the master 

system, and 𝑯 is a constant matrix all of whose 

eigenvalues have strictly negative real parts (this 

is known as a Hurwitz matrix). For any fixed t, 
subtracting Eq. 9b from the Eq. 9a we obtain 

�̇�(𝑡) =
𝑑

𝑑𝑡
(𝒙(𝑡) − 𝒙𝑠(𝑡)) = 𝒇(𝒙) − 𝒇(𝒙𝑠) −

𝒌. 𝛏 ≅ (𝑑𝒙(𝒕)𝒇 − 𝒌). 𝛏 = 𝑯. 𝛏, (11) 

here, 𝑯 is Hurwitz implies that the exponential is 

a decaying one, leading to the asymptotic 

lim
𝑡→∞

‖𝛏(𝐭)‖ = 0. 

3.1.  GURSEY SYNCHRONIZATION  

Let us consider a driven and damped master 

Gursey system as given below, 

𝑑𝑥1

𝑑𝑢
= (−

3

4
) 𝑥1 + 0.5𝑦1(𝑥1

2 + 𝑦1
2)

1

3, (12a) 

𝑑𝑦1

𝑑𝑢
=

3

4
𝑦1 − 0.5𝑥1(𝑥1

2 + 𝑦1
2)

1

3 +

0.5𝐴 𝐶𝑜𝑠(𝑤𝑢) − 0.5𝛾𝑦1. (12b) 

For simplification we use (x1, 𝑦1) and (𝑥2, 𝑦2) 

instead of (𝐹1, 𝐺1) and (𝐹2, 𝐺2) for master and 

slave systems, respectively. Jacobian matrix of 

master system is  

 

𝑑𝑒𝑡𝑓 = (

−
3

4
+

0.333𝑥1𝑦1

(𝑥1
2+𝑦1

2)
(2/3)

0.333𝑦1
2

(𝑥1
2+𝑦1

2)
(2/3) + 0.5(𝑥1

2 + 𝑦1
2)(1/3)

0.419974𝑥1
2

(𝑥1
2)

(2/3) − 0.629961(𝑥1
2)(1/3) −

3

4
− 0.5𝛾

), (13) 

We take parameters and constants of Jacobi 

matrix (detf) as  

(
−

3

4
+ p 0

0 −
3

4
− 0.5𝛾 + 𝑝

). (14) 

Eigenvalues of Eq. 14 are λ1 =
1

4
(−3 + 4𝑝) and 

𝜆2 = 0.75 + p − 0.5γ. The largest p value for the 

synchronization is 0.592 depending on 𝜆1 < 0 

and 𝜆2 < 0. We took 𝑝 = −1 which is smaller 

then 0.592 and γ = 0.316.  

If we substitute the 𝑝 and γ value into Eq. 14 we 

reach the H matrix which is given below, 

(
−

7

4
0

0 −0.408
), (15) 

𝒌 = 𝑑𝑒𝑡𝑓 − 𝐻 and 𝑒𝑟𝑟𝑜𝑟 = (
𝑥1 𝑥2

𝑦1 𝑦2
). 𝒌. 𝒆𝒓𝒓𝒐𝒓 

is 

(
(𝑥1 − 𝑥2) (1 +

0.333𝑥1𝑦1

(𝑥1
2+𝑦1

2)
(2/3)) + (

0.333𝑦1
2

(𝑥1
2+𝑦1

2)
(2/3) + 0.5(𝑥1

2 + 𝑦1
2)(1/3)) (𝑦1 − 𝑦2)

−1.04993(𝑥1
2)

1

3(𝑥1 − 𝑥2) + 1(𝑦1 − 𝑦2)

). (16) 

Finally, slave systems are 
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𝑑𝑥2

𝑑𝑢
= −

3

4
𝑥2 + 0.5𝑦2(𝑥2

2 + 𝑦2
2)

1

3 +  (𝑥1 − 𝑥2) (1 +
0.333𝑥1𝑦1

(𝑥1
2+𝑦1

2)
(2/3)) +

(
0.333𝑦1

2

(𝑥1
2+𝑦1

2)
(2/3) + 0.5(𝑥1

2 + 𝑦1
2)(1/3)) (𝑦1 − 𝑦2), (17a) 

𝑑𝑦2

𝑑𝑢
=

3

4
𝑦2 − 0.5𝑥2(𝑥2

2 + 𝑦2
2)

1

3 + 0.5𝐴 𝐶𝑜𝑠(𝑤𝑢) − 0.5𝛾𝑦2 −

1.04993(𝑥1
2)

1

3(𝑥1 − 𝑥2) + 1(𝑦1 − 𝑦2). (17b) 

4. NUMERICAL RESULTS 

In this section, we investigate the simulation 

results for synchronization of the master and 

slave Gursey systems using the fourth-order 

Runge Kutta algorithm. The sets of differential 

equations related to the master and slave systems 

are solved with step size 0.1 , length 1000, 𝐴 =
0.71, ω = 1.04898 and  γ = 0.316. The initial 

values of the master and slave systems are taken 

as(𝑥1(0); 𝑦1(0)) = (0.2; 0.1), (𝑥2(0); 𝑦2(0)) =
(1.6; 2.2), respectively. The bifurcation diagram 

is given in Figure 1. Gursey system shows 

regular and chaotic dynamics depending on the 

amplitude of driven force. The system exhibits 

regular dynamics until 𝐴 = 0.6. After this value 

of A, system exhibits chaotic dynamics. There is 

only one stable fix points for less than 𝐴 = 0.4. 

After that point there is periodic dumpling until 

𝐴 = 0.6. 𝐴 = 0.6 is threshold point for transition 

regular to chaotic behavior. In order to prove 

chaotic dynamics of Gursey system we calculate 

Lyapunov Characteristic Exponents (LCEs) 

[25,26]. LCEs are λ1 = 0.0846347,  λ2 =
−0.242635, λ3 = 0. In Figure 2, we show 

evolution of LCEs depending on 𝑢. In addition, 

for regular case, one LCE is 0 and all the other 

LCEs are less than zero (negative). There is one 

LCE, which is bigger than zero shows us chaotic 

dynamics of Gursey system.  We start controlling 

at 𝑢 = 100. After that point system exhibits 

synchronization.  

 

Figure 1 Bifurcation diagram for Gursey system. 

 

Figure 2 LCEs for chaotic Gursey system. 

 
(a) 

 

(b) 

Figure 3 Synchronized and Unsynchronized Phase 

Space 
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The synchronized and unsynchronized phase 

space diagrams are given in Figure 3. Also Figure 

4 and 5 show the dynamics of synchronized 

master and slave systems in the range 100 to 

200. Control activated at 𝑢 = 100. Before this 

value of 𝑢, systems are unsynchronized. 

 

(a) 

 
(b) 

Figure 4 (a) Evolution graph (b) error graph, control 

function activated at 𝑢 = 100, for 𝑥1 and 𝑥2 

 

 
(a) 

 
(b) 

Figure 5 (a) Evolution graph (b) error graph, control 

function activated at 𝑢 = 100, for 𝑦1 and 𝑦2 

5. CONCLUSION AND DISCUSSION 

In this paper, the validity of OPCL 

synchronization method is investigated for 4D 

fermionic Gursey model.  The model exhibits 

chaotic dynamics depending on system 

parameters given in numerical results. In master-

slave synchronization process, the selected slave 

and master systems are identical. Once the 

control function added to the slave system is 

activated, master and slave systems’ orbits 

converge each other. The signals produced by 

control function stabilize the error between 

master and slave systems.  The error signals go 

rapidly to the zero when control input function is 

activated at u=100 (Fig. 4 and Fig. 5). Two 

identical master and slave Gursey systems 

achieve the synchronization for different initial 

conditions.  In Fig. 3 (a) Phase space and Fig. 4-

5 (a) evolution graphs show synchronized 

dynamics after activated control signals.  
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