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Abstract

In this paper we give the general solutions of a class of �rst order nonlinear Fuchs ordinary di�erential
equations. This leads us to show by an example that the necessary conditions of Fuchs' theorem are not
su�cient.
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1. Introduction

Among the nonlinear ordinary di�erential equations of the �rst order, easily integrable, we can
cite Bernoulli's equations, Lagrange's equations, Clairaut's equations, Darboux's equations, ... [17]. Elliptic
equations and Riccati's equations, although they are not integrable in general, are often encountered in
the study of ordinary di�erential equations [17, 18]. The integration of several equations of higher order is
reduced to the integration thereof by substitution [17].

The study of �rst order nonlinear Fuchs ordinary di�erential equations is motivated by their importance
due to their appearance in many mathematical problems and their application in physics, see, for example,
[16, 4, 2, 3, 10].

In the �rst part of this paper we introduce a class of these Fuchs equations that can be integrated. We
give their solutions using quadratures, Riccati equations or elliptic functions.
Fuchs' theorem gives the necessary conditions so that the �rst order equation does not admit movable
(contrary �xed) critical singular points [1, 8, 9, 5]. Painlevé's theorem guarantees that the equation studied
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in Fuchs' theorem does not admit essential movable critical singular points [15, 6]. Hermite's theorem ensures
that the equation studied in Fuchs' theorem, when it is independent of z, is without movable critical singular
points only if it is of genus zero or one [7, 6].

In the second part of this paper we give an example of �rst order ordinary di�erential equations which
satis�es the conditions of Fuchs' theorem, but which is not with �xed critical points. This allows us to
conclude that the conditions of Fuchs' theorem are not su�cient.

2. Integration of certain Fuchs equations

The work of [12, 11, 13, 14] focuses on �rst order ordinary di�erential equations with �xed critical points.
Among their results, they showed that the equation(

y′ − k
(
ay2 + by + c

))k (
y′ +m

(
ay2 + by + c

))m − α = 0, (1)

is satisfying the necessary Fuchs' conditions to be with �xed critical points when k +m = 1, 2, 3, 4 and 5,
where k and m are positive integers, and a, b, c and α are complex numbers.
In this paper we give the general solution for some equations of the form (1). In the case where we have
a = 0, we �nd the general solution of equation (1) for all k and m arbitrary positive integers. For the case
a 6= 0, we give the general solution of equation (1) only when k = 1 and m is even positive integer (m = 2n).
The method used consists in �nding a rational parameterization of the algebraic curve (1) where y′ and y are
assumed to be independent variables, and then to �nd the di�erential equation veri�ed by the parameter.
In the case where the initial equation (1) has �xed critical points, the equation veri�ed by the parameter is
either a linear equation, a Riccati equation or else it is integrable using elliptic functions.

2.1. Case where a = 0

In this case, equation (1) is written in the form(
y′ − k (by + c)

)k (
y′ +m (by + c)

)m
= α. (2)

Let D be the greatest common divisor (GCD) of k and m. If D > 1, then by taking the D-th root of the
two sides of equation (2) we obtain as powers in the left hand side coprime integers. So we can assume k
and m to be coprime.
By setting u = y + c

b , equation (2) is written in the form(
u′ − kbu

)k (
u′ +mbu

)m
= α. (3)

In conclusion, it su�ces to study the equation of the form(
y′ − kby

)k (
y′ +mby

)m
= α, (4)

with k and m are positive coprime integers, and b and α are complex numbers.
Knowing that k and m are coprime, then according to Bezout's lemma there exist two positive integers p
and q such that pk − qm = 1 or qm− pk = 1.

Suppose that we have the existence of p and q such that pk − qm = 1. Let's pose{
y′ − kby = tτp,

y′ +mby = tτ−q.
(5)

By solving the system (5) with respect to y′ and y, while taking into account equation (4) we obtain
y =

t

b (k +m)

(
tq(k+m)

αq
− αp

tp(k+m)

)
,

y′ =
1

k +m
t

(
mαp

tp(k+m)
+
ktq(k+m)

αq

)
.

(6)
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By taking the derivative of the function y, given by formula (6), we get

y′ =
1

b (k +m)

(
(q (k +m) + 1) tq(k+m)

αq
+

(p (k +m)− 1)αp

tp(k+m)

)
t′. (7)

Knowing that pk − qm = 1, then equation (7) can be written in the form

y′ =
1

b (k +m)

(
k (p+ q) tq(k+m)

αq
+
m (p+ q)αp

tp(k+m)

)
t′. (8)

From the formulas (6) and (8) we deduce the equation

t′ =
b

p+ q
t. (9)

By integrating equation (9) we obtain

t = γe
b

p+q
z
, γ ∈ C. (10)

According to formula (6), the solution of equation (4) is therefore of the form

y =
1

b (k +m)

(
1

αq
γq(k+m)+1e

b
p+q

(q(k+m)+1)z − αp

γp(k+m)−1e
b

p+q
(p(k+m)−1)z

)
. (11)

If m and k are such that qm− pk = 1, then using the same reasoning we obtain the general solution in the
form

y =
1

b (k +m)

(
− 1

αq
γq(k+m)+1e

− b
p+q

(q(k+m)+1)z
+

αp

γq(k+m)−1e
− b

p+q
(q(k+m)−1)z

)
. (12)

If we look for constant solutions of equation (4) we end up with

(−kby)k (mby)m = (−kb)k (mb)m ym+k = α.

Hence
ym+k =

α

(−k)kmmbk+m
,

which givesm+k constant solutions. The general solution therefore consists of thesem+k constant solutions
and the family of solutions (11).

Example 2.1. Let's consider the di�erential equation(
y′ − 2y

)2 (
y′ + 3y

)3
= 108. (13)

We have k = 2,m = 3, b = 1, α = 108 and 3m− 4k = 1. The general solution of equation (13) is therefore

given by

y =
1

5

(
1

108
γ6e2z − 1082

γ9e3z

)
,

to which is added the constant solutions y = aj j = 1, 2, . . . , 5, where aj's are the �fth roots of the unit, i.e.

(aj)
5 = 1.
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2.2. Case where a 6= 0

In this case we only consider the case where k = 1 and m = 2n. Equation (1) is then written in the form

(y′ −
(
ay2 + by + c

)
)
(
y′ + 2n

(
ay2 + by + c

))2n − α = 0. (14)

Equation (14) can also be written in the form(
y′ −

(
a
(
y + b

2a

)2
+ c

a −
(

b
2a

)2))(
y′ + 2n

(
a
(
y + b

2a

)2
+ c

a −
(

b
2a

)2))2n − α = 0.

It is therefore su�cient to study the equation of the form

(y′ − ay2 − b)
(
y′ + 2nay2 + 2nb

)2n − α = 0. (15)

By setting y′ − ay2 − b = τ and y′ + 2nay2 + 2nb = t we obtain

y′ =
1

2n+ 1

t2n+1 + 2nα

t2n
, (16)

and by setting

y =
u

tn
, (17)

we get

u2 =
1

(2n+ 1) a
t2n+1 − b

a
t2n − 1

(2n+ 1) a
α. (18)

From equation (18) we deduce
∂u

∂t
=

1

au

(
t2n

2
− nbt2n−1

)
. (19)

By taking the derivative of the function y given by formula (17) we obtain

y′ = −n u

tn+1
t′ + 1

tn

((
1

au

(
t2n

2 − nbt
2n−1

))
t′
)

= − 1

2atn+1u
t′
(
2anu2 − tt2n + 2bnt2n

)
.

(20)

Identifying the values of y′ given by the formulas (16) and (20) we obtain

t′ = 2at1−nu = 2at1−n

√
1

(2n+ 1) a
t2n+1 − b

a
t2n − 1

(2n+ 1) a
α. (21)

The integration of equation (15) therefore leads to the integration of equation (21). In the case where we have
n = 1, the solution of equation (15) is expressed using elliptic functions. In parametric form, the solution of
equation (15) is given by the formula

z =
1

2a

∫
tn−1dt√

1
(2n+1)a t

2n+1 − b
a t

2n − 1
(2n+1)aα

,

y =

√
1

(2n+1)a t
2n+1 − b

a t
2n − 1

(2n+1)aα

tn
.
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3. Example of equation with movable critical point

Before giving an example of an equation which satis�es the conditions of Fuchs' theorem, but which is
not with �xed critical points, we will state the three theorems that we mentioned in the introduction.

Theorem 3.1 (of Fuchs). In order for the Fuchs equation

k=n∑
k=0

Ak(z, w)
(
w′
)n−k

= 0, n ∈ N, (22)

where Ak(z, w) are polynomials in w with coe�cients that are analytic in z, have �xed critical points, it is

necessary that the following conditions must be satis�ed.

1. The coe�cient A0 (w, z) is independent of w. It can therefore be considered A0 (w, z) = 1.

2. The degree of Ak (z, w) as a polynomial in w is less than or equal to 2k.

3. The roots in w of the discriminant D (w, z) must be solutions of equation (22).

4. If the expansion of w′ in the neighborhood of a solution w0 of D (w, z) = 0 is written in the form

w′ = s0 + bk (w − w0)
k
m + bk+1 (w − w0)

k+1
m + · · · ,

then we must have k ≥ m− 1.

Theorem 3.2 (of Painlevé). The solutions of the equations of the form

P
(
z, w,w′

)
= 0,

where P is a polynomial in w and w′ with analytic coe�cients in z, do not admit movable critical essential

singular points.

Theorem 3.3 (of Hermite). If the equation

P
(
w,w′

)
= 0,

where P is a polynomial in w and w′ with constant coe�cients, does not admit movable critical points then

the algebraic curve de�ned by P (w, s) = 0 is of genus equal to 0 or 1.

Let's now consider the equation

F
(
y, y′

)
=
(
y′ − y2

) (
y′ + 4y2

)4
+ 256 = 0. (23)

Lemma 3.4. The equation (23) is satisfying the conditions of Fuchs' theorem.

Proof. The equation (23) can be written in the general form (22) of Fuchs equation as

F
(
y, y′

)
=
(
y′
)5

+ 15y2
(
y′
)4

+ 80y4
(
y′
)3

+ 160y6
(
y′
)2 − 256y10 + 256 = 0. (24)

Thus, obviously, the �rst two conditions of Fuchs' theorem are satis�ed.

By eliminating y′ between the two equations F (y, y′) = 0 and
∂F

∂y′
(y, y′) = 0 we obtain the discriminant of

equation (23):
D(y) = 256

(
1− y10

)
. (25)

It is clear that each root of the discriminant (25) is a solution of equation (23), so the third condition of
Fuchs' theorem is checked.
Let y0 be a root of the discriminant (25). Substituting y with u+ y0 in equation (23), we obtain:

F (y′, u) =
(
y′ − (u+ y0)

2
)(

y′ + 4 (u+ y0)
2
)4

+ 256 = 0. (26)
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Since
∂F

∂u
(0, 0) 6= 0,

∂F

∂y′
(0, 0) = 0 and F (0, 0) = 0, according to the implicit function theorem, u can be

written in the neighborhood of y′ = 0 as

u = A2

(
y′
)2

+A3

(
y′
)3

+A4

(
y′
)4

+ . . . . (27)

As a result y′ can be written in the neighborhood of y = y0 as

y′ = B1 (y − y0)
1
2 +B2 (y − y0)

2
2 +B3 (y − y0)

3
2 + . . . . (28)

So, the fourth condition of Fuchs' theorem, is also veri�ed.

Lemma 3.5. The equation (23) has movable critical points.

Proof. By setting t = y′ + 4y2 and τ = y′ − y2 we get y′ = t5−1024
5t4

. If we set y = u
t2

we deduce that

u2 = 1
5

(
t5 + 256

)
, which gives ∂u

∂t = t5. And so by di�erentiating we get

y′ =
−1
2ut3

(
4u2 − t5

)
t′.

The parameter t therefore satis�es the di�erential equation

t′ =
t5−1024

5t4

−1
2ut3

(4u2 − t5)
=

2

t

√
1

5
(t5 + 256).

The equation thus obtained has movable critical points and therefore equation (23) is also.
Alternate proof to show that the equation (23) has movable critical points is by calculating its genus, which
is equal to 2 and then by applying Hermit's theorem.

As an immediate result of the last two lemmas we have the following theorem.

Theorem 3.6. The four necessary conditions of Fuchs' theorem 3.1 are not su�cient.

4. Conclusion

In conclusion, we have given the general solution for a class of Fuchs di�erential equation(
y′ − k

(
ay2 + by + c

))k (
y′ +m

(
ay2 + by + c

))m − α = 0,

which leads us to show that the equation(
y′ − y2

) (
y′ + 4y2

)4
+ 256 = 0

has movable critical points while it satis�es all the conditions of Fuchs' theorem.
As a result we have shown that the necessary conditions of Fuchs' theorem are not su�cient.
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