
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 453

Performance Analysis of Object-Relational Mapping

(ORM) Tools in .Net 6 Environment
Araştırma Makalesi/Research Article

 Abdullah Eren GÜVERCİN

1

, Bilgin AVENOĞLU
2

1Yazılım Mühendisliği, Ahmet Yesevi Üniversitesi, Ankara, Türkiye

2Yazılım Mühendisliği, Ankara Üniversitesi, Ankara, Türkiye

egvrcn@gmail.com, bavenoglu@gmail.com

(Geliş/Received:18.01.2022; Kabul/Accepted:01.10.2022)

DOI: 10.17671/gazibtd.1059516

Abstract— ORM tools are frequently used in projects developed by object-oriented programming paradigm. Software

developers generally look at the performances of these tools when they select an ORM tool. Most of the performance

studies on ORM tools are limited to processing time and RAM usage information, and CPU usage information is not

included. Moreover, no ORM performance study has been found in the literature, conducted in .NET 6, which is an open-

source and platform-independent new generation .NET platform. In this study, to close the mentioned gap in the literature

and guide the software developers, we conduct research for analyzing performances of certain ORM tools in .NET 6. Our

study includes CPU usage information as well as processing time and RAM usage information. We develop a software

for measuring processing time, RAM and CPU usage while performing read, insert, update, delete, search and sort

operations with Dapper, NHibernate and Entity Framework Core (EF Core) ORM tools. As a result, while Dapper is best

in terms of processing time for read, delete, search and sort operations, EF Core has the best results for insert and update

operations. We conclude that Dapper has the best performance in terms of resource usage, while the rankings of EF Core

and NHibernate vary among themselves according to the number of records and operation type.

Keywords— orm, .net 6, dapper, nhibernate, entity framework core

Nesne-İlişkisel Eşleme (ORM) Araçlarının .NET 6

Ortamında Performans Analizi

Özet— Nesneye yönelik programlamada, Nesne-İlişkisel Eşleme (Object-Relational Mapping – ORM) araçları sıklıkla

kullanılmaktadır. Yazılım geliştiricilerin ORM seçimi yaparken en önemli seçim kriterlerinden birisi bu araçların

sağladığı performanstır. ORM araçları üzerine yapılan performans araştırmalarının çoğu işlem süresi ve Rastgele Erişimli

Bellek (Random-Access Memory – RAM) kullanım bilgileriyle sınırlı kalmış, Merkezi İşlem Birimi (Central Processing

Unit – CPU) kullanım bilgilerine yer verilmemiştir. Ayrıca literatürde, platform bağımsız ve açık kaynak olarak üretilen

yeni nesil .NET platformu olan .NET 6 ortamında yapılmış bir ORM performans çalışmasına rastlanılmamıştır. Bu

çalışmada, belirtilen eksikliği gidermek ve yazılım geliştiricilere yol göstermek için .NET 6 ortamında belirli ORM

araçlarının performans analizi gerçekleştirilmiştir. Çalışmada, işlem süresi ve RAM kullanım bilgilerinin yanında CPU

kullanım bilgileri de yer almaktadır. Bu çalışmada başlıca ORM araçlarından Dapper, NHibernate ve Entity Framework

Core (EF Core) ile kayıt okuma, ekleme, güncelleme, silme, arama ve sıralama işlemleri gerçekleştirilerek, işlem süresi,

RAM ve CPU kullanımının ölçülebileceği bir yazılım geliştirilmiştir. Yapılan ölçümler sonucunda işlem süresi açısından;

okuma, silme, arama ve sıralama işlemleri için Dapper; ekleme ve güncelleme işlemleri için EF Core en iyi sonuçları

vermiştir. Kaynak kullanımı açısından Dapper’ın en iyi performansa sahip olduğu, EF Core ile NHibernate araçlarının

sıralamalarının ise kayıt sayısı ve işlem türüne göre kendi aralarında değiştiği sonucuna varılmıştır.

Anahtar Kelimeler— orm, .net 6, dapper, nhibernate, entity framework core

https://orcid.org/0000-0002-4882-9307
mailto:egvrcn@gmail.com
mailto:bavenoglu@gmail.
https://orcid.org/0000-0003-4762-0680

454 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

1. INTRODUCTION

Object-oriented programming paradigm is frequently used

for developing software. When using this paradigm, Object

Relational Mapping (ORM) tools are indispensable for

converting structures in relational model to object-oriented

model. There are many ORM tools developed for different

platforms, and each offers different advantages and

disadvantages.

The performance of ORM tools is the most important

criteria for developers when they need to select one of these

tools. There are several studies ([1-3]) which analyze the

performance of ORM tools on different software platforms

and databases. These studies make comparisons based on

operation processing times. Zmaranda et. al [4], measures

the RAM usage besides processing times. A study by Balcı

[5], which is not performance comparison research on

ORM tools but examines the performance analysis of the

Entity Framework ORM tool on different databases,

included all of the processing time, RAM and CPU usage

information. There is a need to make performance

comparison research on ORM tools by including not only

processing times and RAM usage, but also the CPU usage.

Moreover, existing studies such as [6,7] perform

comparisons on previous versions of .NET Framework by

using Microsoft SQL Server database. Microsoft has a new

.NET 6 environment which is a new generation, open-

source, and cross-platform software development

framework. Besides the framework, PostgreSQL database

has gaining popularity and it has not been used in

performance studies. These discussions show that, there is

also a need for ORM tools comparison study on .NET 6

environment with PostgreSQL database.

In this study, we try to find the best performant ORM tools

in .NET 6 environment with PostgreSQL database. We

develop a software for measuring processing times, RAM

usage, and CPU usage. We measure these for read, insert,

update, delete (CRUD) [8], search and sort operations. We

use Dapper, NHibernate and EF Core ORM tools in

comparisons. These measurements will be analyzed to

show the performance statistics of ORM tools in .NET 6

environment. The results may offer a guideline to

developers for selecting the best ORM tools suitable for

different operations.

2. CONCEPTUAL FRAMEWORK

There are two major methods for accessing to the databases

from different programming languages or environments.

The first one, which is the traditional one, is to use database

providers’ libraries to connect and execute operations. This

method is fast since the libraries are generally optimized

by the database providers to their databases. However, the

application is bound to a specific database, and it is hard to

switch between different databases. Moreover, the code for

converting relational model to object-oriented model or

vice versa must be written manually. This may need a lot

of work. The second method is to use an ORM tool for

enabling modularity and decreasing the workload. Using

an ORM tool may decrease the performance of the

application. Joshi and Kukreti [9] compare ORM tools and

traditional library access methods and they found that the

complex code produced by ORM tools decreases the

performance. They also indicate that when the advantages

of using ORM tools are considered, the performance loss

can be negligible.

Since ORM tools decrease the total performance of the

applications, the importance of the performance of the

ORM tools is paramount. There are some performance

comparison studies in the literature. In a study

implemented by Cvetkovic and Jankovic [7], the two ORM

tools, NHibernate and Entity Framework are compared.

Zmaranda et. al. [4] compare Dapper, EF Core and

NHibernate tools. These studies shed the light on the

performances of different ORM tools. However, these

studies use Microsoft SQL Server as database, and they do

not measure the CPU performance. Additionally, these

studies don’t analyze search and sort operations directly

without the effects of other database structures. In another

study [10], authors compare eight ORM frameworks with

four different programming languages. Yousaf [11]

evaluates the performance of Java-based ORM tools

(Hibernate, EclipseLink, OpenJPA and Ebean) and his own

GlycoVault lightweight persistence tool. In these studies,

authors only compare read operations and Dapper is not

included in ORM lists. For these reasons, we make a

performance comparison of popular ORM tools which are

Dapper, NHibernate and Entity Framework in .NET 6

environment by using a popular database which is

PostgreSQL. We also compare read, insert, update, delete,

sort and search operations. This study does not include a

performance comparison of ORM tools and traditional

library access methods. Colley et al. [12] has such a study

which compares the effects of Entity Framework with SQL

Server 2014 database and lists the negative behaviors of

ORM tools.

Before describing the performance comparison

methodology, we give general information about ORM

technique and specific information about the ORM tools

we use in this study.

2.1. Object Relational Mapping

An ORM tool is a bridge between a relational database and

object-oriented programming language. It allows

developers to work directly on the object-oriented

programming concepts without thinking the details of the

conversion of the components to relational tables or

constraints. ORM tools have some advantages:

 They allow developing applications without being

tied to a specific database. Different databases can be

used with the same source code.

 Developers may execute database operations without

writing SQL statements.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 455

 Developers can easily concentrate to the OOP

concepts.

 They decrease the time for writing database code.

 They increase the code readability.

Besides these advantages ORM tools have also some

disadvantages:

 Writing direct SQL statements allows better

performance.

 It is hard to write complex queries with ORM.

Writing them with SQL may be easier.

2.2. ORM Tools

There are many ORM tools for object-oriented

programming: Hibernate, TopLink and OpenJPA are used

with Java; Django, Peewee, and SQLAlchemy are used for

Phyton; and RedBeanPHP, Doctrin, and Propel are used for

PHP. In .NET environment, Dapper, NHibernate and EF

Core are highly used and, in this study, performances of

these ORM tools are compared.

Dapper: Dapper is an open-source micro ORM tool

developed for .NET environment. The main aim of Dapper

is to provide performance to applications and to allow

developers to decrease the effort of mapping operations.

Entity Framework Core (EF Core): EF Core is an open

source and cross-platform ORM tool for ADO.NET data

access library. It is a new version of Entity Framework

ORM tool which has been distributed within .NET

Framework. Starting from the Entity Framework version 6,

Microsoft decided to deliver EF Core separately [13].

Because of this, EF Core, a more modern and sustainable

ORM tool, is used in this study.

NHibernate: NHibernate is a .NET version of Hibernate

which is frequently used ORM tool in Java environments.

NHibernate is an open-source tool and includes almost all

features of current Hibernate.

ORM tools are classified as full-featured ORM tools and

micro ORM tools based on the features that they support.

Micro ORM tools have limited capabilities according to the

full-featured ones but they perform faster. A micro ORM

tool may not support some caching capabilities, e.g.,

second level cache. Moreover, when a query is executed

and an object is loaded from the database, other objects

which are in relationship with this object are not

automatically loaded. The programmer has to write special

queries to load related objects. Besides these, micro ORM

tools generally do not have graphical modelers and

automatic database object creation capabilities [14].

ORM tools apply caching techniques for repetitive

database operations. These techniques provide

performance gains. EF Core has three types of caching:

object caching, query plan caching and metadata caching.

Object caching is known as first level caching and it stores

objects retrieved from database to memory. Query plan

caching is used for storing queries executed more than

once. This allows skipping the parsing and compiling

operations of the query for later executions. EF Core

supports metadata caching which is used for different

connections to share the type and mapping information.

NHibernate also supports first level caching to maintain

objects in memory when they loaded first time. NHibernate

has a second level cache for storing query plans and query

results. EF Core and NHibernate, since they are full-

features ORM tools, provide first level cache by default.

However, Dapper only caches information for queries to

materialize objects and process parameters quickly [15].

Another performance concern with ORM tools is loading

related data with queries. This concern generally known as

related data loading or fetching. Different ORM tools have

different default characteristics for related data loading.

Some ORM tools such as EF Core support eager loading

by default [16]. Eager loading allows loading all the

required entities with one query. Objects in relation with

the parent object are also automatically loaded. Some

ORM tools, such as NHibernate use lazy loading by default

[17]. In this method, related objects are not loaded unless

they are really needed. Dapper uses a multi mapping

technique which is almost similar with eager loading [18].

However, because Dapper is micro ORM tool, third party

libraries are needed for adding lazy loading property.

ORM tools use different mapping techniques between

objects and tables and fields. Using an XML file, inserting

annotations to source code or writing code to generate

mappings are examples of metadata mapping. EF core and

Hibernate support variety of these methods as shown in

Table 1. In Dapper queries, we execute SQL statements by

passing parameters. Beside the metadata mapping, ORM

tools have capabilities for reflecting structure changes in

object models to databases. If object model frequently

changes, then these changes can be reflected to the

database by executing a loading procedure. Executing a

loading procedure frequently can be tedious. Because of

this, some ORM tools use a reflection technique for the

objects at runtime to reflect the changes. In this technique,

the mapping between the object and table is stored in cache

and upcoming calls use this mapping. Change reflection is

only applied on first call [19].

Table 1. Properties of ORM Tools

 EF Core NHibernate Dapper

Mapping for

Metadata

Code

based,

Attributes

based

.HBM,

.XML,

Code

based,

Attributes

based

SQL

Statement

API ADO.NET ADO.NET ADO.NET

Model

Change

Reflection

Type

Automatic With 3rd

party tools

-

456 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

Another concern with the ORM tools is transaction

support. In EF Core, all the changes are tracked and

handled in memory and when the “SaveChanges” method

of “DbContext.Database” class is called the changes are

applied to the database. This operation is atomic and all the

changes are either committed or rollbacked. We call this

method after inserting, updating and deleting all the

records. NHibernate has the similar methods. We use the

“Save” method of “ISessionFactory” class in NHibernate

API to save the changes permanently. However, Dapper

has a different technique. Because Dapper, does not use

object caching, it directly applies SQL statements through

the classes of the related database. EF Core and NHibernate

also have support for locking mechanisms for concurrent

operations since they have object caches. However, our

evaluation does not include concurrent access of the data

and we have not utilized locking mechanisms.

2.3. .NET 6

.NET Framework is a software development environment

produced by Microsoft and supports many languages like

C#, Visual Basic, and F#. .NET 6, the latest version of this

framework, is a platform for unifying web, mobile,

desktop, games and IoT applications under a single

framework. .NET 6 is released in November 2021 and

targets cross-platforms from iOS, Mac OS, Windows,

WatchOS, Android, tvOS etc. Programs written with

different .NET compatible languages are compiled to

platform-neutral Common Intermediate Language (CIL).

Common Language Runtime (CLR), a platform specific

runtime environment for .NET, compiles CIL to machine

readable code.

2.4. PostgreSQL

PostgreSQL is an object-relational database management

system developed by the University of California at

Berkeley [20]. It is assumed that, PostgreSQL is the most

advanced open-source relational database system [21].

This claim is supported by statistics of usage of

PostgreSQL in high-level projects implemented by public

and private organizations.

2.5. BenchmarkDotNet

BenchmarkDotNet is an open-source performance

measurement library supported by .NET Foundation.

BenchmarkDotNet, creates an isolated project for each

method which are to be measured and executes them

without other side-effects. By this way, processing time

and resource consumption of each method can be measured

precisely within their private processes [22].

1 https://github.com/egvrcn/ORMPY

2.6. Chinook Database

Chinook database is a sample database that can be created

by a sample script file. It can be used by different databases

such as, PostgreSQL, Oracle, SQL Server, and MySQL.

The Chinook database has a data model which includes a

digital media store, including tables for artists, albums,

media tracks, invoices, and customers. In this study, we use

the “Track” table from this model in performance

measurements since it includes almost 3,500 records. We

also use “Album” table for join operations.

3. METHODOLOGY

In this study, we get measures for read, insert, update,

delete, sort and search operations. We test a one table select

statement and a join statement for read measurements. We

measure the processing times, RAM usage, and CPU usage

of these operations by different ORM tools in .NET 6

environment. Dapper 2.0.123, EF Core 6.0.6 and

NHibernate 5.3.12 versions are used for performance

comparisons. Version 14.1 of PostgreSQL database is

used. The records of the “Track” table of Chinook database

are used in measurements. Additionally, we join “Album”

table to “Track” table for measuring read operations of

joined tables.

 3.1. Architecture

We develop a software, ORMPY, for measuring

processing times, RAM, and CPU usages of ORM tools in

.NET 6 environment. We make the software open-source

and publish it in GitHub1. The software is developed by a

layered architecture including a model layer (Entity Layer),

a persistence layer (Data Access Layer) and two

application layers. Business layer is integrated within the

application layer for executing the operations in isolation

to get most accurate results.

There are two application layers in ORMPY. The first

application layer measures processing times and RAM

usage by BenchmarkDotNet library. In this application,

each method is executed 100 times iteratively by

BenchmarkDotNet, and averages are calculated. The

second application layer measures CPU usage by

Microsoft Diagnostics library [23]. Even though the

methods are run in isolation, CPU usage is very fluctuating

due to operating system processes. We execute each

method 500 times and calculate the averages to normalize

the CPU usage times. Moreover, we take the test computer

in airplane mode and close the internet connections and all

other applications. Measurements are implemented by

using the computer with hardware properties given in

Table 2. The detailed architecture of ORMPY software is

given in Figure 1.

https://github.com/egvrcn/ORMPY

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 457

Figure 1. ORMPY Architecture

Table 2. Hardware/software information of test computer

Hardware/Software Property

CPU

Intel Core i5-7300HQ CPU

2.50GHz (Kaby Lake), 4 logical

and 4 physical cores

RAM 16 GB

Disk Samsung SSD 860 Evo 250GB

Operating System Windows 10 Pro

3.2. Data Collection

ORMPY is designed to execute read, insert, update, delete,

search and sort operations. These operations are applied on

the “Track” and “Album” tables of Chinook database for

three ORM tools. The total number of records used for a

process can be different depending on the process. The

following list shows the total number of records used in

different operations.

 Read operation is executed by 10,000, 50,000, and

100,000 records.

 Insert operation is executed by 1,000, 10,000, and

25,000 records.

 Update operation is executed by 1,000, 10,000, and

25,000 records.

 Delete operation is executed by 1,000, 10,000, and

25,000 records.

 Sort operation is executed by 10,000, 50,000, and

100,000 records.

 Search operation is executed by 10,000, 50,000, and

100,000 records.

 Read operation from joined tables is executed by

10,000, 50,000, and 100,000 records.

We store the results of processing times, RAM, and CPU

usage data for each ORM tool into files after executing

each operation. In addition, we extract the execution plans

of the queries for understanding the background database

operations triggered by ORM tools.

4. RESULTS

We implement 7 operations and measure processing times,

RAM usage, and CPU usage. Totally, we collect data from

21 test scenarios. Each scenario includes measurements for

three ORM tools and three different record count groups.

We measure processing times through calculating the

seconds needed for completing the tasks. RAM usage is

measured by total MBs or KBs consumed by ORM tools.

CPU usage is measured by getting the percentage of the

total CPU usage throughout the process.

4.1. Read Operation

Read operations are executed by reading 10,000, 50,000

and 100,000 records on Dapper, EF Core and NHibernate

ORM tools. The results of these operations are given in

Table 3.

Table 3. Results of “Read” operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(MB)

CPU

Usage

(%)

Dapper

10,000

0.063 4 1.34

EF Core 0.091 12 2.09

NHibernate 0.097 12 3.14

Dapper

50,000

0.143 19 4.76

EF Core 0.265 60 7.79

NHibernate 0.400 64 11.64

Dapper

100,000

0.245 37 8.21

EF Core 0.465 121 11.87

NHibernate 0.803 128 16.6

Figure 2.a shows the processing time results of 10,000,

50,000, and 100,000 record reading operations of different

458 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

ORM tools. This figure shows that, Dapper is the fastest

ORM tool for reading operations, whereas NHibernate is

the slowest. These results are similar for 10,000, 50,000,

and 100,000 record reading operations.

Figure 2.b shows that Dapper uses the least amount of

memory, whereas NHibernate uses the highest. The

difference between NHibernate and EF Core is small

according to the difference between them in processing

times.

Similarly, Figure 2.c shows that Dapper uses the least CPU

percentage, whereas NHibernate uses the highest. The

difference between ORM tools for CPU usage is more

significant according to the difference between them in

RAM usage.

Figure 2. Results of “Read” operations

4.2. Insert Operation

Insert operations are executed by inserting 1,000, 10,000

and 25,000 records on Dapper, EF Core and NHibernate

ORM tools. The results of these operations are given in

Table 4.

Figure 3.a shows that EF Core is the fastest ORM tool in

all the record count groups for insert operation. However,

Dapper is the slowest one. According to Figure 3.b, ORM

tools show quite the opposite performance in terms of

RAM usage. Dapper uses the smallest amount of RAM

whereas EF Core uses the largest amount of RAM. CPU

usage performance of ORM tools in Figure 3.c, shows

interesting results. EF Core performs better than

NHibernate for 1,000 records. However, for 10,000 and

25,000 records NHibernate performs better than EF Core.

Dapper has the best performance for CPU usage in all

record counts.

Table 4. Results of “Insert” operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(MB)

CPU

Usage

(%)

Dapper

1,000

0.207 2 1.75

EF Core 0.110 15 2.75

NHibernate 0.174 9 3.89

Dapper

10,000

2.023 20 4.35

EF Core 1.012 146 9.35

NHibernate 1.642 94 8.84

Dapper

25,000

5.249 49 4.43

EF Core 2.483 362 11.23

NHibernate 4.283 236 9.93

Figure 3. Results of “Insert” operations

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 459

4.3. Update Operation

We test Dapper, EF Core and NHibernate ORM tools for

update operation by updating 1,000, 10,000, and 25,000

records. The results are shown in Table 5.

According to Figure 4.a, EF Core is the fastest ORM tool

in all record count groups for update operations. Dapper

shows the worst performance in terms of processing times.

This shows that, while Dapper has a very good

performance for reading operation, it doesn’t have good

performance for insert and update operations. However,

Dapper is the best tool for RAM usage of update

operations. NHibernate also consumes almost similar

amount of RAM with Dapper. On the contrary to the

performance on processing time, EF Core uses much

memory, especially for 10.000 and 25.000 records (Figure

4.b). EF Core shows the worst performance in terms of

CPU usage. Dapper is very efficient in CPU usage for all

record count groups (Figure 4.c).

Table 5. Results of “Update” operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(MB)

CPU

Usage

(%)

Dapper

1,000

0.244 2 1.50

EF Core 0.126 14 2.49

NHibernate 0.175 3 2.45

Dapper

10,000

2.398 22 2.98

EF Core 1.310 127 7.44

NHibernate 1.726 25 6.56

Dapper

25,000

6.186 54 3.21

EF Core 3.130 313 8.56

NHibernate 4.514 64 7.4

4.4. Delete Operation

Dapper, EF Core and NHibernate ORM tools are used for

deleting 1,000, 10,000 and 25,000 records. Table 6 shows

the results of these delete operations.

According to the results in Figure 5.a Dapper is very fast

in all record count groups. Even though EF Core is the

slowest for 1,000 records, NHibernate performs worst with

10,000 and 25,000 records. The processing time of

NHibernate for 25,000 record deletion is almost five times

higher than deleting 10,000 records. Dapper is also the best

ORM tool in terms of RAM usage for 10,000 and 25,000

records. Interestingly, for 1,000 records NHibernate uses

less RAM than Dapper and EF Core (Figure 5.b). It is

beyond any doubt that Dapper is the best tool in terms of

CPU usage (Figure 5.c). However, EF Core and

NHibernate tools produce different results for RAM usage

and CPU usage. While NHibernate is better than EF Core

for RAM usage, EF Core performs better in terms of CPU

usage. NHibernate shows a drastic change in CPU usage

when record count increase from 1,000 to 10,000.

Table 6. Results of "Delete" operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(KB)

CPU

Usage

(%)

Dapper

1,000

0.005 3.0 0.33

EF Core 0.091 6.5 0.99

NHibernate 0.030 1.9 1.29

Dapper

10,000

0.040 3.0 0.33

EF Core 0.789 61.4 3.92

NHibernate 1.841 19.1 19.31

Dapper

25,000

0.112 3.0 0.35

EF Core 1.820 150.8 5.2

NHibernate 11.567 47.6 23.58

Figure 4. Results of “Update” operations

460 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

Figure 5. Results of “Delete” operations

4.5. Search Operation

We measure search operations with Dapper, EF Core and

NHibernate ORM tools by using 10,000, 50,000, and

100,000 records. We search “Song” word in the “Track”

table. The results are shown in Table 7.

The results in Figure 6.a shows that Dapper implements the

fastest search in all record count groups. The slowest ORM

tool is EF Core. Dapper is also better in RAM usage

(Figure 6.b). However, for RAM usage, EF Core and

NHibernate are close to each other. EF Core and

NHibernate tools use RAM almost 3-4 times higher than

Dapper depending on the record counts. On the contrary to

processing time and RAM usage, Dapper, even though it is

still the best, uses CPU time almost similar with the EF

Core and NHibernate. EF Core is slightly better than

NHibernate in terms of CPU usage (Figure 6.c).

Table 7. Results of "Search" operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(KB)

CPU

Usage

(%)

Dapper

10,000

0.003 34 0.36

EF Core 0.013 136 0.38

NHibernate 0.005 115 0.40

Dapper

50,000

0.009 154 0.38

EF Core 0.021 492 0.44

NHibernate 0.011 493 0.46

Dapper

100,000

0.016 307 0.44

EF Core 0.032 952 0.52

NHibernate 0.019 979 0.52

Figure 6. Results of “Search” operations

4.6. Sort operation

We test Dapper, EF Core and NHibernate ORM tools for

sorting 10,000, 50,000 and 100,000 records. A descending

(from Z to A) sort operation is applied to “Name” field of

the “Track” table. The results are shown in Table 8.

Figure 7.a shows that the fastest ORM tool is Dapper.

NHibernate and EF Core show almost similar processing

time performance for 10,000 records. However, for 50,000

and 100,000 records EF Core is faster than NHibernate.

Dapper is still better for RAM usage (Figure 7.b) and CPU

usage (Figure 7.c) according to EF Core and NHibernate.

Dapper’s RAM usage 3-4 times lower than EF Core and

NHibernate. EF Core and NHibernate show similar

performances for RAM usage. This is not the case for CPU

usage, because EF Core has significantly lower CPU usage

than NHibernate.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 461

Table 8. Results of "Sort" operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(MB)

CPU

Usage

(%)

Dapper

10,000

0.115 4 1.20

EF Core 0.144 12 2.06

NHibernate 0.146 12 2.83

Dapper

50,000

0.401 19 3.14

EF Core 0.539 60 5.65

NHibernate 0.638 64 8.96

Dapper

100,000

0.884 37 4.62

EF Core 1.097 121 7.50

NHibernate 1.407 128 11.76

Table 9. Results of “Join” operations

ORM Tool Record

Count

Processing

Time (sec)

RAM

Usage

(MB)

CPU

Usage

(%)

Dapper

10,000

1.449 5 0.42

EF Core 1.456 5 0.34

NHibernate 1.511 14 1.1

Dapper

50,000

1.478 25 2.04

EF Core 1.535 23 1.18

NHibernate 1.618 68 5.88

Dapper

100,000

1.594 50 3.88

EF Core 1.610 46 2.25

NHibernate 1.945 137 10.27

Figure 7. Results of “Sort” operations

4.7. Read operation from joined tables

We test Dapper, EF Core and NHibernate ORM tools for a

join operation by reading 10,000, 50,000 and 100,000

records. We execute an inner join between “Track” and

“Album” tables based on the album identifier attribute. The

results are shown in Table 9

According to the results shown in Figure 8.a all ORM tools

show similar performances for the processing time of

10,000 and 50,000 record readings. However, NHibernate

reading operation takes longer than others for 100,000

records. Dapper and EF Core use almost similar RAM

resources as shown in Figure 8.b. NHibernate consumes

much memory especially for 50,000 and 100,000 records.

CPU usage results are almost similar to the RAM usage.

While NHibernate has the worst performance, EF Core is

a little bit better than Dapper which is shown in Figure 8.c.

Figure 8. Results of “Join” operation

462 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

4.8. Background operations

We examine the execution plans of the queries for

understanding the background database operations

triggered by ORM tools. We extract these execution plans

by using the Session Manager of Dbeaver and Server

Monitor of Navicat (see Table 10). We successfully access

the execution plans for read, sort, search and reading from

joined tables operations. However, for insert, update and

delete operations we are able to access only to the

execution plans of Dapper. For EF Core and NHibernate,

we are able to catch only commit/rollback operations. In

reading from one table operation, all ORM tools apply

sequential scans. Similarly, for search operation, all ORM

tools apply sequential scan by adding conditions. In sorting

operation, all ORM tools first apply sorting and then apply

sequential scan. For reading from joined tables operation,

all ORM tools apply a nested loop first. Then, a sequential

scan is applied on “Track” table. After then, “Momoize”

operation, which is an optimization technique for making

efficient computation, is applied. The plan is completed

by applying index scan on “Album” table. The analysis of

execution plans shows that the difference between ORM

tools is not due to the operations at the database side. The

techniques applied by the ORM tools such as mapping,

caching etc. make the difference.

5. CONCLUSION AND DISCUSSION

In this study, we implement a performance analysis of

specific ORM tools in .NET 6 environment. We measure

the processing time, RAM usage and CPU usage for 7

operations including read, insert, update, delete, search,

sort and a read from joined tables. We develop a software,

ORMPY, for implementing these measurements. We give

results of 21 different scenarios implemented with Dapper,

EF Core, and NHibernate ORM tools and discuss the

results with graphics.

According to performance analysis results, Dapper shows

the best performance in terms of processing times for read,

delete, search and sort operations. EF Core performs best

for insert and update operations in terms of processing

times. The worst performance for processing times is

handled by NHibernate on read and sort operations and

Dapper on insert and update operations. The ORM tools

that complete the delete operation in the longest time differ

according to the number of records. EF Core performs the

worst for 1,000 records, and NHibernate for 10,000 and

100,000 records based on delete operation processing time.

For reading from joined tables operation, Dapper, again,

has the best results while EF Core and NHibernate come

later. However, the gap between ORM tools for reading

from joined tables operation is very small according to

reading from one table operation. According to the RAM

usage results of ORM tools, Dapper performed the best by

consuming the lowest RAM resources in all operations

except reading from joined tables operation. NHibernate

showed almost similar performance with Dapper in terms

of RAM usage in update operations. The worst

performances of RAM usage are handled by NHibernate

for read, search, sort and reading from joined tables

operations and by EF Core for insert, update, and delete

operations. In RAM usage, Dapper has not been the worst

performing ORM tool for any operation. NHibernate uses

less RAM than Dapper for only deleting 1,000 records.

Interestingly, EF Core outperforms other tools for reading

from joined tables operation. This means that, if the query

becomes more complicated, EF Core starts performing

better than others in terms of RAM usage. This may occur

due to advanced coding techniques of the EF-Core. We

examined the logs produced by BenchmarkDotNet for the

Garbage Collector (GC) operations. GC executes to release

the memory for objects that are no longer used by the

applications. If the memory is not used efficiently, GC

performs frequently. Logs show that, for EF Core

operations GC performs less than other ORM operations.

According to the CPU usage results of ORM tools, Dapper

performs best for all operations except the reading from

joined tables operation. The worst performances of CPU

usage are handled by NHibernate for read, delete, and sort

operations and by EF Core for update operation. For insert

operation, while EF Core is better than NHibernate for

1,000 records, NHibernate is better than EF Core for other

record counts. For search operation, while EF Core is

slightly better than NHibernate for 10,000 and 50,000

records, NHibernate and EF Core show the same

performance for 100,000 records. EF Core uses less CPU

for reading from joined tables operation. Again, this means

that, if the query becomes more complicated, EF Core

starts performing better than others in terms of CPU usage.

This result may also be related with the GC operations.

When GC starts, it suspends the application, releases the

unnecessary objects and resumes the application. Less GC

execution means less suspension and faster execution times

for EF Core.

It is very hard to compare the results of our study with other

studies. The test environments, databases that are used and

operations are not standard within these studies. For

example, in [4], one of the insert scenarios includes three

insert operations to the tables in one-to-one relationship. In

this scenario NHibernate performs better in terms of

processing time with all record count groups including 500,

1,000, 2,000, 5,000, and 10,000. On the contrary to our

insert operation results, the results of [4] may show that for

complex scenarios, NHibernate may have better

performances. Similarly with processing times, memory

usage statistics in [4] are not coherent with our study.

While Dapper is the best tool in terms of memory usage in

our study, it is not the case in [4], especially for complex

operations. We can also compare our joined reading

operation with the get operation of [4]. In our one-to-many

joined select statement, Dapper is the fastest tool while

NHibernate is the fastest in [4]. Because of these test

environment and operation structure differences, we

mostly use simple queries and don’t apply any

configuration parameter changes to ORM tools and

PostgreSQL database to get results without any side

effects.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 463

Table 10. Execution plans of the operations

Oper. ORM
Execution Plan

Node Type Entity Cost Rows Time (ms) Condition

Read

Dapper Seq Scan track 0.00 - 271836.60 100000 1.505.325 [NULL]

EF Core Seq Scan track 0.00 - 271836.60 100000 1.495.283 [NULL]

NHibernate Seq Scan track 0.00 - 271836.60 100000 1.472.832 [NULL]

Insert
Dapper

ModifyTable track 0.00 - 0.01 0 0.030 [NULL]

Result [NULL] 0.00 - 0.01 1 0.006 [NULL]

No accessible data for EF Core and NHibernate

Update
Dapper

ModifyTable track 8.43 - 12.44 0 0.033 [NULL]

Bitmap Heap

Scan
track 8.43 - 12.44 1 0.016 [NULL]

Bitmap Index

Scan
PK_Track 0.00 - 8.43 1 0.009 (track_id = 1)

No accessible data for EF Core and NHibernate

Delete
Dapper

ModifyTable track 11.51 - 15.53 0 0.074 [NULL]

Nested Loop [NULL] 11.51 - 15.53 1 0.058 [NULL]

Aggregate [NULL] 3.08 - 3.09 1 0.038 [NULL]

Subquery Scan [NULL] 0.00 - 3.08 1 0.034 [NULL]

Limit [NULL] 0.00 - 3.07 1 0.029 [NULL]

Seq Scan track 0.00 - 271836.60 1 0.028 [NULL]

Bitmap Heap

Scan
track 8.43 - 12.44 1 0.010 [NULL]

Bitmap Index

Scan
PK_Track 0.00 - 8.43 1 0.007

(track_id =

"ANY_subquery".

track_id)

No accessible data for EF Core and NHibernate

Search

Dapper Seq Scan track 0.00 - 272058.00 742 1.507.293
((name)::text ~~

'%Song%'::text)

EF Core Seq Scan track 0.00 - 272279.40 742 1.549.108

(strpos((name)::te

xt, 'Song'::text) >

0)

NHibernate Seq Scan track 0.00 - 272058.00 742 1.533.420
((name)::text ~~

'%Song%'::text)

Sort

Dapper
Sort [NULL] 283051.24 - 283272.64 100000 2.381.069 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.610.319 [NULL]

EF Core
Sort [NULL] 283051.24 - 283272.64 100000 2.212.061 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.486.284 [NULL]

NHibernate
Sort [NULL] 283051.24 - 283272.64 100000 2.188.023 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.471.869 [NULL]

Join

Dapper

Nested Loop [NULL] 0.16 - 274098.82 100000 1.497.240 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.453.257 [NULL]

Memoize [NULL] 0.16 - 0.18 1 0.000 [NULL]

Index Scan album 0.15 - 0.17 1 0.001
(album_id =

t.album_id)

EF Core

Nested Loop [NULL] 0.16 - 274098.82 100000 1.619.155 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.577.679 [NULL]

Memoize [NULL] 0.16 - 0.18 1 0.000 [NULL]

Index Scan album 0.15 - 0.17 1 0.001
(album_id =

t.album_id)

NHibernate

Nested Loop [NULL] 0.16 - 274098.82 100000 1.537.926 [NULL]

Seq Scan track 0.00 - 271836.60 100000 1.496.500 [NULL]

Memoize [NULL] 0.16 - 0.18 1 0.000 [NULL]

Index Scan album 0.15 - 0.17 1 0.001
(album_id =

track0_.album_id)

In terms of processing time, Dapper gives the best results

in 5 of 7 operations including read, delete, search sort and

reading from joined tables. However, Dapper could not win

the feature of being the best ORM tool in processing times

due to the worst results in insert and update operations. EF

Core gives the best result in all record count groups to the

nearest ORM tool, with a margin of about 70% for inserts

and about 40% for updates. In terms of transaction times,

the NHibernate ORM tool doesn’t have the best

performance for any operation. As a result, Dapper ORM

tool should be used to get the fastest results in applications

where operations such as reading, searching, and sorting

will be done intensively. In applications which adding and

updating operations will be carried out intensively, the EF

Core ORM tool should be used to get the fastest results.

464 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

In terms of RAM usage, Dapper gives the best results in 6

out of 7 operations while EF Core performs better only in

the reading from joined tables operation. However, in

reading from joined tables operation, there are very close

consumption results between EF Core and Dapper in terms

of RAM usage.

Dapper gives the best results in terms of CPU usage in all

operations except reading from joined tables operation.

Moreover, it performs 2 times or better than other ORM

tools in many operations. However, from these results, we

can infer that when queries become more complicated, EF

Core outperforms others in terms of CPU and RAM usage.

If we evaluate the RAM usage and CPU usage results

together, Dapper is still the ORM tool that gives the best

results in terms of resource usage. Dapper ORM tool

should be preferred in software projects developed with

.NET 6 where resource consumption is higher.

As a result of our research, Dapper provides the best

performance within the ORM tools in .NET 6 environment,

considering the processing time, RAM usage, and CPU

usage. When choosing Dapper, it should be considered that

some of its features are clipped as a micro ORM tool. If a

full-featured ORM tool needs to be used, the ORM tool that

we can get the best performance is EF Core.

According to the execution plan results, the differences

between ORM tools are not due to the operations at the

database side. Databases apply almost similar execution

plans for simple operations. The main reason for the

differences is the techniques applied by the ORM tools

such as mapping, caching etc.

Different conclusions about different ORM tools can be

obtained by doing similar research to ours. The following

list can be given as research recommendations in this

regard:

 Analysis studies can be done with different or new

ORM tools.

 Performance analyzes can be made with different

databases other than PostgreSQL.

 ORM tools performance analysis can be performed for

different software development environments.

 A benchmark suite can be developed by standardizing

operations, software configuration parameters and

hardware characteristics of the test computers.

REFERENCES

[1] A. Gruca, P. Podsiadlo, “Performance Analysis of. NET Based

Object–Relational Mapping Frameworks”, 10th International

Conference Beyond Databases, Architectures, and Structures

(BDAS 2014), Ustron, Poland, 40-49, May 27-30, 2014.

[2] S. M. Bhatti, Z. H. Abro, F. R. Abro, “Performance Evaluation of

Java Based Object Relational Mapping Tool”, Mehran University

Research Journal of Engineering and Technology, 32(2), 159–166,

2013.

[3] M. Kopteff, “The Usage and Performance of Object Databases

compared with ORM tools in a Java environment”, 1st

International Conference on Objects and Databases

(ICOODB’08), Berlin, Germany, 199-218, 13-14 March, 2008.

[4] D. Zmaranda, L.-L. Pop-Fele, C. Győrödi, R. Győrödi, G. Pecherle,

“Performance comparison of crud methods using net object

relational mappers: A case study”, International Journal of

Advanced Computer Science and Applications, 11(1), 55–65, 2020.

[5] T. Balcı, Entity framework’ün farklı veri tabanlarındaki

performans analizi, Yüksek Lisans Tezi, Kırıkkale Üniversitesi,

Fen Bilimleri Enstitüsü, 2018.

[6] B. Irakli, A. Bardavelidze, K. Bardavelidze, “Study And Analysis

Of The .Net Platform-Based Technologies For Working with the

Databases”, 33rd International Conference on Information

Technologies, Bulgaria, 1-8, 19-20 September, 2019.

[7] S. Cvetkovic, D. S. Janković, “A comparative study of the features

and performance of orm tools in a. net environment.”, 3rd

International Conference on Object and Databases

(ICOODB’10), Frankfurt am Main, Germany, 147–158, 28-30

September, 2010.

[8] J. Martin, Managing the Database Environment, Prentice Hall,

New Jersey, 1983.

[9] A. Joshi, S. Kukreti, “Object Relational Mapping in Comparison to

Traditional Data Access Techniques”, International Journal of

Scientific & Engineering Research, 5(6), 540–543, 2014.

[10] V.Sivakumar, T.Balachander, Logu, R. Jannali, “Object Relational

Mapping Framework Performance Impact”, Turkish Journal of

Computer and Mathematics Education (TURCOMAT), 12(7),

2516-2519 2021.

[11] H. Yousaf, Performance evaluation of java object-relational

mapping tools, Yüksek Lisans Tezi, The University of Georgia

Graduate Faculty, 2012.

[12] D. Colley, C. Stanier, and M. Asaduzzaman, “The Impact of

Object-Relational Mapping Frameworks on Relational Query

Performance”, International Conference on Computing,

Electronics & Communications Engineering (iCCECE),

Southend, UK, 47-52, August 2018.

[13] Internet: Microsoft technical documentation, Compare EF Core &

EF6, https://docs.microsoft.com/tr-tr/ef/efcore-and-ef6/, 25.01.

2021.

[14] Internet: A. Shapovalov, Micro ORM vs ORM, https://www.

yaplex.com/blog/micro-orm-vs-orm/, 24.06.2022.

[15] Internet: Dapper - a simple object mapper for .Net, https://github

.com/DapperLib/Dapper, 24.06.2022.

[16] Internet: Eager Loading of Related Data, https://docs.microsoft

.com/en-us/ef/core/querying/related-data/eager, 24.06.2022.

[17] Internet: NHibernate Reference Documentation, Chapter 21

Improving performance, https://nhibernate.info/doc/nhibernate-

reference/performance.html#performance-fetching, 24.06.2022.

[18] Internet: D. Paquette, Loading Related Entities: Many-to-One,

https://www.davepaquette.com/archive/2018/02/06/loading-relate

d-entities-many-to-one.aspxreference/performance.html#perfor

mance-fetching, 24.06.2022.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 465

[19] Internet: A. Chan, High Performance Reflection ORM Layer,

https://www.codeproject.com/Articles/22188/High-Performance-

Reflection-ORM-Layer, 24.06.2022.

[20] Internet: PostgreSQL 14.1 Documentation, What is PostgreSQL?

https://www.postgresql.org/docs/current/intro-whatis.html, 25.01

.2021.

[21] Internet: The World’s Most Advanced Open-Source Relational

Database, https://www.postgresql.org/, 25.01.2021.

[22] Internet: BenchmarkDotNet Powerful .NET library for

benchmarking, https://benchmarkdotnet.org/index.html, 25.01.20

21.

[23] Internet: .NET documentation, Diagnostics client library,

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/diagnos

tics-client-library, 25.01.2021.

