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Abstract 

The Internet of Things (IoT) provides solutions to many daily life problems. Smartphones with user-friendly 

applications make use of artificial intelligence solutions offered by deep learning techniques. In this work, we 

provide a sustainable solution to automatically monitor and control the irrigation process for detected flowers 

by combining deep learning and IoT techniques. The proposed flower status tracker and self-irrigation system 

(FloTIS) is implemented using a cloud-based server and an Android-based application to control the status of 

the flower which is being monitored by the local sensor devices. The system detects changes in the moisture 

of the soil and provides necessary irrigation for the flower. In order to optimize the water consumption, 

different classification algorithms are tested. The performance comparisons of similar works for example 

flower case denoted higher accuracy scores. Then the best generated deep learning model is deployed into the 

smartphone application that detects the flower type in order to determine the amount of water required for the 

daily irrigation for each type of flower. In this way, the system monitors water content in the soil and performs 

smart utilization of water while acknowledging the user. 
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1. Introduction 

There are many types of plants that are very susceptible to water, temperature, soil pH, etc., for their good 

growth health and overall development. One of the factors to be considered essential to the health of the plant is 

water and each plant grows healthy in different ranges of this factor. The lack of water or excessive water can 

make plants dry or rotten which results in insufficient growth or death. It is hardly feasible that everyone knows 

the appropriate information about the growth of plants for their needs. Even with just the correct execution of the 

irrigation, the factors of time, water, and a lot of money can be saved [1]. Therefore, the automatic irrigation 

system has become very convenient due to insufficient water resources and time requirements. 

The efficiency of the systems can be increased through the use of machines where every object or “thing” can 

be connected by the Internet of Things (IoT) concept. The IoT-based network enables the communication between 

machine-to-machine (M2M), that is the network of the embedded sensors, actuators, and electronic devices for 

the purpose of collecting and exchanging data with other devices and systems over the Internet [2]. There are 

several related pieces of research that have been discussed regarding automatic plant irrigation systems developed 

and implemented with IoT technology. For example, an IoT-based irrigation system uses a regression algorithm 

to optimize and control the process of water consumption [3]. Another research has implemented a Web-based 

plant monitoring application that helps users to monitor the plant status of temperature and humidity 

measurements with a wireless sensor network by sending a short message (i.e., SMS) to the user's smartphone of 

any unexpected changes in measurements [4]. 

On the other hand, any irrigation system requires the identification of the plant under investigation. Recent 

advances in machine learning technology help to develop automatic identification systems by the acquisition of 

millions of digital plant photos with smartphones, leading to mobile-based automatic plant identification 

applications. There have been many approaches developed to identify different flower species considering the 

main features of flowers such as color, texture, and shape. The support vector machine (SVM) has been widely 

used as the most effective machine learning-based classifier in image classification [5]. However, hand-crafted 

traditional discriminative features such as histogram of oriented gradients [6], scale-invariant feature transform 

[7] used in the SVM classification method cannot be easily applied to numerous flower classes. Moreover, the 

classification method applied to a single flower dataset is not guaranteed to achieve the same performance on a 

different flower dataset due to the complexity of the problem. Besides, the extracted features might not be 

generalizable to other flower images with changing conditions such as rotation, scaling, and illumination.  

The deep learning methods, especially convolutional neural network (CNN) architectures have recently gained 

preference on image classification due to their superior performance in accuracy compared to the classical 

machine learning methods which rely on mostly hand-crafted methods. The CNN takes the intensities of pixels 
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from an input image and gradually adjusts the parameters (model weights) during training until optimizing the 

algorithm in order to neural network make a prediction as closely as possible. The detection of a flower from its 

image depends on the efficient models of the deep learning architectures based on a CNN. There have been studies 

to classify from various images [8, 9], and various types of plants including flowers [10, 11]. In those works, 

efficient deep learning architectures like Inception V3 [12], MobileNet [13], and ResNet-50 [14] have been used 

to obtain higher recognition rates [9, 11, 15]. Moreover, the information of the model obtained from one type of 

flower can also be transferred to another by transfer learning. Thus the present study uses CNNs along with 

transfer learning to efficiently recognize flower species in real-time. In order to implement the control and 

traceability of the system, and display real-time information to the users, the sensors reading the moisture level of 

the soil are integrated to an Android application on a smartphone. 

The remainder of the paper is organized as follows: Section 2 gives the background information and mentions 

the key concepts. Section 3 explains the system architecture and implementation of the proposed flower 

recognition-based flower status tracker and self-irrigation system (FloTIS). Section 4 reports the accuracy 

performance of the models for flower classification and demonstrates the irrigation system integrated with the 

designed Android smartphone application. Section 5 summarizes and concludes the paper. 

2. Background  

The proposed system combines the concepts of deep learning to detect the flower type, and IoT to transfer the 

flower data in order to check the status and control the automatic irrigation of the flower via smartphones. 

The deep learning models for image classification utilizes mostly the CNN architectures. A typical CNN is 

composed of three stages [16]. In the first stage, several convolutions are performed in parallel to produce a set 

of linear activations. The so-called convolution layer uses filters that perform convolution operations and outputs 

feature maps. Each linear activation is run through a nonlinear activation function in the following stage. In the 

third stage, a pooling function is used to modify the output of the layer. The pooling is essentially a down-sampling 

operation where commonly used values of the maximum or the average are taken. The concatenation of layers 

provides to work with data that has a grid-structured topology and scales to large sizes. This is followed by a final 

fully connected layer that outputs the desired classification class scores. This overall approach has been the most 

successful on two-dimensional cases, i.e., on images. 

The CNN model is first introduced to perform recognition of hand-written digits from images and it has shown 

significant performance improvement compared to earlier state-of-the-art machine learning techniques [17]. Later 

it has been extended by many studies and many architectures have been proposed with an increased number of 

layers that can achieve lower error rates [9, 18]. 

On the other hand, IoT aims to create a better environment for humanity, where objects around us are organized 

according to our needs and act without explicit instructions. Therefore, the fundamental promise of IoT is to 

monitor and control the connected things [19]. This is mainly built up by sensors to collect information, identifiers 

to identify the source of data, software to analyze the data, and most importantly the Internet connectivity to 

communicate and notify. The explosion of smart and mobile devices further boosted the usability of IoT-based 

solutions for everyday life problems. 

Initially, the dominant technology behind the IoT was Radio-Frequency Identification (RFID). Today with 

further technological achievements, a diverse set of architectures and enabling technologies drive the 

standardization of IoT in several application domains. There are several surveys that focus on technologies such 

as wireless sensor networks, communication protocols, cloud platforms, fog computing [20, 21, 22]. Concepts 

combined with technology are reflected on the applications name such as smart home, smart city, or smart farming. 

Particularly for agriculture, sensing for soil moisture and nutrients, controlling water usage for plant growth, and 

determining custom fertilizer are some simple uses of IoT [23].  

A natural solution to using these smart systems is employing smartphones. Simple applications in smartphones 

aid in monitoring and controlling the objects together with the underlying technologies of IoT. A common 

operating system in smartphones is Android. The software tool generating those applications helps to handle the 

high computation for deep learning classification using the cloud services, necessary communication protocols to 

access and control the objects as well as notify users at any step of the usage.  

3. System Architecture and Implementation  

This section describes the theoretical foundation and system implementation of our proposed system in detail.  
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3.1. Flower Recognition System 

In order to classify the type of flower and determine the required water based on the soil moisture level, the 

first step is image classification. Image classification is the pioneering work that boosted the deep learning 

architectures based on CNNs after AlexNet [24]. Today, most of the deep learning architectures utilize the pre-

trained models on large-scale datasets such as ImageNet [25] which contains 1.4 million images over 1000 object 

classes for training their models using a technique called transfer learning. The transfer learning method keeps 

the parameters of the CNN model's previous layer and removes the last layer, then retrains the last layer for new 

categories. This helps to train networks for classification with a small number of training samples like the 20-

category flower dataset that we used for this study. 

In order to determine the most effective model for flower classification, experiments were carried out with 

three different CNN algorithms.  

MobileNet V1: MobileNets are mobile-first computer vision models designed by Google researchers in order 

to run onto smartphones with limited memory. MobileNets uses depthwise separable convolution architecture that 

significantly reduces the parameters when compared to networks with the same depth in the networks. This 

lightweight network structure provides an efficient model for mobile and low-power embedded vision applications 

[26]. MobileNet V1 network structure has 28 layers and requires only one-eighth of the computation cost. This 

architecture, as seen in Figure 1, has an image input size of 224-by-224 with 3 channels. 

 

  

Figure 1. MobileNet V1 architecture. 

Resnet-50: The ResNet-50 (Residual Network-50) is the first deep-CNN (>50 layers) architecture, as seen in 

Figure 2, with 50-layer deep that utilized residual learning [27] to manage more complex image recognition tasks 

and improve the accuracy of the model. In deep networks, with the increasing layers, accuracy gets saturated and 

then degrades rapidly. Residual learning has been introduced to address this degradation problem. The residual 

networks are made up of residual blocks that comprise a skip connection to make it easier to learn the identity 

function and help to solve the problem of degradation of training accuracy. Residual networks are the deepest 

ever presented on ImageNet and still have lower complexity than VGG networks [28]. This network structure has 

an image input size of 3-by-224-by-224. 

 

  

Figure 2. Resnet-50 architecture. 

Inception V3: Inception V3 is a CNN structure developed by Keras [29], which is pre-trained in ImageNet. 

The Inception V3 network consists of 48-layers of convolutional, pooling, and fully connected layers as shown in 

Figure 3 with an image input size 3-by-299-by-299. Compared to the previous versions (Inception V1 [30] and 

V2 [31]), the Inception V3 network structure uses a convolution kernel splitting method [32] to achieve different 

scale perceptions. Through the splitting method, it does not only reduce the number of network parameters and 

computational costs without hampering accuracy but also increases the network depth and extracts the spatial 

features more effectively.  
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Figure 3. Inception V3 architecture. 

3.2. Implementation 

The system utilizes two microcontrollers for electronic device monitoring, data collection, and data saving; 

Arduino UNO [33] and Raspberry Pi [34]. The irrigation system is composed of a vertical submersible low-power 

water pump to supply water and a resistive soil moisture sensor to detect the humidity level of the soil. The sensor 

sends the moisture level of the soil to the Raspberry Pi through the Arduino UNO with serial communication. 

Then, the received value is compared with the predefined soil moisture range of the flower given in Table 1 

determined from [35], for every 12 hours. The flower water status is then forwarded to the smartphone application 

through the Firebase [36] server. If the moisture level is below the desired range, the automated irrigation system 

provides the required measure of water for 2 seconds till it reaches the determined water content range. 

 
Table 1. Soil moisture levels of flowers in our dataset. 

Flower  0% - 20% 

Dry soil  

21% - 40% 

Drained soil 

 

41% - 60% 

Moist soil 

 

61% - 80% 

Wet soil  

Azalea   ✔    

Bluebell   ✔    

Buttercup     ✔  

Cactus  ✔  ✔     

Coltsfoot     ✔   

Cowslip     ✔   

Crocus  ✔  ✔     

Daffodil     ✔   

Daisy     ✔   

Dandelion    ✔    

Fritillary    ✔    

Geranium     ✔   

Iris    ✔    

Lily Valley   ✔    

Pansy     ✔   

Snowdrop    ✔    

Sunflower    ✔    

Tigerlily       

Tulip    ✔    

Windflower     ✔   
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The overall proposed smart flower status tracker and self-irrigation system is depicted as a block diagram and 

is presented in Figure 4. 

 

 
 

Figure 4. Schematic of the flower status tracker and self-irrigation system on smartphones. 

4. Results  

In this study, we used the Oxford-17 Flower Dataset [37] with each species has 80 flower images. Three more 

types of flower images (80 images per type) were also added to obtain 20 species. This new dataset is split into 

two parts where 70% are used as a training set, 30% are used as a validation set. For the classification of images, 

the three aforementioned models were selected as MobileNet V1, ResNet-50, and Inception V3. The optimizer 

for training these models is the Stochastic Gradient Descent (SGD) [38] optimizer with a selected batch size of 

32 and a learning rate of 0.001. The training of all the models is completed in 50 epochs where the validation 

accuracy has at the peak level. Then the model is exported to TensorFlow-Lite [39] model and is deployed into 

the application to perform the classification on Android-based smartphone devices and manage to detect flowers. 

The training and validation accuracy of the models with the transfer learning technique is presented in Table 

2. The best validation accuracy is found with the Inception V3 model; therefore, this model is deployed to the 

Android application. 
Table 2. Performance evaluation scores. 

Model Train 

Accuracy 

Validation 

Accuracy 

MobileNet V1 0.9758     0.8973 

ResNet-50 0.9880 0.9010 

Inception V3  0.9955 0.9312 

 
Table 3. Performance comparison of our proposed model and other state-of-the-art models on Oxford-17 Flower 

Dataset. 

Model Accuracy 

VGG 16-transfer [40] 0.8353 

VGG 19-transfer [40] 0.8471 

VA ResNet-50 [41] 0.8570 

Fusion Descriptor and SVM [7] 0.8617 

Our proposed model 0. 9312 
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A comparison of the different models on the Oxford-17 Flower Dataset is also performed. Based on the 

accuracy values presented in Table 3, our proposed Inception V3 model has a significant improvement as 

compared to other methods. 

Figure 5 presents the setup prototype of FloTIS. The system is tested on the geranium. The flower name is 

identified by taking a photo with the camera of the smartphone from the application menu. The photo is predicted 

as "geranium" and displayed by the application. 

 

 
 

Figure 5. Setup for the prototype of FloTIS. 

The flower name information is then sent to the controller through the server. As the soil moisture levels have 

been stored for each flower, the requirement for geranium soil moisture is moist soil and the level should be 

between 41% and 60% as given in Table 1. In this work, three categories are selected to notify the user and then 

to supply water to the flower. These are determined as ''need water!", "normal", "excessive water!". For example, 

when the measured value is 23%, the water is insufficient, then the notification is ''need water!". When the flower 

is watered and the moisture level is increased to 56%, it is notified as "normal". When the moisture level is 

measured as 65% that exceeds the upper limit for the geranium, the notification becomes "excessive water!". The 

corresponding statuses of the water displayed on the smartphone application are shown in Figure 6. 

                    

 

Figure 6. Water statuses of the recognized flower by the smartphone application. 
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5. Conclusion 

In this study, an automatic self-irrigation and flower status tracker system is proposed. It combines deep 

learning architectures to identify the flower, a detection and irrigation system to sense and then provide the plant 

with a certain level of water and hence prevent overwatering, into a smartphone application named FloTIS 

integrating all systems into an IoT framework. 

The advantage of the system lies in detecting the flower type using image recognition and then providing the 

correct execution of watering for different flower types. The user-friendly FloTIS application displays 

corresponding water levels of the flower while it controls and tracks the irrigation system managing the desired 

levels accordingly. 

As the flower image dataset used in this work is limited, only three deep learning architectures were selected 

for flower identification. A comparison of the other classification algorithms denoted the efficiency of the 

proposed method in terms of the accuracy scores. Note also that those were pre-trained algorithms and they can 

be used easily in a higher number of dataset images wherever available. Therefore, the proposed system can be 

implemented on a large scale for farming, especially for water conservation due to prevailing conditions and water 

shortages. 
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