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Abstract  

 

Tracking the ball location is essential for automated game analysis in complex ball-centered team sports such as football. 

However, it has always been a challenge for image processing-based techniques because the players and other factors often 

occlude the view of the ball. This study proposes an automated machine learning-based method for predicting the ball location 

from players' behavior on the pitch. The model has been built by processing spatial information of players acquired from optical 

tracking data. Optical tracking data include samples from 300 matches of the 2017-2018 season of the Turkish Football 

Federation's Super League. We use neural networks to predict the ball location in 2D axes. The average coefficient of 

determination of the ball tracking model on the test set both for the x-axis and the y-axis is accordingly 79% and 92%, where the 

mean absolute error is 7.56 meters for the x-axis and 5.01 meters for the y-axis. 
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1. INTRODUCTION 

The rapid advancements in vision-based tracking and 

statistical tools have transformed many fields. These 

developments also break their way in sports analytics 

through many applications which offer new ways of in-detail 

analysis and observation to assess different aspects of both 

games and athletes' performance [1], [2]. As a result, sports 

analytics now has great importance for managers, athletes, 

sports experts, and even broadcasters since it enriches our 

knowledge about sports and leads to a more advanced and 

rich watching experience. 

With its wide popularity and high revenue share, football 

benefits from all these developments the most. An extensive 

amount of research has already been done in football, from 

statistical properties of the game to game flow motifs   [3]–

[8]. Some studies focus on recognizing football events from 

the spatiotemporal soccer data. Khaustov and Mozgovoy [9] 

propose a rule-based system for identifying successful and 

unsuccessful passes and shots. Özdemir and Alemdar [10] 

develop a random forest classifier to identify corner kicks, 

free kicks, goals, and penalties. As in most team sports, 

understanding the strategies in football is a challenging task. 

It requires all kinds of relevant information, such as the 
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individual behavior of the players, their collective behavior 

as a team, and accurate ball location. In addition to sports 

analytics, new applications such as creating real-time game 

highlights for the audience experience are another emerging 

market that relies on accurate ball tracking. However, unlike 

some sports such as tennis, computer vision-based methods 

for frame-to-frame ball detection still remain beyond the 

state-of-the-art solutions for complex ball-centric sports 

since the ball is occluded most of the time. In football, 

detecting the ball's location is an even more challenging task 

mainly because of the nature of the game. Although there are 

several initiatives to equip the ball with a tracking chip, no 

such solution has been accepted by the governing 

organizations yet. One of the main challenges for ball 

tracking is that the size of the ball is relatively small 

compared to the vast field that needs to be monitored. 

Moreover, the players' interaction with the ball occurs in an 

unexpected way, and most importantly, the view is often 

occluded as the ball is lost behind the players.  

To track the ball location in centimeter-level accuracy, a 

large number of very expensive cameras are needed. For 

example, the goal-line technology used to determine whether 

the ball has passed the goal line requires 14 cameras to detect 
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the goals, and that cannot track the ball in the field all the 

time.   

Our study aims to provide a tool that can be used alongside 

current techniques to simplify and ensure more accurate ball-

tracking. Our proposed approach uses players' formation 

during the game to estimate ball position. This formation-

based approach focuses on analyzing within and between 

segment groups rather than the individual player activities. 

The main hypothesis we pursue is to deduce the key 

behaviors of ball movement in the dynamic game flow from 

spatial attributes such as players' speed and their positional 

distribution. This method has been motivated by our 

observations and experiments in deep learning-based 

approaches and our intuitive reasoning. Our model is 

designed to predict the ball's location on the 2D plane. 

Therefore, when the ball is flying, we aim to provide its 

projection on the 2D plane since this will give more valuable 

insights to the football professionals. 

The rest of this paper is organized as follows. In the next 

section, we cite several related studies in the literature. In 

Section 3, we present our method to predict ball location 

from optical tracking data. In Section 4, we provide our 

experimental results on our real-world soccer optical 

tracking data set. Finally, we conclude with Section 5. 

2. RELATED WORK 

Given the importance of the location tracking of the ball in 

sports, there are several related studies in the literature. 

Kamble et al. provides a literature survey on the topic and 

identifies the need for multiple cameras as a challenge in ball 

tracking in football [11]. According to current regulations, it 

is impossible to equip the ball with wireless sensor devices; 

therefore, all of the existing studies that consider official 

football match data use computer vision-based approaches. 

There are two main methodological tracks: i) using broadcast 

videos and ii) having a fixed camera setup in the stadium. 

More recently, the use of drones [12] has also been 

suggested, yet it is not as common. Several studies focus on 

the detection of the ball only, whereas others also propose a 

trajectory for the ball.   

Cardenas and Zuniga propose a two-stage algorithm [13]. In 

the first stage, they first extract a set of candidate objects 

from the segmented image. Then they filter objects that do 

not look like a ball using several features. In the second 

stage, each ball candidate's features obtained in the previous 

stage are combined with the dynamics model to form a 

trajectory. Then all the possible trajectories are ranked. 

Lhoest [14] proposes a similar two-stage approach starting 

with a ball detector followed by tracking. A deep 

convolutional neural network for image segmentation is used 

for detection, and a Kalman filter-based approach is used for 

tracking. In [15], an extended Kalman filter is used after the 

ball detection stage. Naidoo and Tapamo [16] propose 

another similar two-stage approach that contains soccer ball 

detection based on coarse analysis and filtering. Ren et al. 

use an 8-camera system to track the ball's location, and they 

provide results on a relatively small dataset that consists of a 

couple of minutes long video footage [17]. When they use a 

buffer size of 50 frames, the detection rate is 68.5% only. A 

deep-learning-based system is also proposed in [18] and [19] 

for CCTV footage videos. Leo et al. [20] present a multi-step 

algorithm to detect the ball in image sequences acquired 

from fixed cameras. Candidate ball regions are selected by 

probabilistic analysis of locally affine invariant regions 

around distinctive points. 

Durus works on the broadcast videos to track the ball to make 

tactical analyses [21]. He proposes to detect the ball first and 

then employs a particle filtering-based approach to track the 

ball and recover the ball's trajectory. This method requires 

the ball to be present and visible in the scene in all frames. 

Komorowski et al. use a deep neural network-based detector 

for the ball and players detection in high-resolution 

broadcast recordings [22]. The model produces a ball 

confidence map together with the position of the detected 

ball. To improve the discriminability of the ball, the feature 

pyramid network design pattern is used. In that way, lower-

level features with a higher spatial resolution are combined 

with higher-level features with a bigger receptive field. In 

[23], a ball detection algorithm is presented. Ball candidates 

are first extracted using features based on the shape, color, 

and size. For selecting the best candidate, they use object 

area, centroid, bounding box, and minor and major axes 

features with a rule-based algorithm to eliminate the non-ball 

objects. Niu et al.  [24] present an approach for discovering 

the ball states rather than its actual trajectory to automatically 

find the attacking patterns by the teams using broadcast 

videos.   

In this study, we propose a machine learning-based approach 

to relieve the need for the increased number of cameras just 

for the ball tracking and use the players' and referee's 

behavior instead to determine the actual location of the ball 

in football. In our approach, even though the system cannot 

recognize the ball object, we are able to predict its location 

since we use the players' and referee's behavior. We train and 

evaluate our results on a dataset that contains data from a 

complete season. To the best of our knowledge, this study is 

unique in its attempt to locate the ball by using the players' 

and the main referee locations. 

3. MATERIALS AND METHODS 

The state-of-art real-time two-camera player tracking system 

SentioScope, developed by Sentio, collects data from 

Turkish Super League (TSL) matches [25]. Using this data, 

we created a dataset for each game to analyze. For each 

second, position data of players of both teams and the ball in 

a rectangular coordinate system are saved in this dataset 𝒟.  

We identify the home team as ℋ and away team as 𝒜. The 

ball is labeled as ℬ, and the main referee is denoted as ℛ. 

The dataset for a match 𝑀 is constructed as follows: 

𝒟𝑀 = {𝑐𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) | ∀𝑖 ∈ ℋ ∪ 𝒜 ∪ ℬ ∪ ℛ,

𝑡 = 1,2, . . 𝑇𝑀} 
(1) 

where 𝑐𝑖
𝑡 is the coordinates of the ith object (player, referee, 

or ball) at timestep 𝑡, 𝑥𝑖
𝑡 is the x-axis coordinate and 𝑦𝑖

𝑡 is the 
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y-axis coordinate. 𝑇𝑀 is the maximum number of seconds in 

the match 𝑀. 

The dataset contains data for 300 matches of the Turkish 

Football Federation Super League 2017-2018 season. It 

encloses the speed and location information of players and 

the main referee. As the raw data is collected using optical 

tracking cameras, it suffers from previously mentioned flaws 

to precisely track the ball [26].  

 
Figure 1. Optical tracking software's coordinate system 

In the dataset, spatial information of the ball is implicitly 

available during the frames when some player owns the ball. 

When the ball is not in play due to the game's pauses, we are 

also not interested in ball location since it does not have a 

value. Therefore, we are particularly interested in moments 

where the ball is in possession of a player. Those are the 

moments the ball is occluded the most, making computer 

vision-based ball tracking challenging.  

In the following sections, we introduce the formulation of 

our approach, which can also be applied to other team sports 

which possess the notion of ball possession, such as 

handball, basketball, and American football. We first 

propose a segment-based representation method that handles 

the ordering problem of the features. After that, we describe 

our feature extraction methodology. Finally, we present our 

neural network model to predict the ball location. 

3.1. Segment-based Representation 

There are 11 players for each team in a typical football 

match, adjusting their positions according to the ball 

location. Therefore, their collective behavior gives a good 

indication of the ball's location. For each player on the pitch, 

the feature set could be represented in a vector. Thus, the 

collection of individual player attributes forms a matrix that 

can be used in a machine learning task. However, the number 

of players can change due to certain events in the game, such 

as red cards or injuries. Also, due to the substitutions of 

players, the identities of the players may change. Moreover, 

in each game, there are different teams and different players 

playing in different formations. For all these reasons, it is 

impossible to find a correct ordering for the individual 

players to be represented in the feature matrix.  

In order to address these problems and players' positional 

interchanges and capture the flow of players' movement, we 

suggest a data representation method using a role-based 

approach. The main idea of the proposed method is to divide 

the pitch into segments and assign players to these segments. 

This method enables us to set a common data representation 

regardless of the team and player identities; thus, we can use 

the same representation for all the matches.  

We separate the football pitch into different segments on 

each axis and assign each player to the corresponding 

segment on each axis by assessing their movements for the 

most recent minutes. After grouping players, we use players' 

coordinates, and speed attributes to extract features, such as 

average characteristics and attributes of outlier players in the 

groups with faster speed or slowest speed, for example. 

 
Figure 2. Visualization of scaling of average positions 

To find out the players' segments, simple averaging of their 

movements alone is not enough. Football has its own well-

established play-book, such as the tendency of teams to keep 

their formation structure when the opposition team owns the 

ball. To this end, when segment assignment is carried out, 

the average positions of a team are calculated over time steps 

when the rival team has the ball. The average positions are 

calculated over fixed-width overlapping sliding windows of 

15 minutes with a step size of one minute. Due to the 

averaging, the positions tend to be grouped towards the 

middle of the field, as depicted in Figure 2 with blue dots. 

We observe that although the average distribution of the 

players may show some pattern of formation,  it lies around 

the middle of the field in a squeezed form. In order to 

represent the average distribution of player formation across 

the whole pitch, we scale the positions according to the full 

field size. For each player i, the scaled coordinate 𝑐i
′ is 

calculated as follows: 

ci
′ = δ2 −

[(δ2 − σ) − (δ1 + σ)](α − c𝑖)

α − β
 

(2) 

where 𝑐𝑖 is the actual coordinate of player i for a given axis 

for a given time step, 𝛿1 and 𝛿2 are the boundaries of the 

segment, α is the coordinate of the player that has the 

maximum value, β is the coordinate of the player that has the 

minimum value and 𝜎 is the variance of the player 

coordinates. In this way, for each time step, players' average 

positions on each axis are scaled to the range [𝛿1 + 𝜎, 𝛿2 −
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𝜎] based on the dispersion of the players' coordinate 

distribution.  In this way, we obtain the new scaled positions 

as shown in orange dots in Figure 2. 

Updating average positions in overlapping windows and 

grouping players at each minute based on their scaled 

averages allow us to capture the trends in players' 

movements even when a player migrates to different 

positions during the game or when two players swap their 

positions. In order to ensure the best representative groups, 

we partition the field into smaller segments making the area 

for each segment large enough to host at least one player at 

each frame. If there are too many segments, most of them 

will be empty most of the time since players usually stay 

towards the center and go to some of these segments for a 

short amount of time, especially the ones at the corners. Their 

short presence there does not change their overall average 

position much. For this reason, empirically, we divided the 

pitch into three different sections on each axis. Segment 

division on each axis separately helps deduce positional 

information about players' placement jointly on both axes 

and mitigate the sparsity of the feature vector introduced by 

empty segments. The boundaries of these segments are 

provided in Table 1 and Table 2 for the x and y axes, 

respectively.  

Table 1. Segment groups along the x-axis and their 

boundaries 

Segments Boundaries (m) 

Vertical Back (VB) 0, 34 

Vertical Middle (VM) 34, 71 

Vertical Front (VF) 71, 105 

 

Table 2. Segment groups along the y-axis and their 

boundaries 

Segments Boundaries (m) 

Horizontal Top (HT) 0, 22 

Horizontal Middle (HM) 22, 46 

Horizontal Bottom (HB) 46, 68 

We use these segments to assign a role to each player using 

their scaled average coordinates. Results of the proposed role 

assignment method reflect the players' positional distribution 

properly. Having a fixed segment representation also allows 

us to order the features using the segments. This approach 

also makes it possible to represent players' data dynamically 

in a fixed order as they simultaneously change their roles 

during a match. The order of feature representation can 

simply be initialized in the form of a set of segments as 𝒮 = 

{HT, HM, HB, VB, VM, VF}. Instead of features calculated 

individually for each player in that setting, we have features 

extracted for set the of players in each segment group.   

 

 

3.2. Feature Extraction 

In our feature set, we consider many aspects of the football 

game to obtain the best set of features that can be used to 

predict the ball location. To begin with, the direction of the 

game flow depends on the movement of the player who 

possesses the ball, whose position, in turn, depends on the 

positional distribution of the other players and their spatial 

values, such as location, speed, and direction. In order to 

build a feature set that can help to map from feature space to 

the game flow at any given moment, we should consider all 

these spatial features. To capture the relevant connection 

among all the role groups and team groups (i.e., home team 

and away team), we calculate features using the groups. 

Furthermore, we also perform the feature extraction on the 

combined set of both teams to find the possible interactions 

among teams. We define our features on different sets: ℋ 

and 𝒜 are the set of the home team and away team's players 

except for the goalkeepers, respectively. {𝒮𝒾 ∩ ℋ}𝑖
|𝒮|

 and 

{𝒮𝒾 ∩ 𝒜}𝑖
|𝒮|

 represent the set of players for each segment 

group in each team, and the set ℋ ∪ 𝒜 contains all the 

players except for the goalkeepers. We represent goalkeepers 

and the main referee separately. For achieving the unity of 

expression, we define them as sets that contain a single 

element. We denote the goalkeepers for home and away 

teams as 𝒢ℋ and 𝒢𝒜 , respectively. We denote the referee set 

as ℛ. 

The speed is also one of the crucial components that provide 

insight into the ball's location. Teams can develop 

counterattacks or play with slow tactical passes just before 

an attack, or when a player dribbles the ball, he runs or 

sprints to pass his rival. All of these behavior patterns can be 

used to predict the location of the ball. In order to incorporate 

this into our prediction model, we categorize players into 

distinct speed groups. Empirically, we devised two groups. 

These groups are identified as Low Intensity (the speed is less 

than or equal to 3.5 m/s) and High Intensity (the speed is 

greater than 3.5 m/s). We observed that these speed groups 

show different characteristics in their relation to the ball's 

coordinates. For example, the distance of the Low Intensity 

(LI) group to the ball is usually more than that of the High 

Intensity (HI) group.  

The movement direction is another essential component of 

motion when it comes to finding the ball's location. Thus, for 

each time step, we calculate the direction of the average 

movement for a group of players 𝑑𝑖𝑟(𝐺) as follows: 

𝑑𝑖𝑟(𝐺) = 𝑠𝑖𝑔𝑛 (∑ 𝑐𝑖
𝑡

𝑖

− 𝑐𝑖
𝑡−1) , ∀𝑖 ∈ 𝐺 (3) 

Ball control is an essential element in the football rulebook. 

Hence, to gain more control of the ball, players approach 

each other, eventually approaching the ball. The distribution 

of players gets denser as the game gets close to one of the 

goal lines. Capturing the form of players' positional 

distribution is an essential auxiliary element for defining ball 

location. Thus, the average position of each player group is 

calculated on each axis separately for each player group.  
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𝑎𝑣𝑔(𝑐𝑝) =
1

𝑁
∑(𝑐𝑝)

𝑁

𝑝=1

, ∀𝑝 ∈ 𝐺 (4) 

However, the average position is not helpful when some 

players in that group are groped closely, and the remaining 

players are relatively remote. For this reason, we also use the 

variance of the player coordinates 

𝑣𝑎𝑟(𝑐𝑝) =
1

N
∑ (𝑐𝑖 − 𝑎𝑣𝑔(𝑐𝑝))

2
N

i=1

, ∀𝑝 ∈ 𝐺 (5) 

for different groups for players such as home team players, 

ℋ, away team players, 𝒜, all players, ℋ ∪ 𝒜 and player 

groups found with a density-based clustering (DBSCAN) 

approach [27]. We apply DBSCAN to have a more robust 

distribution representation by finding clustered groups of 

players. The algorithm starts from an arbitrary point in the 

group 𝐺 and finds the cluster of neighborhood points where 

at least Nmin of them are directly density-reachable from this 

arbitrary point with respect to ϵ such that  

|{p ∈ G: d (xpi
, xpj

) ≤ ϵ}| ≥ Nmin (6) 

where 𝐝(. ) is a distance function. Density-based clustering 

allows us to find the player clusters where players are closer 

to each other. The center of this cluster is often close to the 

location of the ball. In our approach, we used 𝛜 = 𝟏𝟓𝐦 and  

𝐍𝐦𝐢𝐧 = 𝟕 for the set 𝓗 ∪ 𝓐, and 𝛜 = 𝟏𝟓𝐦 and 𝐍𝐦𝐢𝐧 = 𝟒 

for the  𝓗 or 𝓐 since their group size is smaller than the 

union set. In addition to DBSCAN features, we also extract 

features for specific target groups. For example, the referee's 

coordinates and speed were extracted by considering the fact 

that referee movements can be determinant since the referee 

often stands next to positions to resolve any dispute on the 

pitch. A compact representation of all the features we have 

extracted is provided in Table 3. In total, we use 251 different 

features per time step. 

Table 3. List of features. 𝐺 is the player set, 𝐺+ is the set of players with HI speed, 𝐺− is the set of players with LI speed, 𝐺∗ 

represents the cluster set of players that is found by DBSCAN. 𝑣𝑝 is the speed and 𝑐𝑝 is the coordinate of player p. 

𝐺 =  ℋ 𝑜𝑟 𝒜 𝐺 =  {𝒮𝒾 ∩ ℋ}𝑖
|𝒮|

 𝑜𝑟{𝒮𝒾 ∩ 𝒜}𝑖
|𝒮|

 𝐺 = ℋ ∪ 𝒜 𝐺 =  𝒢ℋ  𝑜𝑟  𝒢𝒜  𝐺 = ℛ 

𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺 𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺 𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺 𝑐𝑝, ∀𝑝 ∈ 𝐺 𝑐𝑝, ∀𝑝 ∈ 𝐺 

𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺 𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺 𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺 𝑣𝑝, ∀𝑝 ∈ 𝐺 𝑣𝑝, ∀𝑝 ∈ 𝐺 

𝑑𝑖𝑟(𝐺) dir(𝐺) 𝑣𝑎𝑟(𝑐𝑝) ∀𝑝 ∈ 𝐺 dir(𝐺) dir(𝐺) 

𝑣𝑎𝑟(𝑐𝑝) ∀𝑝 ∈ 𝐺 𝑣𝑎𝑟(𝑐𝑝) ∀𝑝 ∈ 𝐺 𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺∗ d (𝑐𝑝,  𝑎𝑣𝑔(𝑐𝑖)),  d (𝑐𝑝,  𝑎𝑣𝑔(𝑐𝑖)), 

𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺+ 𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺+ 𝑣𝑎𝑟(𝑐𝑝) ∀𝑝 ∈ 𝐺∗ ∀𝑝 ∈ 𝒢ℋ, ∀𝑖 ∈ ℋ ∀𝑝 ∈ ℛ, ∀𝑖 ∈ ℋ ∪ 𝒜 

𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺+ 𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺+  d (𝑐𝑝,  𝑎𝑣𝑔(𝑐𝑖)), d (𝑐𝑝,  𝑎𝑣𝑔(𝑐𝑖)), 

𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺− 𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺−  ∀𝑝 ∈ 𝒢𝒜 , ∀𝑖 ∈ 𝒜 ∀𝑝 ∈ ℛ, ∀𝑖 ∈ 𝐺∗ 

𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺− 𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺−    

𝑎𝑣𝑔(𝑐𝑝) ∀𝑝 ∈ 𝐺∗     

𝑎𝑣𝑔(𝑣𝑝) ∀𝑝 ∈ 𝐺∗     

𝑣𝑎𝑟(𝑐𝑝) ∀𝑝 ∈ 𝐺∗     

𝑚𝑖𝑛(𝑐𝑝) ∀𝑝 ∈ 𝐺     

𝑚𝑖𝑛(𝑣𝑝) ∀𝑝 ∈ 𝐺     

𝑚𝑎𝑥(𝑐𝑝) ∀𝑝 ∈ 𝐺     

𝑚𝑎𝑥(𝑣𝑝) ∀𝑝 ∈ 𝐺     

𝑐𝑖 , 𝑖 = 𝑎𝑟𝑔min
𝑝∈𝐺

(𝑣𝑝)     

𝑐𝑖 , 𝑖 = 𝑎𝑟𝑔max
𝑝∈𝐺

(𝑣𝑝)     

𝑣𝑖 , 𝑖 = 𝑎𝑟𝑔min
𝑝∈𝐺

(𝑐𝑝)     

𝑣𝑖 , 𝑖 = 𝑎𝑟𝑔max
𝑝∈𝐺

(𝑐𝑝)     

4. PERFORMANCE EVALUATION 

We use two separate artificial neural network regression 

models for predicting ball location along the x-axis and y-

axis. In our experimental setup, we use training, validation, 

and test sets containing data from 243 (81%), 27 (9%), and 

30 (10%) matches respectively. We randomly select the 

matches using their unique identifiers from the whole dataset 

that contains 300 matches. The matches in the training set 

were used in the training stage of the neural network models. 

We used 27 matches as a validation set to perform the 

hyperparameter optimization. After the hyperparameter 

tuning is finished. We tested the performance of the final 

tuned model on the test set. The match data in the test set 

were used only at that stage. 

The models have been trained with dropout [28]. Moreover, 

an early-stopping technique has been implemented to avoid 

overfitting [29]. In our setting, we use L2 loss as the main 

loss function. Furthermore, mean absolute error (MAE), root 

mean squared error (RMSE), and the coefficient of 
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determination R2 evaluation metrics are used as well in order 

to carry out fair performance evaluation.  

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑓𝑖|

𝑖

 
(7) 

𝑅𝑀𝑆𝐸 = √
1

N
∑||yi − fi||

2

i

 
(8) 

R2 = 1 −
∑ (fi − y)2

i

∑ (yi − y)2
i

 
(9) 

To avoid saturation of activation function, we normalized the 

target variables using min-max normalization. However, we 

scaled back the predicted outputs to the normal scale when 

we did the performance measurement. That method helped 

our training network to converge to a better local optimum.  

The final proposed model is built on a deep neural network 

through a series of experiments. We optimized the depth of 

our neural network, the number of hidden nodes, the 

activation function, the optimization algorithm, and the 

learning rate of the optimization algorithm. All of the hyper-

parameter optimizations are performed using the validation 

set. As a result, we use the rectified linear unit activation [30] 

as our nonlinear activation function with a gradient-based 

stochastic optimization algorithm with Adam optimizer [31] 

with a batch size of 65 and a learning rate of 0.01. The depths 

of the neural networks are 7 for the x-axis prediction model 

and 5 for the y-axis prediction model. The number of hidden 

nodes is 251 for both models. 

According to our experimental evaluation, the result of the 

coefficient of determination on the train set of the x-axis and 

y-axis are 85% and 94%, respectively. The performance on 

the test set is 79% and 92% for the x-axis and y-axis, 

respectively. Our results indicate that the method performs 

well in its generalization ability. The mean absolute error of 

each model on the test set was calculated to gain more insight 

regarding the ball's location on the pitch. On the test, the 

error is slightly above 7.56 meters on the x-axis while it is 

5.01 meters on the y-axis. The mean squared error yields 

marginally higher results than the mean absolute error. The 

most significant errors occur in cases when the ball 

transaction happens unexpectedly and when the ball changes 

its position from one player to another over a long distance, 

which often occurs during the long passes and shots on goal.  

Table 4. Regression results on the x-axis 

Dataset MAE RMSE R2 

Train 6.47 9.90 84.64 

Validation 7.39 11.23 80.11 

Test 7.56 11.46 79.41 

 

Table 5. Regression results on the y-axis 

Dataset MAE RMSE R2 

Train 4.12 6.23 93.56 

Validation 4.83 6.96 92.74 

Test 5.01 7.19 92.16 

Overall, we can see that our approach performs particularly 

better on the y-axis. This is because the width of the pitch is 

almost half of its length and also, the teams are not spread 

over the y-axis as they try to cover distance mostly on the x-

axis in order to reach the opposition goal. The full evaluation 

results for the x-axis and y-axis are provided in Table 4 and 

Table 5, respectively.  

 
Figure 3. Heatmap of the predicted coordinates 𝑐𝑖

′ = (𝑥𝑖
′, 𝑦𝑖

′) 

when the Euclidean distance between the actual 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖) 

and the predicted coordinate is bigger than the Euclidean 

distance between the mean absolute error of test set on both 

axes.  

We also visualize our model performance using a spatial 

representation with heatmaps. In Figure 3, we present the 

heatmap for the density of the predicted coordinates, 

𝑐𝑖
′ = (𝑥𝑖

′, 𝑦𝑖
′), when the Euclidean distance between the 

actual coordinate, 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖), and the predicted coordinate 

is bigger than the Euclidean distance between the mean 

absolute error of test set on both axes, i.e., 

√(𝑥𝑖 − 𝑥𝑖
′)2 + (𝑦𝑖 − 𝑦𝑖

′)2 > √𝑥𝑀𝐴𝐸
2 + 𝑦𝑀𝐴𝐸

2  . This gives 

us an impression about which parts of the pitch the “faulty 

predictions” occur the most. Since the ball is at the center 

region on average, the errors also happen at that region.  

In Figure 4, we provide the heatmap of the density 

distribution of all the errors using the Euclidean distance 

between the prediction and the actual coordinate. This 

heatmap visualizes the magnitude of errors the model makes. 

We observe that regions closer to the goals, corners, wings 

are the places where the model makes the largest prediction 

error. The results represented here are consistent with our 

observations that the model initially struggles to adapt when 

the goalkeeper starts the game with a long shot, a corner kick 

is taken, or when there is an unexpected change of attack 

from one wing to another. 

Overall, with these two heatmaps, we provide insights about 

both the number of errors and the magnitude of errors across 

the pitch. Additionally, we provide an animated image of our 

method's performance on real-world match data together 

with our codebase used for obtaining the results presented in 

this study at https://github.com/anaramirli/predict-soccer-

ball-location. 
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Figure 4. Heatmap of the density distribution of all the errors 

based on the Euclidean distance between the prediction and 

the actual coordinate. 

5. CONCLUSIONS 

We presented our approach to tack the ball location in 

football, especially when it is occluded. We showed that the 

ball's coordinates could be estimated from optical tracking 

data by using machine learning models. In addition to the 

results obtained by using neural networks, we also present 

novel ways of extracting features that are the most significant 

for predicting the ball's location. 

The ability of our model's predictions on the y-axis is around 

5 meters. The results for the x-axis (~7.5 m) are not as good 

as that of the y-axis model. The model for x-axis struggles, 

especially when a goalkeeper starts the game or a player 

takes a free kick. The model prediction focuses on the player 

groups on the x-axis rather than a player who is with the ball. 

During the typical long passing when the ball rapidly 

changes location halfway through the other side, we 

observed that the regression models could not identify these 

changes for the first few frames. However, the achieved 

prediction rate is good enough to apply it to the existing 

system as an additional tool and increase their performance. 

For our future study, we will explore the ways of improving 

the performance of the models by employing some auxiliary 

models such as the detection of the ball from the detection of 

the game events such as free kick, corner, penalty. The 

regression models we use for prediction ball location can be 

combined with the detected event's field lines and thus 

generalize performance more precisely. Moreover, the 

accuracy of the model can be improved with more detailed 

features. It is also important to mention that in further 

studies, we can utilize Adversarial Generative Networks 

(GAN) [32] to eliminate the shortcoming of input space 

representation of individual player attributes that we face in 

traditional neural networks. Our feature work will also focus 

on pixel-wise detection of the ball location using conditional 

Pixel2Pixel GAN [33] architecture by incorporating 

individual features of players together with that of group-

based features that we proposed in this study. 

Author contributions: Concept – H.A., A. A.; Data 

Collection and Processing - A.A.; Literature Search - H.A., 

A. A.; Writing - H.A., A. A.  

Conflict of Interest: No conflict of interest was declared by 

the authors.  

Financial Disclosure: The authors declared that this study 

had received no financial support.  

REFERENCES  

[1] A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, 

and I. Matthews, "Large-Scale Analysis of Soccer 

Matches Using Spatiotemporal Tracking Data," Proc. - 

IEEE Int. Conf. Data Mining, ICDM, vol. 2015-Janua, 

no. January, pp. 725–730, 2014. 

[2] B. Skinner and S. J. Guy, "A method for using player 

tracking data in basketball to learn player skills and 

predict team performance," PLoS One, vol. 10, no. 9, 

pp. 1–15, 2015. 

[3] P. Lucey, D. Oliver, P. Carr, J. Roth, and I. Matthews, 

"Assessing team strategy using spatiotemporal data," 

Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data 

Min., vol. Part F1288, pp. 1366–1374, 2013. 

[4] C. Perin, R. Vuillemot, C. D. Stolper, J. T. Stasko, J. 

Wood, and S. Carpendale, "State of the Art of Sports 

Data Visualization," Comput. Graph. Forum, vol. 37, 

no. 3, pp. 663–686, 2018. 

[5] A. Rusu, D. Stoica, E. Burns, B. Hample, K. McGarry, 

and R. Russell, "Dynamic visualizations for soccer 

statistical analysis," Proc. Int. Conf. Inf. Vis., pp. 207–

212, 2010. 

[6] D. Sumpter, Soccermatics: Mathematical Adventures 

in the Beautiful Game. Bloomsbury Publishing Plc, 

2016. 

[7] L. Gyarmati, H. Kwak, and P. Rodriguez, "Searching 

for a Unique Style in Soccer," 2014, pp. 5–8. 

[8] L. Y. Wu, A. J. Danielson, X. J. Hu, and T. B. Swartz, 

"A contextual analysis of crossing the ball in soccer," 

J. Quant. Anal. Sport., vol. 17, no. 1, pp. 57–66, 2021. 

[9] V. Khaustov and M. Mozgovoy, "Recognizing events 

in spatiotemporal soccer data," Appl. Sci., vol. 10, no. 

22, pp. 1–12, 2020. 

[10] E. Özdemir and H. Alemdar, "Predicting soccer events 

from optical tracking data," 26th IEEE Signal Process. 

Commun. Appl. Conf. SIU 2018, pp. 1–4, 2018. 

[11] P. R. Kamble, A. G. Keskar, and K. M. Bhurchandi, 

"Ball tracking in sports: a survey," Artif. Intell. Rev., 

vol. 52, no. 3, pp. 1655–1705, 2019. 

[12] A. E. Abulwafa, A. I. Saleh, H. A. Ali, and M. S. 

Saraya, "A fog based ball tracking (FB2T) system using 

intelligent ball bees," J. Ambient Intell. Humaniz. 

Comput., vol. 11, no. 11, pp. 5735–5754, 2020. 

[13] D. G. Cardenas and M. D. Zuniga, "Bullet-Proof 

Robust Real-Time Ball Tracking," in 2016 

International Conference on Digital Image Computing: 

Techniques and Applications (DICTA), 2016, pp. 1–8. 

[14] A. Lhoest, "Deep Learning for Ball Tracking in 

Football Sequences," University of Liège, 2020. 

[15] H. D. Najeeb and R. F. Ghani, "Tracking Ball in Soccer 

Game Video using Extended Kalman Filter," Proc. 

2020 Int. Conf. Comput. Sci. Softw. Eng. CSASE 

2020, pp. 78–82, 2020. 

Anar Amirli, Hande Alemdar
Prediction of the Ball Location on the 2D Plane in Football Using Optical Tracking Data

Academic Platform Journal of Engineering and Smart Systems 10(1), 1-8, 2022 7



 

 

[16] W. C. Naidoo and J. R. Tapamo, "Soccer video analysis 

by ball, player and referee tracking," ACM Int. Conf. 

Proceeding Ser., vol. 204, pp. 51–60, 2006. 

[17] J. Ren, J. Orwell, G. A. Jones, and M. Xu, "Tracking 

the soccer ball using multiple fixed cameras," Comput. 

Vis. Image Underst., vol. 113, no. 5, pp. 633–642, 

2009. 

[18] J. Komorowski, G. Kurzejamski, and G. Sarwas, 

“BallTrack: Football ball tracking for real-time CCTV 

systems,” Proc. 16th Int. Conf. Mach. Vis. Appl. MVA 

2019, 2019. 

[19] P. R. Kamble, A. G. Keskar, and K. M. Bhurchandi, "A 

deep learning ball tracking system in soccer videos," 

Opto-electronics Rev., vol. 27, no. 1, pp. 58–69, 2019. 

[20] M. Durus, "Ball Tracking and Action Recognition of 

Soccer Players in TV Broadcast Videos," Technische 

Universität München, 2014. 

[21] J. Komorowski, G. Kurzejamski, and G. Sarwas, 

"Footandball: Integrated player and ball detector," 

VISIGRAPP 2020 - Proc. 15th Int. Jt. Conf. Comput. 

Vision, Imaging Comput. Graph. Theory Appl., vol. 5, 

pp. 47–56, 2020. 

[22] M. Leo, P. L. Mazzeo, M. Nitti, and P. Spagnolo, 

"Accurate ball detection in soccer images using 

probabilistic analysis of salient regions," Mach. Vis. 

Appl., vol. 24, no. 8, pp. 1561–1574, 2013. 

[23] J. Hossein-Khani, H. Soltanian-Zadeh, M. Kamarei, 

and O. Staadt, "Ball detection with the aim of corner 

event detection in soccer video," Proc. - 9th IEEE Int. 

Symp. Parallel Distrib. Process. with Appl. Work. 

ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, 

pp. 147–152, 2011. 

[24] Z. Niu, X. Gao, and Q. Tian, "Tactic analysis based on 

real-world ball trajectory in soccer video," Pattern 

Recognit., vol. 45, no. 5, pp. 1937–1947, 2012. 

[25] S. Baysal and P. Duygulu, "Sentioscope: A Soccer 

Player Tracking System Using Model Field Particles," 

IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 

7, pp. 1350–1362, 2016. 

[26] E. Külah and H. Alemdar, "Quantifying the value of 

sprints in elite football using spatial cohesive 

networks," Chaos, Solitons and Fractals, vol. 139, 

2020. 

[27] M. Daszykowski and B. Walczak, “Density-Based 

Clustering Methods,” Compr. Chemom., vol. 2, pp. 

635–654, 2009. 

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, 

and R. Salakhutdinov, "Dropout: A Simple Way to 

Prevent Neural Networks from Overfitting," J. Mach. 

Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014. 

[29] L. Prechelt, "Early stopping - But when?," Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. 

Intell. Lect. Notes Bioinformatics), vol. 7700 LECTU, 

pp. 53–67, 2012. 

[30] X. Glorot, A. Bordes, and Y. Bengio, "Deep Sparse 

Rectifier Neural Networks," in Proceedings of the 

Fourteenth International Conference on Artificial 

Intelligence and Statistics, 2011, vol. 15, pp. 315–323. 

[31] D. P. Kingma and J. Ba, "Adam: A Method for 

Stochastic Optimization," in 3rd International 

Conference on Learning Representations, {ICLR} 

2015, San Diego, CA, USA, May 7-9, 2015, 

Conference Track Proceedings, 2015. 

[32] I. J. Goodfellow et al., "Generative Adversarial Nets," 

in Proceedings of the 27th International Conference on 

Neural Information Processing Systems - Volume 2, 

2014, pp. 2672–2680. 

[33] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, "Image-

to-image translation with conditional adversarial 

networks," Proc. - 30th IEEE Conf. Comput. Vis. 

Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 

5967–5976, 2017. 

Anar Amirli, Hande Alemdar
Prediction of the Ball Location on the 2D Plane in Football Using Optical Tracking Data

Academic Platform Journal of Engineering and Smart Systems 10(1), 1-8, 2022 8


