

Corrigendum

Corrigendum to " β -Menger and β -Hurewicz spaces"

Madhu Ram

Department of Mathematics, University of Jammu, Jammu 180006, India

Abstract

This corrigendum provides a correction to the paper entitled " β -Menger and β -Hurewicz spaces".

1. Example of β -Menger space in [1]

Investigating the validity of results in [1], I realized that Example 4.2 on page 4 is incorrect. The explanation is as follows.

Take $X = \mathbb{R}$ and $p = \sqrt{2}$. Let τ be the topology on X as in Example 4.2 in [1]. Let $x \neq p$ be an irrational number. Consider the set $U_x = \{x\} \cup \mathbb{Q}$, where \mathbb{Q} denotes the set of rational numbers. Then $U_x \in \tau$.

Claim: $A = \{\sqrt{2}\} \cup \mathbb{Q} \text{ is } \beta \text{-open subset of } \mathbb{R}.$

Since $A \subseteq Cl(A)$, we have

$$Int(A) \subseteq Int(Cl(A)),$$

$$\Rightarrow \mathbb{Q} \subseteq Int(Cl(A)),$$

$$\Rightarrow Cl(\mathbb{Q}) \subseteq Cl(Int(Cl(A)))$$

Since $A \subseteq Cl(\mathbb{Q}), A \subseteq Cl(Int(Cl(A)))$. It completes the claim.

Consider the β -open cover $\mathcal{U} = \{U_x : x \in \mathbb{R} \setminus \mathbb{Q}\}$ of X. The cover \mathcal{U} has no countable subcover, so X is not β -Menger.

References

[1] M. Kule, β -Menger and β -Hurewicz spaces, Hacet. J. Math. Stat. **51**(1), 1-7, 2022.

Email address: madhuram0502@gmail.com Received: 21.01.2022; Accepted: 24.02.2022