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ON F-COSMALL MORPHISMS

Berke KALEBOĞAZ and Derya KESKİN TÜTÜNCÜ

Department of Mathematics, Hacettepe University, Ankara, TURKEY

Abstract. In this paper, we first define the notion of F-cosmall quotients

for an additive exact substructure F of an exact structure E in an additive
category A. We show that every F-cosmall quotient is right minimal in some

cases. We also give the definition of F-superfluous quotients and we relate it

the approximation of modules. As an application, we investigate our results
in a pure-exact substructure F .

1. Introduction

In [12], Ziegler introduced the partial morphisms by using model theory of mod-
ules. Then in [9], the partial morphisms was investigated by Monari Martinez
in terms of systems of linear equations. But this algebraic definition of partial
morphisms was not useful in the categorical studies of purity. Then in [4] Cortés-
Izurdiaga, Guil Asensio, Kalebog̃az and Srivastava studied partial morphisms by us-
ing category theory. In [4], the authors defined partial morphisms by using pushout
with respect to an additive exact substructure F of an exact structure E in an ad-
ditive category A and they call them F-partial morphisms. They showed that the
definition of F-partial morphisms with the pure-exact substructure F in the cat-
egory of right R-modules are coincide with the partial morphisms that defined by
Ziegler in [12]. By using F-partial morphisms they also define F-small extension
and gave an application of this definition to the pure-exact substructure F in the
category of right modules over a ring and called it Ziegler small extension. As a
dual notion of F-partial morphisms, in [6] F-copartial morphisms was defined by
Kalebog̃az: a morphism f : X −→ U is F-copartial morphism with respect to a
quotient map p : Y −→ U if and only if Ext1(f,−) transforms p in an F-deflation.
She studied the properties of F-copartial morphisms and investigated the applica-
tions of F-copartial morphisms to some exact substructures of E in the category of
right R-modules.
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In this paper, by using F-copartial morphisms, we first introduce F-cosmall quo-
tients for any additive exact substructure F of an exact structure E in an additive
category A (see Definition 2). We also give a new characterization of F-cosmall
quotients (see Proposition 1). As an application to a pure-exact structure F , we
give the definition of pure-cosmall quotients and we say that pure-cosmall quotients
are dual of Ziegler small extensions.

A morphism p : M −→ N is called right minimal if any endomorphism g : M −→
M with pg = p is an isomorphism (see [1, page 6]). In [8], right minimal morphisms
are studied by Keskin Tütüncü. In [8] the author dualizes some results in [3] and
gets several useful results by investigating the relationship between EndR(N) and
EndR(M) when there is a right minimal epimorphism p : M −→ N . The author also
proves that there is an isomorphism between two rings ENDM

R (N)/J(ENDM
R (N))

and ENDN
R (M)/J(ENDN

R (M)) if there exists a right minimal epimorphism p :
M −→ N in [8, Theorem 2.6 (1)]. As a consequence of this result the structure
of the endomorphism ring of a quasi-projective module and an automorphism-
coinvariant module are explained. One of the main purposes of this paper is to
give an example of right minimal morphisms. In Theorem 1, we prove that every
F-cosmall quotient f : P −→ M with P an F-projective object (projective objects
with respect to F-deflations) is right minimal. An application of this theorem to
the pure-exact structure gives us the dual version of [3, Proposition 1.6]. Moreover,
we give the definitions of F-superfluous quotient and weakly F-superfluous quotient
(see Definition 5). Then we investigate the relation between F-cosmall quotient and
F-superfluous quotient (see Proposition 2). And finally we relate to the existence
of approximations of modules. In Theorem 2, we show that a weakly F-superfluous
quotient p : Y −→ U with F-projective Y is an F-Proj-cover when F-Proj is the
class of F-projective objects of A.

2. Results

Let A be an additive category and (i, p) be a pair of composable morphisms in
A:

A
i // B

p // C

If i is a kernel of p and p is a cokernel of i then (i, p) is called kernel-cokernel pair
in A. Let E be the class of kernel-cokernel pairs on A. i is called an admissible
monomorphism if there exists a morphism p such that (i, p) ∈ E . Similarly, p is
called an admissible epimorphism if there exists a morphism i such that (i, p) ∈ E .

The class of kernel-cokernel pairs E is said to be an exact structure on A if it is
closed under isomorphisms and satisfies the following conditions;

[E0 ] For every object A ∈ A, the identity morphism 1A is an admissible
monomorphism.

[E0op ] For every object A ∈ A, the identity morphism 1A is an admissible epi-
morphism.

[E1 ] The classes of admissible monomorphisms are closed under compositions.
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[E1op ] The classes of admissible epimorphisms are closed under compositions.
[E2 ] The pushout of an admissible monomorphism along an arbitrary morphism

exists and yields an admissible monomorphism, that is, for any admissible
monomorphism i : A −→ B and any morphism f : A −→ B′, there is a
pushout diagram;

A

f

��

i // B

f ′

��
B′ i′ // P

with i′ an admissible monomorphism.
[E2op ] The pullback of an admissible epimorphism along an arbitrary morphism

exists and yields an admissible epimorphism, that is, for any admissible
epimorphism p : B −→ C and any morphism g : B′ −→ C there is a
pullback diagram;

Q

g′

��

p′
// B′

g

��
B

p // C

with p′ an admissible epimorphism.

An exact category is a pair (A, E) with an additive category A and an exact
structure E on A. Elements of E are called short exact sequences. Keller [7] uses
conflation, inflation and deflation for what we call short exact sequence, admissible
monomorphism and admissible epimorphism, respectively. Throughout the paper
we also use this terminology. Let A be an object of A. An admissible quotient
of A is a quotient object U of an object A such that one (and any) quotient map
p : A −→ U is a deflation.

An exact substructure F of E is just an exact structure on A such that each
conflation in F (that we shall call F-conflation) is also a conflation in E . Infla-
tions, deflations and admissible quotient objects with respect to F will be called
F-inflations, F-deflations and F-admissible quotient objects, respectively.

We shall start with giving the definition of F-copartial morphisms (respectively,
F-copartial isomorphisms) for an additive substructure F of an exact structure E
in an additive category A. F-copartial morphisms first introduced and investigated
in [6] by Kaleboğaz as the dual notion of F-partial morphism that are studied in [4].

For the rest of the paper, we fix an exact category of (A, E) and an additive
exact substructure F of E .

Definition 1. Let X, Y be objects of A and U an admissible quotient of Y with
the quotient map p : Y −→ U .
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Let f : X −→ U be a morphism and consider the pullback of f along the quotient
map p:

Q

f

��

p // X

f

��
Y

p // U
Then:

(1) f is called an F-copartial morphism from X to Y with codomain U if p is
an F-deflation.

(2) f is called an F-copartial isomorphism from X to Y with codomain U if
both p and f are F-deflations.

Now we recall two lemmas from [6], without proofs, that we will use in the rest
of the paper. The first lemma given below is a special case of the dual of Obscure
Axiom in [2, Proposition 2.16] (see [6, Proposition 2.3]). The other one is one of
the main properties of F-copartial morphisms (see [6, Proposition 2.5(1)]).

Lemma 1. Let X, Y , Z be objects of A. If an F-deflation f : Z −→ Y factors
through an deflation p : X −→ Y as follows;

Z

f

��

g

~~
X

p // Y
then p is an F-deflation too.

Lemma 2. Let X, Y be objects of A and U , an admissible quotient of Y with the
quotient morphism p : Y −→ U . Suppose that p is an F-deflation. A morphism
f : X −→ U is an F-deflation if and only if f is an F-copartial isomorphism from
X to Y with codomain U .

As a consequence of this lemma, we can give the following corollary:

Corollary 1. Let Y be an object of A and g : Z −→ Y be any morphism with any
object Z in A. g is an F-deflation if and only if g is an F-copartial isomorphism
from Z to Y with codomain Y .

Proof. Let us take the pullback of g along 1Y . Since 1Y is an F-deflation, g is
an F-deflation if and only if g is an F-copartial isomorphism from Z to Y with
codomain Y by Lemma 2. □

One of the aims of this paper is to give an example of right minimal morphisms.
To attain our goal we shall first give the definition of F-cosmall quotient morphisms.
These morphisms are dual of F-small extensions that are defined in [4, Definition
3.4].
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Definition 2. Let the object Y of A be an admissible quotient of any objectX with
the quotient map p′ : X −→ Y , U be an admissible quotient of X and p : Y −→ U
be a deflation.

(1) We shall say that Y is F-cosmall in U over X if for any F-copartial mor-
phism g : Z −→ Y from any object Z to X with codomain Y , the following
holds:

pg is an F-copartial isomorphism from Z to X with codomain U implies
that g is an F-copartial isomorphism from Z to X with codomain Y .

(2) We shall say that Y is F-cosmall in U if Y is F-cosmall in U over Y .
Namely, the deflation p′ is the identity morphism of Y .

With the notion of F-cosmall object which is defined above, now we can define
F-cosmall quotient morphisms as in the following:

Definition 3. Let p : Y −→ U be a deflation. If Y is F-cosmall in U then the
deflation p : Y −→ U is called an F-cosmall quotient.

Namely, if Y is F-cosmall in U over Y then p is an F-cosmall quotient.

Here we will give a characterization of F-cosmall quotient which will be used in
the rest of the paper.

Proposition 1. Let p : Y −→ U be a deflation. p is an F-cosmall quotient if
and only if for any morphism g : Z −→ Y for any object Z such that pg is an
F-copartial isomorphism from Z to Y with codomain U , g is an F-deflation.

Proof. Let Z be an object of A and g : Z −→ Y be a morphism such that pg is
an F-copartial isomorphism from Z to Y with codomain U . We will show that
g is an F-deflation. If we take pullback of g along 1Y , then we get the following
commutative diagram:

Q

g

��

h // Z

g

��
Y

1Y // Y
Since 1Y is an F-deflation, h is an F-deflation. Therefore, g is an F-copartial
morphism from Z to Y with codomain Y . As p is an F-cosmall quotient, g is also
an F-copartial isomorphism from Z to Y with codomain Y . Then, by Corollary 1,
g is an F-deflation.

For the converse, to show that p is an F-cosmall quotient, let us take an F-
copartial morphism g : Z −→ Y from Z to Y with codomain Y such that pg is an
F-copartial isomorphism from Z to Y with codomain U . By assumption, g is an
F-deflation. By Corollary 1, g is an F-copartial isomorphism from Z to Y with
codomain Y . Therefore, p is an F-cosmall quotient. □

Let R be a ring, Y and Z be right R-modules and f : Y −→ Z be an epimor-
phism. Recall that, f is called pure epimorphism if HomR(M,f) : HomR(M,Y ) −→
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HomR(M,Z) is an epimorphism for all finitely presented right R-modules M . Let
X be the kernel of f with the inclusion u : X −→ Y . Then by the theorem of
Fieldhouse [5] and Warfield [10], f is pure epimorphism if and only if X is pure
in Y (u is a pure monomorphism) in the sense that the natural homomorphism
X ⊗R N −→ Y ⊗R N derived from the inclusion map u : X −→ Y is a monomor-
phism for all left R-modules N . Then, the conflation X −→ Y −→ Z is said to be
a pure conflation if f is a pure epimorphism (or u is a pure monomorphism). The
class of all pure conflations is exact substructure of exact structure of the class of all
conflations from [2, Exercise 5.6]. F-copartial morphisms (respectively, F-copartial
isomorphisms) with respect to a pure-exact substructure F in the category of right
R-modules are called copartial morphisms (respectively, copartial isomorphisms),
(see [6]). Here we will define pure-cosmall quotient morphisms as an application of
F-cosmall quotient with respect to a pure-exact substructure F in the category of
right R-modules.

Definition 4. Let Y and U be right R-modules. An epimorphism p : Y −→ U is
called a pure-cosmall quotient if Y is pure-cosmall in U , that means, for any right
R-module Z, any copartial morphism g : Z −→ Y from Z to Y with codomain Y ,
the following holds:

If pg is a copartial isomorphism from Z to Y with codomain U then g is a
copartial isomorphism from Z to Y with codomain Y .

Corollary 2. Let Y and U be right R-modules, p : Y −→ U be a deflation. p
is a pure-cosmall quotient if and only if for any right R-module Z, any morphism
g : Z −→ Y such that pg is a copartial isomorphism from Z to Y with codomain U
is a pure epimorphism.

Pure-cosmall quotients are the dual of Ziegler small extensions that are intro-
duced in [4] and are studied in [3]. In [3], the authors proved that every Ziegler small
extension u : M −→ E with E being pure-injective is a left minimal morphism.
Now we proceed to extend dual of this result to any exact substructure F . We will
show that F-cosmall quotient morphisms are right minimal under a condition. So
the following theorem gives us an example of right minimal morphisms.

Let P be an object of A and p : Y −→ Z be a deflation. Recall that, P is said to
be p-projective (or projective with respect to p) if for each morphism f : P −→ Z
there exist a morphism g : P −→ Y with pg = f . P is said to be a projective
object in A if it is projective with respect to each deflation. Projective objects with
respect to F-deflations will be called F-projective objects.

Theorem 1. Every F-cosmall quotient f : P −→ M with P being an F-projective
object is right minimal.

Proof. Let g : P −→ P be a morphism such that fg = f . Now we will show that g
is an isomorphism. If we consider the pullback of f along fg we get the following
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commutative diagram;

Q

h1

��

h2 // P

fg

��
P

f // M

Since fg = f , the identity map 1P satisfies that fg1P = f1P . Then by the universal
property of pullback, there exist α : P −→ Q such that h1α = 1P and h2α = 1P .
By Lemma 1, h1 and h2 are both F-deflations. Therefore, fg is an F-copartial
isomorphism from P to P with codomain M . Since f is an F-cosmall quotient, g
is an F-deflation by Proposition 1. So it is an epimorphism.

Now, using that P is an F-projective, we get that there exists h : P −→ P such
that gh = 1P . Then f = f1P = fgh = fh. By using the previous argument we
conclude that h is an epimorphism. Then as hgh = h = 1ph, we get that hg = 1p.
Therefore, g is a monomorphism. So g is an isomorphism. □

Corollary 3. Every pure-cosmall quotient f : P −→ M with P being a pure-
projective right R-module is right minimal.

Now we will give the definition of F-superfluous and weakly F-superfluous quo-
tients.

Definition 5. Let X and Y be objects of A.

(1) An F-superfluous quotient is an F-deflation p : X −→ Y such that for any
object of Z in A and any morphism α : Z −→ X the following holds:

pα is an F-deflation implies that α is an F-deflation.

(2) A weakly F-superfluous quotient is an F-deflation p : X −→ Y such that
for any object of Z in A and any morphism α : Z −→ X the following
holds:

pα is an F-deflation implies that α is a deflation.

Remark 1. (1) If A is the category of right R-modules and E is the abelian
exact structure, then E-superfluous quotient morphism is coincide with the
small epimorphism that is recalled in [8, Example 2.2(2)].

(2) If A is the category of right R-modules and F is the pure-exact structure,
then F-superfluous quotient morphism is coincide with the S-superfluous
epimorphism for S being the class of finitely presented modules that is
introduced in [11].

Now we give the relation between F-cosmall quotient and F-superfluous quo-
tient.

Proposition 2. Let p : Y −→ U be a deflation. p is an F-superfluous quotient if
and only if p is an F-deflation and F-cosmall quotient.
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Proof. Suppose that p is an F-superfluous quotient. So p is an F-deflation. Now we
will show that p is an F-cosmall quotient. Let us take an object Z and a morphism
g : Z −→ Y such that pg is an F-copartial isomorphism from Z to Y with codomain
U . Now if we take the pullback of pg along p we get the following commutative
diagram:

Q

h

��

p // Z

pg

��
Y

p // U
By Lemma 2, pg is an F-deflation. Then g is an F-deflation by the definition of
F-superfluous quotient. Therefore, by Proposition 1, p is an F-cosmall quotient.

For the converse, assume that p is an F-deflation and F-cosmall quotient. To
show that p is an F-superfluous quotient let us take a morphism α : Z −→ Y such
that pα is an F-deflation. Now take the pullback of pα along p we get the following
commutative diagram:

Q

h

��

p // Z

pα

��
Y

p // U
By Lemma 2, pα is an F-copartial isomorphism from Z to Y with codomain
U . Since p is an F-cosmall quotient, α is an F-deflation. Therefore p is an F-
superfluous quotient. □

Let A be any category and X be a class of objects in A. Recall that, a morphism
ϕ : X −→ Y in A is a X -precover of Y if X ∈ X and for any morphism f : Z −→ Y
with Z ∈ X , there is a morphism g : Z −→ X such that ϕg = f . A X -precover
ϕ : X −→ Y is said to be a X -cover if every morphism g : X −→ X such that
ϕg = ϕ is an isomorphism. It is clear that, an X -cover is an X -precover which is a
right minimal morphism.

In the next result we will show that, under certain circumstances, a weakly
F-superfluous quotient p : Y −→ U with Y being F-projective is actually an F-
Proj-cover for F-Proj being the class of F-projective objects of A.

Theorem 2. Let p : Y −→ U be a deflation. Consider the following assertions:

(1) p is an F-superfluous quotient and Y is an F-projective object.
(2) p is an F-deflation, Y is an F-projective and p is an F-cosmall quotient.
(3) p is an F-deflation, Y is an F-projective and for any object X, each mor-

phism f : X −→ Y satisfying that pf is an F-deflation, is a split epimor-
phism.

(4) p is an F-Proj-cover for F-Proj being the class of F-projective objects of
A.

(5) p is a weakly F-superfluous quotient with Y being F-projective object.
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We have (1) ⇔ (2) ⇔ (3), (2) ⇒ (4), (1) ⇒ (5).
If there exists an F-deflation α : P −→ U with P being an F-projective object

then (4) ⇒ (3).
If there exists an F-superfluous quotient α : P −→ U with P being an F-

projective object then (5) ⇒ (1).

Proof. (1) ⇔ (2) Obvious from Proposition 2.
(1) ⇒ (3) Let f : X −→ Y be a morphism with pf being an F-deflation. Since p

is an F-superfluous quotient, f is an F-deflation. As Y is an F-projective module,
f is a split epimorphism.

(3) ⇒ (1) It is clear since split epimorphisms are F-deflations.
(2) ⇒ (4) Since p is an F-deflation, it is an F-Proj-precover for F-Proj being

the class of F-projective objects of A. As p is an F-cosmall quotient, p is right
minimal by Theorem 1. Therefore, p is an F-Proj-cover for F-Proj being the class
of F-projective objects of A.

(1) ⇒ (5) It is clear, since every F-superfluous quotient is weakly F-superfluous
quotient.

(4) ⇒ (3) Assume that there exists an F-deflation α : P −→ U with P being
an F-projective object. Since p is an F-Proj-precover for F-Proj being the class of
F-projective objects of A, there exists g : P −→ Y such that pg = α. Since α is an
F-deflation, then p is also an F-deflation by Lemma 1. Now let f : X −→ Y be a
morphism such that pf is an F-deflation. Since Y is an F-projective object then
there exists h : Y −→ X such that pfh = p. As p is an F-Proj-cover then fh is an
isomorphism. Therefore, f is split.

(5) ⇒ (1) There exists an F-superfluous quotient α : P −→ U with P is an
F-projective object. Since Y is F-projective, there exists a morphism w : Y −→ P
such that αw = p. Since p is an F-deflation and α is an F-superfluous then w
is an F-deflation. And α is an F-deflation too by Lemma 1. As P is an F-
projective object then there exists h : P −→ Y such that wh = 1P . So w is an
epimorphism. We get ph = αwh = α1P = α. Then h is an F-deflation as p is
a weakly F-superfluous. Then hwh = h1P = 1Ph. Since h is epic hw = 1P . So
w is a monomorphism. Therefore, w is an isomorphism. By αw = p and α is an
F-superfluous quotient then p is an F-superfluous quotient. □

Remark 2. Let p : Y −→ U be a deflation with Y an F-projective object of A.
From Theorem 2 (4)⇒(2), we can say that if p is an F-Proj-cover of U for F-Proj
being the class of F-projective objects of A, then p is an F-cosmall quotient. But
Theorem 1 shows that p can be an F-cosmall quotient map which is not an F-Proj-
cover (since here p need not be an F-deflation). But p is always right minimal.

Author Contribution Statements The authors contributed equally to this work.
All authors read and approved the final copy of this paper.



ON F-COSMALL MORPHISMS 977

Declaration of Competing Interests The authors declare that they have no
known competing financial interest or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgements We would like to thank the referee for his/her careful reading
of the manuscript.

References

[1] Auslander, M., Rieten, I., Smalø S.O., Represantation Theory of Artin Algebras Volume 36
of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge,

1995.

[2] Bühler, T., Exact categories, Expo. Math., 28(1) (2010), 1–69.
[3] Cortés-Izurdiaga, M., Guil Asensio, P.A., Keskin Tütüncü D., Srivastava, A.K., Endo-
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