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Abstract: Narrowband localization of point-like nonlinear scatterers in a homogeneous background medium is investigated. 

A theoretical framework is provided based on Multiple Signal Classification (MUSIC) imaging, formerly developed for time-

reversal imaging of point-like targets in cluttered environment. Numerical simulations are provided to assist in understanding 

the relations between various aspects of the imaging method. Numerical evidence shows that for the same signal to noise ratio, 

higher order harmonics (second and third harmonics) resulting from nonlinear scattering, have better imaging resolutions 

compared to the fundamental harmonic corresponding to linear scattering.   
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Lineer Olmayan Noktasalımsı Saçıcıların MUSIC Tabanlı Mikrodalga Görüntülemesi  

 

Öz: Homojen ortamda lineer olmayan noktasalımsı saçıcıların darbant lokalizasyonu incelenmiştir. Noktasalımsı hedeflerin 

parazit yankılı ortamda zaman evirme (time reversal) görüntülenmesi için daha önce geliştirilmiş olan Multiple Signal 

Classification (MUSIC) görüntülemesine dayalı teorik çerçeve sunulmuştur. Görüntüleme metodunun muhtelif yönleri 

arasındaki ilişkilerin anlaşılması için sayısal benzetimler verilmiştir. Sayısal sonuçlar, aynı sinyal-gürültü oranı için lineer 

olmayan saçılmadan kaynaklanan yüksek mertebeden harmoniklerin (ikinci ve üçüncü harmonikler), lineer saçılmaya tekabul 

eden temel harmoniğe nisbetle daha iyi görüntüleme çözünürlüğüne sahip olduklarını göstermektedir. 

 

Anahtar kelimeler: Harmonik radar, lineer olmayan hedef, mikrodalga görüntüleme, MUSIC. 
 

1. Introduction 

 

Harmonic radars have received considerable attention in recent years mainly due to their inherent clutter 

rejecting nature. Harmonic radars using passive transponders/tags have been proposed for diverse applications 

such as tracking [1,2], monitoring of vital signs [3], search and rescue of people under distress [4,5] and in standoff 

measurement of temperature [6]. Recent advances on harmonic tag applications can be found in [7]. Another very 

important application of harmonic radars is the detection of concealed electronics [8,9]. Most of the above 

applications require localization of these harmonic generating tags or devices. Two imaging based localization 

strategies of nonlinear targets have been proposed in the past. Both are broadband systems operating in stepped 

frequency mode. The first system based on synthetic aperture radar (SAR) processing was proposed for two-

dimensional localization of stationary nonlinear scatterers [10]. With later improvements the system was modified 

to locate and also estimate the speed of moving nonlinear scatterers [11]. The second proposed system is based on 

Robust Capon Beamforming with frequency smoothing and has improved imaging quality compared the former 

SAR based system for stationary targets [12]. 

In contrast to the aforementioned imaging methods, this study focuses on narrowband and near field imaging 

of point-like nonlinear targets/scatterers embedded in a homogeneous background medium. A MUSIC based 

imaging method, which was originally proposed [13-15] as an alternative to conventional time-reversal imaging, 

is adopted here. The time reversal matrix can be decomposed into a product of the multistatic response 

matrix/transfer matrix (corresponding to a set linear targets and an associated transmit/receive array configuration) 

and its Hermitian [16]. With this decomposition, Lev-Ari and Devaney [13], Devaney [14] and Devaney et al [15] 

used the MUSIC framework to classify the singular system of the multistatic response matrix into its signal and 
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noise subspaces and exploited the orthogonality of these subspaces to define a pseudo-spectrum that peaked at the 

target locations. In this study, the multistatic response matrix, originally defined for linear scatterers, is generalized 

for nonlinear scatterers to a set of multistatic response matrices and the MUSIC framework is similarly applied to 

this new set of multistatic response matrices to image point-like nonlinear scatterers.  

In the next section, the signal model for EM fields measured by an array of antenna elements is discussed, 

followed by adaptation of the signal model to MUSIC based imaging. Numerical simulations are presented, 

investigating important aspects of the MUSIC based imaging. A summary of the findings along with short 

discussions is provided in the conclusion. 

 

2. The Signal Model and MUSIC Imaging 

 

Consider a collection of 𝑀 nonlinear point-like scatterers embedded in a homogeneous background medium 

with relative permittivity 𝜀𝑟𝑏. We are interested in estimating the location of these scatterers by probing the 

collection with time harmonic EM waves at frequency 𝑓 (a time dependence of exp{−𝑖𝜔𝑡} is assumed where 𝜔 =
2𝜋𝑓) using a distributed system of 𝑁 antennas operating both in transmit and receive modes i.e. transmitters and 

receivers are collocated. In this study, it is assumed that 𝑀 ≤ 𝑁 and multiple scattering between scatterers is 

assumed to be negligible so that the results are valid to first order of scattering. Moreover, the problem is treated 

in two dimensions for simplicity. The two-dimensional treatment is not a restriction, however, and generalization 

of the following mathematical development to three dimensions is possible with some rigour. The problem 

geometry is depicted in Figure 1 where the point-like scatterers correspond to infinite length lines aligned with 𝑧-

axis, having nonlinear scattering characteristics. Similarly, the system of RX/TX antennas is a uniform linear array 

of line sources aligned with 𝑧-axis. The array axis runs parallel to the 𝑥-axis and is located in the region 𝑦 < 0. 

Array length is given by ℒ = 𝑁𝑑 where 𝑁 is the number of array elements and 𝑑 is the array inter-element spacing. 

The region of interest (ROI) is the region subject to imaging and is conservatively selected between [− ℒ 2⁄ , ℒ 2⁄ ] 
in the 𝑥-direction and between  [0, ℒ 2⁄ ] in the 𝑦-direction. Also shown in the figure is a grid comprising the actual 

pixels of the image. The grid spacings are Δ𝑥 and Δ𝑦 along the 𝑥- and 𝑦-axis, respectively. These spacings do not 

necessarily correspond to the imaging resolution to be discussed later. In two dimensions, the problem can be 

treated with scalar formalism, so for the geometry considered here, the electric field normal to the 𝑥𝑦-plane is 

sufficient to completely determine the problem. Let the scalar quantity 𝐸(𝒙𝑟 , 𝒙𝑡) denote the electric field along 𝑧-

axis, received by the antenna at 𝒙𝑟 ∈ {𝒙1, ⋯ , 𝒙𝑁} when the antenna (line source) at 𝒙𝑡 ∈ {𝒙1, ⋯ , 𝒙𝑁} is in 

transmission. This field can be expressed as the sum of all the harmonics generated by nonlinearity [9, 19] (the 

DC component is suppressed): 

 

𝐸(𝒙𝑟 , 𝒙𝑡 , 𝑡) = ∑ 𝐸(𝑛)(𝒙𝒓, 𝒙𝑡)

∞

𝑛=1

𝑒−𝑖𝑛𝜔𝑡 (1) 

 

where 

 

𝐸(𝑛)(𝒙𝑟 , 𝒙𝑡) ≈ ∑ 𝛼𝑚
(𝑛)

𝐺(𝒙𝑟 , 𝒙𝑚, 𝑛𝜔)𝐺𝑛(𝒙𝑚, 𝒙𝑡 , 𝜔)𝑏𝑛

𝑀

𝑚=1

 (2) 

  

is the electric field (𝑧-axis) corresponding to the 𝑛’th harmonic scattered by 𝑀 nonlinear particles, 𝛼𝑚
(𝑛)

 is a 

nonlinearity coefficient for the 𝑚’th particle corresponding to the 𝑛’th harmonic, 𝑏 is the amplitude of the time 

harmonic signal transmitted by the antenna (line source) and 𝐺(𝒙, 𝒙′, 𝜔) is the two dimensional Green’s function 

for a line source at 𝒙′ and observation point at 𝒙. The Green’ function is given by 𝐺(𝒙, 𝒙′, 𝜔) =

(𝑖 4⁄ )𝐻0
(1)

(|𝒙 − 𝒙′| 𝜔√𝜀𝑟𝑏 𝑐⁄ ) where 𝐻0
(1)(⋅) is the Hankel function of the first kind and zero order. In deriving 
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Equation 2, it is reasonably assumed that 𝑄𝑚
2(𝑞+1)

≪ 𝑄𝑚
2𝑞

 and 𝑄𝑚
2(𝑞+1)+1

≪ 𝑄𝑚
2𝑞+1

 for ∀ 𝑞 ∈ ℕ where 𝑄𝑚
𝑛 =

|𝛼𝑚
(𝑛)

𝐺𝑛(𝒙𝑚, 𝒙𝑡 , 𝜔)𝑏𝑛|. We restate that the effect of multiple scattering between scatterers is neglected so that 

Equation 2 is correct to first order of scattering. 

When several elements transmit simultaneously, Equation 2 is modified and the expression for the field 

corresponding to the 𝑛’th harmonic then becomes 

 

𝐸(𝑛)(𝒙𝑟 , 𝒙𝑡) = ∑ 𝛼𝑚
(𝑛)

𝐺(𝒙𝑟 , 𝒙𝑚, 𝑛𝜔) (∑ 𝑏𝑗𝐺(𝒙𝑚, 𝒙𝑡,𝑗 , 𝜔)

𝑁

𝑗=1

)

𝑛
𝑀

𝑚=1

 

 

where the 𝑁-tuple 𝒙𝑡 = (𝒙1, ⋯ , 𝒙𝑁) indicates that all 𝑁 array elements are in transmission mode and 𝑏𝑗 is the 

amplitude of the signal transmitted by the 𝑗’th transmitting element. One can expand the above expression as 

 

𝐸(𝑛)(𝒙𝑟 , 𝒙𝑡) = 𝐸𝐿
(𝑛)(𝒙𝑟 , 𝒙𝑡) + ∑ 𝛼𝑚

(𝑛)
𝐺(𝒙𝑟 , 𝒙𝑚, 𝑛𝜔)𝐵(𝒙𝑚, 𝒙𝑡)

𝑀

𝑚=1

  

 

where 

 

𝐸𝐿
(𝑛)(𝒙𝑟 , 𝒙𝑡) = ∑ 𝛼𝑚

(𝑛)
𝐺(𝒙𝑟 , 𝒙𝑚, 𝑛𝜔) ∑ 𝐺𝑛(𝒙𝑚, 𝒙𝑡,𝑗 , 𝜔)𝑏𝑗

𝑛

𝑁

𝑗=1

𝑀

𝑚=1

 

 

and 𝐵(𝒙𝑚, 𝒙𝑡) contains all the remaining cross product terms. Changing the order of summation in the last 

expression and making use of the definition in Equation 2, one has 𝐸𝐿
(𝑛)(𝒙𝑟 , 𝒙𝑡) = ∑ 𝐸(𝑛)(𝒙𝑟 , 𝒙𝑗)𝑁

𝑗=1  suggesting 

that 𝐸𝐿
(𝑛)(𝒙𝑟 , 𝒙𝑡) can be obtained as sum of the isolated measurements 𝐸(𝑛)(𝒙𝑟 , 𝒙𝑗), 𝑗 = 1, … , 𝑁, i.e. the 

measurement made when only the array element at 𝒙𝑗 is in transmission. Collecting the results of all 𝑁 receivers 

in a vector  𝑬𝐿
(𝑛)

= [𝐸𝐿
(𝑛)(𝒙1, 𝒙𝑡), ⋯ , 𝐸𝐿

(𝑛)(𝒙𝑁 , 𝒙𝑡)]
𝑇
 where the superscript ‘𝑇’ denotes the transpose, one has the 

matrix expression 

 

Figure 1. Geometry for imaging of point-like nonlinear scatterers. Red dots indicate the array of length ℒ. 
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𝑬𝐿
(𝑛)

= 𝑲(𝑛)𝒃(𝑛) (3) 

 

where 𝒃(𝑛) = [𝑏1
𝑛, ⋯ , 𝑏𝑁

𝑛]𝑇 and 

 

𝑲(𝑛) = ∑ 𝑲𝑚
(𝑛)

𝑀

𝑚=1

 (4) 

 

is the multistatic response matrix corresponding to the 𝑛’th harmonic, that maps the 𝑁 dimensional complex space 

to itself i.e. 𝑲(𝑛): 𝐶𝑁 → 𝐶𝑁. Similarly, 𝑲𝑚
(𝑛)

 is the multistatic response matrix for the 𝑚’th scatterer, corresponding 

to the 𝑛’th harmonic. The elements of 𝑲𝑚
(𝑛)

 are given as 

 

[𝑲𝑚
(𝑛)

]
𝑖𝑗

= 𝛼𝑚
(𝑛)

𝐺(𝒙𝑖 , 𝒙𝑚, 𝑛𝜔)𝐺𝑛(𝒙𝑚 , 𝒙𝑗, 𝜔). (5) 

 

Further defining the vector quantities 

 

𝒈𝑟,𝑚
(𝑛)

= [𝐺(𝒙1, 𝒙𝑚, 𝑛𝜔), ⋯ , 𝐺(𝒙𝑁 , 𝒙𝑚, 𝑛𝜔)]𝑇  (6) 

 

and 

 

𝒈𝑡,𝑚
(𝑛)

= [𝐺𝑛(𝒙1, 𝒙𝑚, 𝜔), ⋯ , 𝐺𝑛(𝒙𝑁 , 𝒙𝑚, 𝜔)]𝑇, (7) 

 

the multistatic response matrix can alternatively be expressed as: 

 

𝑲𝑚
(𝑛)

= 𝛼𝑚
(𝑛)

𝒈𝑟,𝑚
(𝑛)

[𝒈𝑡,𝑚
(𝑛)

]
𝑇

. (8) 

 

Note that for the fundamental harmonic i.e. 𝑛 = 1, 𝒈𝑟,𝑚
(1)

= 𝒈𝑡,𝑚
(1)

, so that the above expressions readily reduce to 

those given in literature (e.g. [14]) for collocated transmitters and receivers. For the fundamental harmonic, 

whenever [𝒈𝑟,𝑘
(1)

]
𝑇

𝒈𝑡,𝑚
(1)∗ = [𝒈𝑡,𝑘

(1)
]

𝑇
𝒈𝑡,𝑚

(1)∗ = 𝛿𝑘,𝑚 where 𝛿𝑘,𝑚 is the Kronecker delta, the scatterers 𝑘 and 𝑚 are said 

to be resolved [14]. This notion may be generalized to nonlinear scatterers such that nonlinear scatterers 𝑘 and 𝑚 

are said to be resolved at the 𝑛’th harmonic whenever  [𝒈𝑟,𝑘
(𝑛)

]
𝑇

𝒈𝑡,𝑚
(𝑛)∗ = 𝛿𝑘,𝑚. Hence, scatterers that are not resolved 

at the fundamental harmonic may be resolved at a higher order harmonic. If all scatterers are resolvable at the 𝑛’th 

harmonic then the explicit expression of Equation 4, given as (using Equation 8) 

 

𝑲(𝑛) = ∑ 𝛼𝑚
(𝑛)

𝒈𝑟,𝑚
(𝑛)

[𝒈𝑡,𝑚
(𝑛)

]
𝑇

𝑀

𝑚=1

, 
(9) 

 

becomes the singular value decomposition (SVD) of 𝑲(𝑛) where 𝛼𝑚
(𝑛)

 corresponds to the singular value with left 

and right singular vectors 𝒈𝑟,𝑚
(𝑛)

 and 𝒈𝑡,𝑚
(𝑛)∗

 , respectively. For particles that are non-resolvable at the 𝑛’th harmonic, 

the multistatic response matrix bears an SVD as 𝑲(𝑛) = 𝑼(𝑛)𝚲(𝑛)[𝑽(𝑛)]
𝐻

 where the superscript ‘𝐻’ denotes the 

Hermitian,  𝚲(𝑛) is an 𝑁 × 𝑁 diagonal matrix of singular values 𝜎1
(𝑛)

≥ ⋯  ≥ 𝜎𝑀
(𝑛)

> 𝜎𝑀+1
(𝑛)

= ⋯ = 𝜎𝑁
(𝑛)

= 0 and 

𝑼(𝑛) = [𝒖1
(𝑛)

, … , 𝒖𝑁
(𝑛)

] and 𝑽(𝑛) = [𝒗1
(𝑛)

, … , 𝒗𝑁
(𝑛)

] are 𝑁 × 𝑁 orthonormal matrices with columns corresponding to 

the left and right singular vectors, respectively. In this case however, the left and right singular vectors do not 
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coincide with the vectors 𝒈𝑟,𝑚
(𝑛)

 and 𝒈𝑡,𝑚
(𝑛)∗

, respectively. Yet, one observes that the matrix 𝒈𝑟,𝑚
(𝑛)

[𝒈𝑡,𝑚
(𝑛)

]
𝑇
of rank 1, 

maps the one dimensional subspace (a line) spanned by the vector 𝒈𝑡,𝑚
(𝑛)∗

 into the one dimensional subspace spanned 

by the vector 𝒈𝑟,𝑚
(𝑛)

 so that 𝑲(𝑛) is a one to one mapping from 𝑠𝑝𝑎𝑛{𝒈𝑡,1
(𝑛)

, … , 𝒈𝑡,𝑀
(𝑛)

} to 𝑠𝑝𝑎𝑛{𝒈𝑟,1
(𝑛)

, … , 𝒈𝑟,𝑀
(𝑛)

}. As a 

result, one has 𝑠𝑝𝑎𝑛{𝒈𝑡,1
(𝑛)

, … , 𝒈𝑡,𝑀
(𝑛)

} ⊆ 𝑠𝑝𝑎𝑛{𝒗1
(𝑛)

, … , 𝒗𝑀
(𝑛)

} and 𝑠𝑝𝑎𝑛{𝒈𝑟,1
(𝑛)

, … , 𝒈𝑟,𝑀
(𝑛)

} ⊆ 𝑠𝑝𝑎𝑛{𝒖1
(𝑛)

, … , 𝒖𝑀
(𝑛)

}. 

Since 𝑽(𝑛) is an orthogonal matrix, it follows that [𝒗𝑖
(𝑛)

]
𝐻

𝒈𝑡,𝑚
(𝑛)∗ = 0 for 𝑖 = 𝑀 + 1, … , 𝑁 i.e. the null space of 

𝑲(𝑛), determined as 𝑠𝑝𝑎𝑛{𝒗𝑀+1
(𝑛)

, … , 𝒗𝑁
(𝑛)

}, is orthogonal to 𝑠𝑝𝑎𝑛{𝒈𝑡,1
(𝑛)

, … , 𝒈𝑡,𝑀
(𝑛)

}. Following [14], the location of 

the nonlinear scatterers may now be determined by employing the MUSIC algorithm, implemented by defining 

the steering vector 𝒈𝑡
(𝑛)(𝒙) = [𝐺𝑛(𝒙1, 𝒙, 𝜔), ⋯ , 𝐺𝑛(𝒙𝑁 , 𝒙, 𝜔)]𝑇 and the pseudo-spectrum for the 𝑛’th harmonic 

 

𝑝(𝑛)(𝒙) =
1

∑ |[𝒗𝑖
(𝑛)

]
𝐻

 𝒈𝑡
(𝑛)∗(𝒙)|𝑁

𝑖=𝑀+1

 . (10) 

 

On a finite grid, the pseudo-spectrum is a false image of the scattering potential over the grid (ROI) and its 

value will peak at a pixel containing the scatterer since 𝑝(𝑛)(𝒙 = 𝒙𝑚) = ∞ for 𝑚 = 1, … , 𝑀. Note that alternative 

pseudo spectra can also be defined using the left singular vectors as in [15,17,18] or using both left and right 

singular vectors but these alternatives are not pursued in this study for conciseness. 

 

2.1 Effect of Noise in Measurements 

 

The effect of measurement noise has been neglected in the preceeding discussion. In reality, the multistatic 

response matrix is constructed from noisy measurements of 𝑬𝐿
(𝑛)

. The measurement equation is of the form 𝑬𝐿
(𝑛)

=

𝑲(𝑛)𝒃(𝑛) + 𝒏 where 𝒏 is a measurement noise vector of length 𝑁 added to the relation in Equation 3. With noise 

present, the noisy multistatic response matrix �̃�(𝑛) is in general of full rank implying that �̃�𝑖 > 0, ∀𝑖 = 1, … , 𝑁. 

The addition of noise will perturb the singular system (𝒖𝑖 , 𝜎𝑖 , 𝒗𝑖), 𝑖 = 1, … , 𝑁, of 𝑲(𝑛) resulting in the new singular 

system (�̃�𝑖 , �̃�𝑖 , �̃�𝑖) for �̃�(𝑛). In the nomenclature of MUSIC, 𝒮 = 𝑠𝑝𝑎𝑛{�̃�1, … , �̃�𝑀} is known as the signal subspace 

and 𝒩 = 𝑠𝑝𝑎𝑛{�̃�𝑀+1, … , �̃�𝑁} is known as the noise subspace. The signal and noise subspaces are again orthogonal 

to each other but because the singular system (�̃�𝑖 , �̃�𝑖 , �̃�𝑖) is perturbed from the original noise-free (𝒖𝑖 , 𝜎𝑖 , 𝒗𝑖) 

system, the vectors 𝒈𝑡,𝑚
(𝑛)

 , 𝑚 = 1, … , 𝑀, will have non-zero projections onto both subspaces. Moreover, because 

𝑀 is not known a priori, the signal and noise subspaces must be identified by some appropriate means. Such a 

distinction between signal and noise subspaces may be not even be possible if the signal to noise ratio (SNR) is 

close to or less than unity. A common method for signal and noise subspace identification is to use a threshold  

𝜖𝑡ℎ
(𝑛)

 such that singular vectors corresponding  �̃�𝑖
(𝑛)

≥ 𝜖𝑡ℎ
(𝑛)

 are designated the signal subspace and singular vectors 

corresponding �̃�𝑖
(𝑛)

< 𝜖𝑡ℎ
(𝑛)

 are designated the noise subspace [14]. Formally, one has 𝒮 = {�̃�𝑖  | �̃�𝑖
(𝑛)

≥ 𝜖𝑡ℎ
(𝑛)

} and 

𝒩 = {�̃�𝑖  | �̃�𝑖
(𝑛)

< 𝜖𝑡ℎ
(𝑛)

}. With the proviso that the signal and noise subspaces can be identified, a false image of 

the scattering potential is constructed using the pseudo-spectrum  

 

𝑝(𝑛)(𝒙) =
1

∑ |[�̃�𝑖
(𝑛)

]
𝑇

 𝒈𝑡
(𝑛)∗(𝒙)|

�̃�𝑖
(𝑛)

∈𝒩 

 . 
(11) 
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This pseudo-spectrum will peak at 𝒙 = 𝒙𝑚, 𝑘 = 1, ⋯ , 𝑀, yielding the locations of isolated point-like nonlinear 

scatterers. In the following, the quantity defined as 𝐼(𝑛)(𝑖, 𝑗) = 10 log (𝑝(𝑛)(𝑥𝑖 , 𝑦𝑗)) will be designated as the 

image corresponding to the 𝑛’th harmonic.  

 

3. Numerical Simulations 

 

In this section, the pseudo-spectrum defined in Equation 11, is applied to several imaging scenarios using 

numerical simulations. Simulation geometry is depicted in Figure 1 with free space as the background medium 

(𝜀𝑟𝑏 = 1). Throughout, the fundamental frequency is 𝑓 = 2.4 GHz and only the first three harmonics, namely 

𝑓, 2𝑓 and 3𝑓, are considered. A grid spacing of Δ𝑥 = Δ𝑦 = 𝜆3/10 and an array inter-element distance of 𝑑 = 𝜆3 2⁄  

is assumed where 𝜆𝑛 = 𝑐 𝑛𝑓⁄  is the wavelength of the 𝑛’th harmonic. This choice of 𝑑 is made to prevent spatial 

aliasing for all three harmonics. The array is also located at 𝑦 = −𝑑. Furthermore, additive Gaussian noise is 

assumed for the simulations and SNR is defined with respect to the mean magnitude of the multistatic matrix 

elements. For simplicity, the signal and noise subspaces will be determined directly by 𝑀. 

In the first set of simulations, the number of scatterers 𝑀 = 6 and the number of array elements 𝑁 = 21. The 

scattering potentials for the scatterers are selected conveniently as 𝛼𝑚
(𝑛)

= 1 for 𝑚 = 1, … , 𝑀 and 𝑛 = 1,2,3. In 

Figure 2, the image 𝐼(1), for the first (fundamental) harmonic is shown on the left for 𝑆𝑁𝑅 = 10 dB (Figure 2a) 

and on the right for 𝑆𝑁𝑅 = 20 dB (Figure2b). These images are constructed assuming that 𝑀 is known. The black 

crosses in the images indicate the actual locations of the scatterers. It is seen in Figure 2a that long bright streaks 

exist for 10 dB SNR. Although the streaks contain the scatterers, it is not possible to determine the actual number 

and the locations of the scatterers. For the higher SNR of 20 dB, it is observed in Figure 2b that the bright streaks 

have contracted considerably. The bright regions in the improved image facilitates identification of at least five 

scatterers. The size of the bright regions also grows with distance from the array indicating increase in localization 

uncertainty further away from the array. 

The image 𝐼(2), corresponding to the second harmonic, is shown in Figure 3a for 𝑆𝑁𝑅 = 10 dB and in Figure 

3b for 𝑆𝑁𝑅 = 20 dB. In both figures, all six scatterers can be distinguished from 𝐼(2). Compared to Figure 2a of 

𝐼(1) with 10 dB SNR, 𝐼(2) with an SNR of 10 dB appears to have smaller uncertainty in locations of the three 

scatterers the closest to the array. However, compared to Figure 2, the background intensity has increased toward 

Figure 2. First (fundamental) harmonic image (MUSIC pseudo-spectrum) of 𝑀 = 6 nonlinear point-like 

scatterers with 𝑁 = 21 array elements for (a) 𝑆𝑁𝑅 = 10 dB and (b) 𝑆𝑁𝑅 = 20 dB. 

(a) (b) 
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the top (far) end of the image, causing a decrease in contrast specially to the left of the image. The image 𝐼(2) in 

Figure 3b corresponding the 20 dB SNR shows further improvement such that uncertainty has decreased 

considerably for all scatterer locations. These two figures suggest that the second harmonic is more robust to 

measurement noise compared to the fundamental harmonic. 

The final image 𝐼(3), corresponding to the third harmonic is shown in Figure 4a for 𝑆𝑁𝑅 = 10 dB and in 

Figure 4b for 𝑆𝑁𝑅 = 20 dB. The most striking feature in the image of Figure 4a is the high background intensity 

of the image and although the presence of the bright streaks near the top end of the image suggest the presence of 

at least the three existing scatterers, it is not possible the determine the actual number of scatterers. Nevertheless, 

the closest three scatterers to the array are clearly resolved with little uncertainty. This is an improvement compared 

Figure 3. Second harmonic image of 𝑀 = 6 nonlinear point-like scatterers with 𝑁 = 21 array elements for (a) 

𝑆𝑁𝑅 = 10 dB and (b) 𝑆𝑁𝑅 = 20 dB. 

(a) (b) 

Figure 4. Third harmonic image of 𝑀 = 6 nonlinear point-like scatterers with 𝑁 = 21 array elements for (a) 

𝑆𝑁𝑅 = 10 dB and (b) 𝑆𝑁𝑅 = 20 dB. 

(a) (b) 
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to 𝐼(1) for the same SNR. For 𝑆𝑁𝑅 = 20 dB, it appears in Figure 4b that the third harmonic provides no further 

improvement over 𝐼(2) shown in Figure 3b. 

The preceeding analysis instigates further investigation into the relation between resolution, noise and 

harmonic order. Here, resolution is defined as the minimum distance between two scatterers such that the scatterers 

are distinguishable. Resolution is related to the spread of the peaks (poles) of the pseudo-spectrum 𝑝(𝑛)(𝒙) which 

is regulated by the level of noise (SNR), the number of array elements 𝑁, and the wavelength of the harmonic. As 

seen from the above figures (Figure 2 – Figure 4), resolution is also expected to be a function of distance from the 

array degrading with increasing distance. Furthermore, it is also evident from the orientations of the streaks in the 

figures (extending away from the array and almost normal to the array near the center) that resolutions along the 

𝑥- and 𝑦-axis are very different. To substantiate some of these arguments, consider the two scenarios with 𝑁 =
21, where in the first scenario two scatterers are separated along the 𝑥-axis to investigate resolution along array 

axis and in the second scenario two scatterers are separated along the 𝑦-axis to investigate resolution along the 

normal to array axis. Specifically, in the first scenario the two scatterer locations coordinates are (− 𝛿𝑠 2⁄ , ℎ) and 

(𝛿𝑠/2, ℎ), respectively, where 𝛿𝑠 = 𝜆1 10⁄  and ℎ = 𝜆1 4⁄ . In the second scenario, the two scatterer location 

coordinates are (0, ℎ − 𝛿𝑠 2⁄ ) and (0, ℎ + 𝛿𝑠 2⁄ ), respectively. For the first scenario, the normalized (relative to its 

maximum value) sample pseudo-spectrums 𝑝(𝑛)(𝒙) for 𝑛 = 1,2,3, are plotted in Figure 5a along the line 𝑦 = ℎ. 

Similarly, for the second scenario, the normalized sample 𝑝(𝑛)(𝒙) for 𝑛 = 1,2,3, are plotted in Figure 5b along the 

line 𝑥 = 0. In both figures, an SNR of 20 dB is assumed for all harmonics. In Figure 5a, 𝑝(1) for the fundamental 

harmonic (red line) cannot resolve the two scatterers while both 𝑝(2) for the second harmonic (green line) and 𝑝(3) 

for the third harmonic (blue line) can distinguish the two scatterers very close to their correct locations. Note also 

that 𝑝(3) is sharper than 𝑝(2) suggesting that higher harmonics have better resolution for ℎ = 𝜆1 4⁄ . In the second 

scenario on the other hand, it is observed from Figure 5b that the pseudo-spectrums for the first two harmonics 

cannot resolve the scatterers while the third harmonic can resolve the two scatterers near their correct locations. 

Also, the curves in the latter figure are not symmetric about the point 𝑦 𝜆1⁄ = 0.25, because the left end of the 

plots is closer to the array. Near the right end of the plots (further to the array), 𝑝(2) and 𝑝(3) are higher than 𝑝(1) 

likely due to the relative decrease in the magnitude of the steering vector 𝒈𝑡
(𝑛)(𝒙), appearing denominator in 

Equation 11, with increasing distance away from the array. This phenomenon was observed in Figure 3b and 

Figure 4b as the high background intensity in the images. The pseudo-spectrums in the second scenario are broader 

than those of in first scenario, causing loss of resolution. This concludes that resolution is better along array axis. 

Figure 5. Normalized pseudo-spectrum for two nonlinear point-like scatterers along 𝑥-axis (a) and along 𝑦-

axis (b) for 𝑆𝑁𝑅 = 20 dB and with 𝑁 = 21 array elements. 

(a) (b) 
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To further observe the effect of noise on resolution, the above two scenarios are repeated with an SNR of 10 

dB. The pseudo-spectrums for the first scenario are plotted in Figure 6a and those for the second scenario are 

plotted in Figure 6b. In contrast to Figure 5a, the green curve corresponding to 𝑝(2) in Figure 6a can no longer 

resolve the two scatterers along the 𝑥-axis. The blue curve corresponding to 𝑝(3) can still resolve the two scatterers 

near their correct locations but the spread of peaks is now broader due to the adverse effect of noise. For the second 

scenario, the plots in Figure 6b show that none of the harmonics can now resolve the two scatterers. The higher 

values for the second and third harmonics near the right end of the plots are again indicative of the higher intensities 

near the top end of the images in Figure 3a and Figure 4a. The conclusion is that noise causes broadening of the 

peaks in the pseudo-spectrums. As can be observed in the behavior of 𝑝(3) in Figure 5b and Figure 6b, this 

broadening causes the peaks corresponding to two close scatterers to progressively overlap as SNR decreases. 

Eventually, these peaks will merge into a single peak resulting in a decline in resolution. 

For an array with fixed inter-element distance 𝑑, resolution for a given SNR can be improved by increasing 

the number of array elements 𝑁, as a result of sharpening of the peaks with increased array length. This is 

demonstrated using the normalized 𝑝(3) (third harmonic) with 𝑆𝑁𝑅 = 10 dB in Figure 7a for the first scenario and 

in Figure 7b for the second scenario. In both figures, solid curves correspond to the case with 𝑁 = 21 elements 

and dashed curves correspond to the case with 𝑁 = 101 elements. In Figure 7a, comparison of the two curves 

clearly shows that the array with 𝑁 = 101 elements produces a much sharper pseudo-spectrum at the scatterer 

locations (poles) than the pseudo-spectrum with 𝑁 = 21 elements. Similarly, it is seen in Figure 7b that while the 

array with 𝑁 = 21 elements is unable to resolve the two scatterers, the array with = 101 elements can resolve the 

scatterers. The conclusion is that longer arrays with more elements can result in better resolution. 

The effects of the SNR and the number of elements on resolution are summarized in Figure 8 for the first 

scenario and in Figure 9 for the second scenario. Each curve in the figures corresponds to a single harmonic and 

provides a relation between the SNR and the number of array elements 𝑁, required to resolve the two scatterers 

with roughly 50% probability. The curves are generated by Monte-Carlo (MC) simulations with a total of 𝑁𝑀𝐶 =
1000 realizations for each harmonic. In each realization of a MC simulation corresponding to the 𝑛’th harmonic, 

Figure 6. Normalized pseudo-spectrum for two nonlinear point-like scatterers along 𝑥-axis (a) and along 𝑦-

axis (b) for 𝑆𝑁𝑅 = 10 dB and with 𝑁 = 21 array elements. 

(a) (b) 
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a noisy sample of the multistatic response matrice �̃�(𝑛), is generated. The pseudo-spectrum 𝑝𝑘
(𝑛)

, for the 𝑘’th 

sample (𝑘 = 1, … , 𝑁𝑀𝐶) is then computed and the number of peaks 𝑁𝑝𝑒𝑎𝑘,𝑘
(𝑛)

,  for the sample is estimated from 𝑝𝑘
(𝑛)

. 

The expected number of scatterers is obtained by averaging 𝑁𝑝𝑒𝑎𝑘,𝑘
(𝑛)

 over all samples as �̂�𝑝𝑒𝑎𝑘
(𝑛)

=

(1 𝑁𝑀𝐶⁄ ) ∑ 𝑁𝑝𝑒𝑎𝑘,𝑘
(𝑛)𝑁𝑀𝐶

𝑘=1 . Note that 1 ≤ �̂�𝑝𝑒𝑎𝑘
(𝑛)

≤ 2 and when �̂�𝑝𝑒𝑎𝑘
(𝑛)

≈ 1, the two scatterers are not resolved in 

majority of the samples. In contrast, when �̂�𝑝
(𝑛)

≈ 2, the two scatterers are resolved in majority of the samples. 

The curves in the figures correspond to �̂�𝑝𝑒𝑎𝑘
(𝑛)

= 1.5, which indicates that the two targets are resolved in half of 

the samples. Hence, further to the right of the curve for the 𝑛’th harmonic, it is very likely that the two scatterers 

Figure 7. Normalized pseudo-spectrum (3rd harmonic) for two nonlinear point-like scatterers along 𝑥-axis (a) 

and along 𝑦-axis (b) for 𝑆𝑁𝑅 = 10 dB with 𝑁 = 21 (solid line) and 𝑁 = 101 (dashed line) array elements. 

(a) (b) 

Figure 8. Number of array elements required to resolve two scatterers (with 50% probability) displaced by 

𝜆1 10⁄  along 𝑥-axis vs SNR. 
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are resolved and further to the left of the curve, it is very unlikely that the two scatterers are resolved by the 𝑛’th 

harmonic. 

In both figures, it is observed that irrespective of the harmonic order, more array elements are required to 

resolve the two scatterers for lower SNR. However, the improvement from additional elements decreases with 

increasing 𝑁 as observed by the steep increase in the curves with decreasing SNR. Moreover, curves corresponding 

to higher order harmonics are shifted further to the left indicating that higher order harmonics require fewer array 

elements to resolve the scatterers for the same SNR. Finally, comparison of Figure 8 and Figure 9 shows that for 

each harmonic, fewer number of array elements are required to resolve the two scatterers along the array axis. In 

fact, it is seen in Figure 9 that below about 5 dB SNR, further increase in 𝑁 has no effect on the resolution of the 

third harmonic along the 𝑦-axis whereas 𝑁 < 20 is sufficient for the third harmonic to resolve the two scatterers 

along the 𝑥-axis even with SNRs as low as 0 dB. These observations indicate that the resolution along the array 

axis is superior to that along the array normal. 

 

4. Conclusions 

 

A MUSIC based imaging, previously proposed for improving time-reversal imaging of point-like linear 

scatterers, is adopted here for imaging of point-like nonlinear scatterers. Unlike previous broadband approaches to 

localization of nonlinear scatterers, MUSIC based imaging offers a narrowband approach and is better suited for 

near-field applications. The proposed imaging approach is formulated and simulated in two dimensions for a 

homogeneous medium. The effect of multiple scattering is neglected which is a reasonable assumption when the 

point-like scatterers are sufficiently separated. The effect is likely to be stronger in the simulations performed for 

resolution analysis as the particles were in close proximity of one another. Nevertheless, the results are correct to 

first order of scattering which accounts for the major effect. 

Numerical results show that higher order harmonics can better identify the presence of scatterers and estimate 

their locations. Higher order harmonics are also more robust to noise near the array of sensors. This is important 

since the returned signals from the scatterers may be weaker for higher order harmonics. Resolution degrades with 

distance from the array and also with decrease in SNR. On the other hand, resolution improves with harmonic 

Figure 9. Number of array elements required to resolve two scatterers (with 50% probability) displaced by 

𝜆1 10⁄  along 𝑦-axis vs SNR. 
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order (demonstrated for the first three harmonics) and is also superior along the array axis. The number of array 

elements plays an important role in resolving of the scatterers so that an array with few elements requires a large 

SNR to resolve close scatterers whereas an array with many elements can resolve close scatterers with smaller 

SNR. However, increasing array elements has the cost of dealing with larger multistatic response matrices 

requiring more field measurements (increasing as 𝑁2). Beyond some trade-off value, increasing the number of 

elements has a decreasing benefit not justifying the further increase in element number. 

The narrowband nature of the of the proposed imaging method is an apparent advantage over the broadband 

frequency sweeping systems used in [10-12]. But this advantage comes with the cost of increased system 

complexity due to use all array elements in both transmit and receive modes as opposed to the single transmitting 

element present in the previous studies. In spite of this drawback, the findings are promising for narrowband, near 

field imaging of nonlinear scatterers. The current study will be extended to three-dimensional layered media in the 

future along with experimental work to validate the results. An analysis along the lines of the work done by 

Ciuonzo et al. [18] for the proposed imaging method is also essential to better gauge its noise performance. 
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