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ABSTRACT

In this paper, we introduce a new notion which is called quasi bi-slant submanifolds of almost
Hermitian manifolds. Necessary and sufficient conditions for the integrability of distributions
which are involved in the definition of such submanifolds of a Kaehler manifold are obtained.
We also investigate the necessary and sufficient conditions for these submanifolds of Kaehler
manifolds to be totally geodesic and study the geometry of foliations determined by the above
distributions. Finally, we obtain the necessary and sufficient conditions for a quasi bi-slant
submanifold to be local product Riemannian manifold and also construct some examples of such
submanifolds.
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1. Introduction

The theory of submanifolds has several important applications in Mathematics, Physics as well as in
Mechanics. In the last two decades, the applications of Kaehler manifold is widely recognized (especially in
Physics, for the target spaces of non-linear σ− models with supersymmetry), see [10]. Nowadays theory of
submanifolds plays a key role in computer designing, image processing, economic modelling. It has origin
in the study of the geometry of plane curves initiated by Fermat. The study and research work of slant
submanifolds in almost Hermitian manifolds begins with the remarkable work of B. Y. Chen ([8], [9]) as a
generalization of complex (holomorphic) and totally real submanifolds. Later on, as a natural generalization
of CR-submanifold, slant submanifold, holomorphic submanifold and totally real submanifold in almost
Hermitian manifold was defined by N. Papaguice [15], which is known as semi-slant submanifold. The theory
of slant submanifolds has been studied by several geometers ([3], [5], [6], [7], [12], [13], [14], [15], [20], [21]).
Further the notion of slant submanifold generalized as semi-slant submanifolds, pseudo-slant submanifolds,
bi-slant submanifolds, etc.

Bi-slant submanifolds of almost contact metric manifolds were studied by J. L. Cabrerizo et al in [7]. B.
Y. Chen et al. in [19] investigated bi-slant submanifolds in Kaehler manifolds. The purpose of the present
paper is to introduce the notion of quasi bi-slant submanifolds of almost Hermitian manifolds which
includes the classes of slant submanifolds, semi-slant submanifolds, hemi-slant submanifolds and bi-slant
submanifolds as its particular cases (see also: [1, 16]). Primarily the hemi-slant submanifolds were known
as anti-slant submanifolds. Later, B. Şahin [17] named these submanifolds as hemi-slant submanifolds. Hemi-
slant submanifolds are one of the classes of bi-slant submanifolds. In 2011, F.R. Solamy et al. [2] obtained some
interesting results on totally umbilical hemi-slant submanifolds of Kaehler manifolds. The paper is organized
as follows: In section 2, we mention the basic definitions and properties of almost complex manifolds. In section
3, we define quasi bi-slant submanifolds and some basic properties of submanifolds. Section 4 deals with
necessary and sufficient conditions for integrability of distributions. In this section, we also find necessary
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and sufficient conditions for the submanifolds to be totally geodesic. In the last section, we construct some
examples of such submanifolds.

2. Preliminaries

Let N be a Riemannian manifold with an almost complex structure J and Hermitian metric g satisfying

J2 = −I (2.1)

and
g(JX, JY ) = g(X,Y ), (2.2)

for anyX,Y ∈ Γ(TN), where Γ(TN) is the Lie algebra of vector fields inN, thenN is called an almost Hermitian
manifold. If the almost complex structure J also satisfies

(∇̄XJ)Y = 0, (2.3)

for every X,Y ∈ Γ(TN), where ∇̄ is the Levi-Civita connection on N , then N is said to be a Kaehler manifold
[11, 22].

The covariant derivative of the complex structure J is defined as

(∇̄XJ)Y = ∇̄XJY − J∇̄XY,

using (2.3) , we have
J∇̄XY = ∇̄XJY. (2.4)

Throughout this paper, A and h denote the shape operator and second fundamental form of submanifold M
intoN respectively. If∇ is the induced Riemannian connection onM , then the Gauss and Weingarten formulae
are given by [8]

∇̄XY = ∇XY + h(X,Y ) (2.5)

and
∇̄XV = −AVX +∇⊥XV, (2.6)

for all vector fields X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇⊥ denotes the connection on the normal bundle
(T⊥M) of M . The shape operator and the second fundamental form are related by

g(AVX,Y ) = g(h(X,Y ), V ). (2.7)

The mean curvature vector is defined by

H =
1

n
trace(h) =

1

n

n∑
i=1

h(ei, ei), (2.8)

where n denotes the dimension of submanifold M and {e1, e2, ...., en} is the local orthonormal basis of tangent
space at each point of M.

A submanifold M of Kaehler manifold N is said to be totally umbilical if

h(X,Y ) = g(X,Y )H, (2.9)

where H is the mean curvature vector. If h(X,Y ) = 0 for every X,Y ∈ Γ(TM), then M is said to be totally
geodesic and if H = 0, then M is said to be a minimal submanifold.

For any X ∈ Γ(TM), we can write
JX = φX + ωX, (2.10)

where φX and ωX are the tangential and normal components of JX on M respectively. Similarly for any
V ∈ Γ(T⊥M), we have

JV = BV + CV, (2.11)

where BV and CV are the tangential and normal components of JV on M respectively.
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The covariant derivative of projection morphisms in (2.10) and (2.11) are defined as

(∇̄Xφ)Y = ∇XφY − φ∇XY, (2.12)

(∇̄Xω)Y = ∇⊥XωY − ω∇XY, (2.13)

(∇̄XB)V = ∇XBV −B∇⊥XV (2.14)

and
(∇̄XC)V = ∇⊥XCV − C∇⊥XV (2.15)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
Now we recall the following definitions for later use:

Definition 2.1. Let M be a Riemannian manifold isometrically immersed in an almost Hermitian manifold N.
A submanifold M of an almost Hermitian manifold N is said to be invariant (holomorphic or complex) [5] if
J (TxM) ⊆ TxM, for every point x ∈M.

Definition 2.2. A submanifoldM of an almost Hermitian manifoldN is said to be anti-invariant (totally really)
[13] if J (TxM) ⊆ T⊥x M, for every point x ∈M.

Definition 2.3. A submanifoldM of an almost Hermitian manifoldN is said to be slant [14], if for each non-zero
vector X tangent to M at x ∈M, the angle θ(X) between JX and TxM is constant, i.e., it does not depends on
the choice of the point x ∈M andX ∈ TxM. In this case, the angle θ is called the slant angle of the submanifold.
A slant submanifold M is called proper slant submanifold if neither θ = 0 nor θ = π

2 .

We note that on a slant submanifold M if θ = 0, then it is an invariant submanifold and if θ = π
2 , then it is an

anti-invariant submanifold. This means slant submanifold is a generalization of invariant and anti-invariant
submanifolds.

Definition 2.4. A submanifold M of an almost Hermitian manifold N is said to be semi-invariant [4], if there
exist two orthogonal complementary distributions D and D⊥ on M such that

TM = D ⊕D⊥,

where D is invariant and D⊥ is anti-invariant.

Definition 2.5. A submanifold M of an almost Hermitian manifold N is said to be semi-slant [15], if there exist
two orthogonal complementary distributions D and Dθ on M such that

TM = D ⊕Dθ,

where D is invariant and Dθ is slant with slant angle θ. In this case, the angle θ is called semi-slant angle.

Definition 2.6. A submanifold M of an almost Hermitian manifold N is said to be hemi-slant [18, 2], if there
exist two orthogonal complementary distributions Dθ and D⊥ on M such that

TM = Dθ ⊕D⊥,

where Dθ is slant with slant angle θ and D⊥ is anti-invariant. In this case, the angle θ is called hemi-slant angle.

Definition 2.7. A submanifold M of an almost Hermitian manifold N is said to be bi-slant [19], if there exist
two orthogonal complementary distributions Dθ1 and Dθ2 on M such that

TM = Dθ1 ⊕Dθ2 ,

where Dθ1 and Dθ2 are slants with slant angles θ1 and θ2 respectively.

Now, we shall introduce the notion of quasi bi-slant submanifolds of almost Hermitian manifolds:

59 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Quasi Bi-Slant Submanifolds of Kaehler Manifolds

3. Quasi Bi-Slant Submanifolds

In the present section of the paper, we introduce quasi bi-slant submanifolds of almost Hermitian manifolds
and obtain the necessary and sufficient conditions for the distributions involved in the definition of such
submanifolds to be integrable.

Definition 3.1. A submanifold M of an almost Hermitian manifold N is called a quasi bi-slant submanifold if
there exist distributions D, D1 and D2 such that:

(i) TM admits the orthogonal direct decomposition as

TM = D ⊕D1 ⊕D2,

(ii) J(D) = D i.e., D is invariant,

(iii) J(D1) ⊥ D2,

(iv) For any non-zero vector field X ∈ (D1)p, p ∈M, the angle θ1 between JX and (D1)p is constant and
independent of the choice of point p and X in (D1)p,

(v) For any non-zero vector field Z ∈ (D2)q, q ∈M, the angle θ2 between JZ and (D2)q is constant and
independent of the choice of point q and Z in (D2)q,

These angles θ1 and θ2 are called slant angles of the submanifold.
We easily observe that
(a) If dimD 6= 0, dimD1 = 0 and dimD2 = 0, then M is an invariant submanifold.
(b) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <

π
2 and dimD2 = 0, then M is proper semi-slant submanifold.

(c) If dimD = 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 = 0, then M is slant submanifold with slant angle θ1.

(d) If dimD = 0,dimD1 = 0 and dimD2 6= 0, 0 < θ2 <
π
2 , then M is slant submanifold with slant angle θ2.

(e) If dimD = 0,dimD1 6= 0, θ1 = π
2 and dimD2 = 0, then M is an anti-invariant submanifold.

(f) If dimD 6= 0,dimD1 6= 0, θ1 = π
2 and dimD2 = 0, then M is semi-invariant submanifold.

(g) If dimD = 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 , then M is hemi-slant submanifold.
(h) If dimD = 0,dimD1 6= 0, 0 < θ1 <

π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then M is bi-slant submanifold.

(i) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 , then we may call M is quasi hemi-slant
submanifold.

(j) If dimD 6= 0, and 0 < θ1 = θ2 <
π
2 , then M is proper semi-slant submanifold.

(k) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then M is proper quasi bi-slant

submanifold.
This means notion of quasi bi-slant submanifold is a generalization of invariant, anti-invariant, slant, hemi-

slant and semi-slant submanifolds.

Remark 3.1. Above definition can be generalized by taking TM = D ⊕Dθ1 ⊕Dθ2 ...⊕Dθk . Hence we can define
multi-slant submanifolds, quasi multi-slant submanifolds etc.

Let M be a quasi bi-slant submanifold of an almost Hermitian manifold N . We denote the projections
of X ∈ Γ(TM) on the distributions D, D1 and D2 by P , Q and R, respectively. Then we can write, for any
X ∈ Γ(TM)

X = PX +QX +RX. (3.1)

Now, put
JX = φX + ωX, (3.2)

where φX and ωX are tangential and normal components of JX on M, respectively.
Using (3.1) and (3.2), we obtain

JX = JPX + JQX + JRX (3.3)
= φPX + ωPX + φQX + ωQX + φRX + ωRX.

Since JD = D, we have ωPX = 0. Therefore, we get

JX = φPX + φQX + ωQX + φRX + ωRX. (3.4)
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This means, for any X ∈ Γ(TM), we have

φX = φPX + φQX + φRX and
ωX = ωQX + ωRX.

Thus, we have the following decomposition

J(TM) ⊂ D ⊕ φD1 ⊕ ωD1 ⊕ φD2 ⊕ ωD2. (3.5)

Since ωD1 ⊂ (T⊥M) and ωD2 ⊂ (T⊥M), we have

T⊥M = ωD1 ⊕ ωD2 ⊕ µ, (3.6)

where µ is the orthogonal complement of ωD1 ⊕ ωD2 in (T⊥M) and it is invariant with respect to J .
For any Z ∈ Γ(T⊥M), we put

JZ = BZ + CZ, (3.7)

where BZ ∈ Γ(TM) and CZ ∈ Γ(T⊥M).
Followings are some easy observations which we write for later use:

(a) φD ⊆ D, (b) ωD = {0} , (c) φDi ⊆ Di for i = 1, 2, (d) B
(
T⊥M

)
⊂ D1 ⊕D2.

There are three other important classes of submanifolds of an almost Hermitian manifold determined by
the behavior of the tangent bundle of the submanifold under the action of almost complex structure of the
ambient manifold. A distribution D on a manifold M̄ is called auto parallel if ∇̄XY ∈ D for any X,Y ∈ D
and is called parallel if ∇̄UX ∈ D for any X ∈ D and U ∈ TM̄ . If a distribution D on M̄ is auto parallel, then
it is clearly integrable and by Gauss formula D is totally geodesic in M̄ . If D is parallel then the orthogonal
complementary distribution D⊥ is also parallel which implies that D is parallel if and only if D⊥ is parallel. In
this case M̄ is locally product of the leaves of D and D⊥. Let M be a submanifold of M̄ . For two distributions
D1 and D2 on M , we say that M is (D1;D2) mixed totally geodesic if for all X ∈ D1 and Y ∈ D2, we have
h(X,Y ) = 0, where h is the second fundamental form of M .

Lemma 3.1. Let M be a quasi bi-slant submanifold of an almost Hermitian manifold N . Then the endomorphism φ and
projection morphisms ω, B and C on the tangent bundle of M, satisfy the following identities:

(i) φ2 +Bω = −I on TM,

(ii) ωφ+ Cω = 0 on TM,

(iii) ωB + C2 = −I on (T⊥M),

(iv) φB +BC = 0 on (T⊥M),

where I is the identity operator.

Proof. From equations (3.2) , (3.7) and using the fact that J2 = −I, then on comparing tangential and normal
components, one can easily get these assertions.

Lemma 3.2. Let M be a quasi bi-slant submanifold of an almost Hermitian manifold N. Then

(i) φ2X = −(cos2 θ1)X,

(ii) g(φX, φY ) = (cos2 θ1)g(X,Y ),

(iii) g(ωX,ωY ) = (sin2 θ1)g(X,Y )

for any X,Y ∈ Γ(D1), where θ1 denotes the slant angle of D1.

Proof. (i) For any non-zero X ∈ Γ(D1), we have

cos θ1 =
g(JX, φX)

‖JX‖ · ‖φX‖
=
−g(X,φ2X)

‖X‖ · ‖φX‖
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and cos θ1 = ‖φX‖
‖JX‖ , we have

cos2 θ1 =
−g(X,φ2X)

‖X‖2

which implies
cos2 θ1g(X,X) = −g(X,φ2X).

By polarization,
φ2X = −(cos2 θ1)X, for X ∈ Γ(D1).

(ii) For any X,Y ∈ Γ(D1), using equations (2.2) , (3.2) and Lemma 2 (i) , we have

g(φX, φY ) = g(JX − ωX, φY )

= −g(X,φ2Y )

= (cos2 θ1)g(X,Y ).

(iii) Using equations (2.2) , (3.2) and Lemma 2 (ii) , we have Lemma 2(iii) .

In a similar way as in above, we obtain the following Lemma:

Lemma 3.3. Let M be a quasi bi-slant submanifold of an almost Hermitian manifold N. Then

(i) φ2Z = −(cos2 θ2)Z,

(ii) g(φZ, φW ) = (cos2 θ2)g(Z,W ),

(iii) g(ωZ, ωW ) = (sin2 θ2)g(Z,W )

for any Z,W ∈ Γ(D2), where θ2 denotes the slant angle of D2.

Using equations (2.3) , (2.5) , (2.6) , (2.10) and (2.11) , and then on comparing tangential and normal
components, we have following:

Lemma 3.4. Let M be a submanifold of a Kaehler manifold N , then for any X,Y ∈ Γ(TM), we have

∇XφY −AωYX − φ∇XY −Bh (X,Y ) = 0

and
h (X,φY ) +∇⊥XωY − ω (∇XY )− Ch (X,Y ) = 0.

Using equations (2.12) and (2.13) in above Lemma, we have the following:

Lemma 3.5. Let M be a quasi bi-slant submanifold of a Kaehler manifold N. Then

(∇̄Xφ)Y = AωYX +Bh(X,Y ),

(∇̄Xω)Y = Ch(X,Y )− h(X,φY )

for any X,Y ∈ Γ(TM).

4. Integrability of distributions and decomposition theorems

In this section we investigate the integrability conditions for the distributions involved in the definition of
quasi bi-slant submanifolds.

Theorem 4.1. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the invariant distribution D
is integrable if and only if

g(∇ZφW −∇WφZ, φQX + φRX) = g(h(W,φZ)− h(Z, φW ), ωQX + ωRX), (4.1)

for any Z, W ∈ Γ(D) and X ∈ Γ(D1 ⊕D2).
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Proof. For any Z, W ∈ Γ(D) and X = QX +RX ∈ Γ(D1 ⊕D2), using (2.2) , (2.4) , (2.5) and (3.2), we have

g([Z,W ], X) = g(∇̄Z φW, JX)− g(∇̄W φZ, JX),

= g(∇Z φW −∇W φZ, φQX + φRX)

+g(h(Z, φW )− h(W,φZ), ωQX + ωRX).

This completes the proof.

Theorem 4.2. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the slant distribution D1 is
integrable if and only if

g(AωWZ−AωZW,φX)=g(AωφWZ −AωφZW,X)+g(∇⊥ZωW −∇⊥WωZ, ωRX), (4.2)

for any Z,W ∈ Γ(D1) and X ∈ Γ(D ⊕D2).

Proof. For any Z,W ∈ Γ(D1) and X = PX +RX ∈ Γ(D ⊕D2), using (2.2), (2.4) and (3.2), we obtain

g([Z,W ], X) = g(∇̄ZωW, JX)− g(∇̄ZJφW,X)

−g(∇̄WωZ, JX) + g(∇̄WJφZ,X).

Then from (2.5), (2.6) and (3.4) and using Lemma 2, we have

g([Z,W ], X) = −g(AωWZ −AωZW,JX) + cos2 θ1g([Z,W ], X)

+g(AωφWZ −AωφZW,X) + g(∇⊥ZωW −∇⊥WωZ, JX),

which leads to

sin2 θ1g([Z,W ], X) = g(AωφWZ −AωφZW,X) + g(∇⊥ZωW −∇⊥WωZ, ωRX)

−g(AωWZ −AωZW,φPX + φRX).

Thus the proof follows.

From the above Theorem, we have the following sufficient conditions for the slant distribution D1 to be
integrable:

Corollary 4.1. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. If

∇⊥ZωW −∇⊥WωZ ∈ ωD1 ⊕ µ, (4.3)
AωφWZ −AωφZW ∈ D1 and
AωWZ −AωZW ∈ D1,

for any Z,W ∈ Γ(D1), then the slant distribution D1 is integrable.

In a similar way to Theorem 2, we can conclude the following:

Theorem 4.3. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the slant distribution D2 is
integrable if and only if

g(AωWZ −AωZW,φX) = g(AωφWZ −AωφZW,X) + g(∇⊥ZωW −∇⊥WωZ, ωQX),

for any Z,W ∈ Γ(D2) and X ∈ Γ(D ⊕D1).
From the above Theorem, we have the following sufficient conditions for the slant distribution D2 to be

integrable:

Corollary 4.2. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N if

∇⊥ZωW −∇⊥WωZ ∈ ωD2 ⊕ µ, (4.4)
AωφWZ −AωφZW ∈ D2 and
AωWZ −AωZW ∈ D2,

for any Z,W ∈ Γ(D2), then the slant distribution D2 is integrable.
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Now, we obtain a necessary and sufficient condition for a quasi bi-slant submanifold to be totally geodesic.

Theorem 4.4. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then M is totally geodesic if and
only if

g(h(X,PY ) + cos2 θ1h(X,QY ) + cos2 θ2h(X,RY ),U) = g(∇⊥XωφQY +∇⊥XωφRY,U)

+ g(AωYX,BU)− g(∇⊥XωY,CU) (4.5)

for any X,Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Proof. For any X,Y ∈ Γ(TM) and U ∈ Γ(T⊥M), using (2.2), (2.4) , (3.1) and (3.2), we obtain

g(∇̄XY, U) = g(∇̄XPY,U) + g(∇̄XQY,U) + g(∇̄XRY,U)

= g(∇̄XJPY, JU) + g(∇̄XφQY, JU) + g(∇̄XωQY, JU)

+g(∇̄XφRY, JU) + g(∇̄XωRY, JU).

Using (2.2), (2.5), (2.6), Lemma 2 and Lemma 3, we have

g(∇̄XY, U) = g(∇̄XPY,U)− g(∇̄Xφ2QY,U)− g(∇̄XωφQY,U)

+g(∇̄XωQY, JU)− g(∇̄Xφ2RY,U)

−g(∇̄XωφRY,U) + g(∇̄XωRY, JU)

= g(h(X,PY ), U) + cos2 θ1g(h(X,QY ), U) + cos2 θ2g(h(X,RY ), U)

−g(∇⊥XωφQY,U)− g(∇⊥XωφRY,U)

+g(−AωQYX +∇⊥XωQY, JU) + g(−AωRYX +∇⊥XωRY, JU).

Since ωY = ωQY + ωRY, we have

g(∇̄XY,U) = g(h(X,PY ) + cos2 θ1h(X,QY ) + cos2 θ2h(X,RY ), U)

−g(∇⊥XωφQY,U)− g(∇⊥XωφRY,U)

−g(AωYX,BU) + g(∇⊥XωY,CU). (4.6)

Hence the proof follows.

Now, we investigate the geometry of leaves of foliations determined by above distributions.

Theorem 4.5. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the invariant distribution D
defines a totally geodesic foliation on M if and only if

g(∇XφY, φZ) = −g(h(X,φY ), ωZ) (4.7)
g(∇XφY,Bξ) = −g(h(X,φY ), Cξ),

for any X,Y ∈ Γ(D), Z ∈ Γ(D1 ⊕D2) and ξ ∈ Γ(T⊥M).

Proof. For any X,Y ∈ Γ(D), Z = QZ +RZ ∈ Γ(D1 ⊕D2) and using (2.2), (2.4) , (3.2) and ωY = 0, we have

g(∇̄XY,Z) = g(∇̄XφY, JZ),

= g(∇XφY, φZ) + g(h(X,φY ), ωZ).

Now, for any ξ ∈ Γ(T⊥M) and X,Y ∈ Γ(D), we have

g(∇̄XY, ξ) = g(∇̄XφY, Jξ)
= g(∇XφY,Bξ) + g(h(X,φY ), Cξ).

Hence the proof follows.

dergipark.org.tr/en/pub/iejg 64

https://dergipark.org.tr/en/pub/iejg


R. Prasad, M. A. Akyol, S. K. Verma & S. Kumar

Theorem 4.6. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the slant distribution D1

defines a totally geodesic foliation on M if and only if

g(∇⊥XωY, ωRZ) = g(AωYX,φZ)− g(AωφYX,Z) (4.8)
g(AωYX,Bξ) = g(∇⊥XωY,Cξ)− g(∇⊥XωφY, ξ), (4.9)

for any X,Y ∈ Γ(D1), Z ∈ Γ(D ⊕D2) and ξ ∈ Γ(T⊥M).

Proof. For any X,Y ∈ Γ(D1), Z = PZ +RZ ∈ Γ(D ⊕D2) and using (2.2), (2.4) and (3.2), we have

g(∇̄XY, Z) = g(∇̄XJY, JZ) = g(∇̄XφY, JZ) + g(∇̄XωY, JZ)

= −g(∇̄Xφ2Y,Z)− g(∇̄XωφY,Z) + g(∇̄XωY, φPZ + φRZ + ωRZ).

Then using (3.1), (2.6), lemma 2 and the fact that φPZ + φRZ = φZ, ωPZ = 0, we have

g(∇̄XY,Z) = cos2 θ1g(∇̄XY,Z) + g(AωφYX,Z)

−g(AωYX,φPZ + φRZ) + g(∇⊥XωY, ωRZ),

sin2 θ1g(∇̄XY,Z) = g(AωφYX,Z) + g(∇⊥XωY, ωRZ)− g(AωYX,φZ). (4.10)

Similarly, we get

sin2 θ1g(∇̄XY, ξ) = −g(∇⊥XωφY, ξ)− g(AωYX,Bξ) + g(∇⊥XωY,Cξ). (4.11)

Thus from (4.10) and (4.11), we have the assertions.

In a similar way to the above theorem, we can conclude the following:

Theorem 4.7. Let M be a proper quasi bi-slant submanifold of a Kaehler manifold N. Then the slant distribution D2

defines a totally geodesic foliation on M if and only if

g(∇⊥XωY, ωQZ) = g(AωYX,φZ)− g(AωφYX,Z) (4.12)
g(AωYX,Bξ) = g(∇⊥XωY,Cξ)− g(∇⊥XωφY, ξ),

for any X, Y ∈ Γ(D2), Z ∈ Γ(D ⊕D1) and ξ ∈ Γ(T⊥M).

5. Examples

Example 5.1. Consider a 14−dimensional differentiable manifold M = R14

M = {(xi, yi) = (x1, x2, ..., x7, y1, y2, ..., y7) ∈ R14; i = 1, 2, ..., 7.}.

We choose the vector fields
Ei =

∂

∂yi
, E7+i =

∂

∂xi
, for i = 1, 2, ..., 7.

Let g be a Hermitian metric defined by

g = (dx1)2 + (dx2)2 + ...+ (dx7)2 + (dy1)2 + (dy2)2 + ...+ (dy7)2.

Here {E1, E2, ..., E14} forms an orthonormal basis. We define (1, 1)-tensor field J as

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yj

)
= − ∂

∂xj
, ∀ i, j = 1, 2, ..., 7.

By using linearity of J and g, we have
J2 = −I,

g(JX, JY ) = g(X,Y ), for any X,Y ∈ Γ(TM)
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We can easily show that (M,J, g) is a Kaehler manifold of dimension 14.
Now, we consider a submanifold M of M defined by immersion f as follows:

f (u, v, w, r, s, t) = (u,w, 0, s, 0, 0, 0, v, r cos θ1, r sin θ1, t cos θ2, 0, 0, t sin θ2)

with {θ1, θ2} ⊂ (0, π2 ).
By direct computation, it is easy to check that the tangent bundle of M is spanned by a linearly independent

set {Z1, Z2, Z3, Z4, Z5, Z6}, where

Z1 =
∂

∂x1
, Z2 =

∂

∂y1
, Z3 =

∂

∂x2
,

Z4 = cos θ1
∂

∂y2
+ sin θ1

∂

∂y3
, Z5 =

∂

∂x4
,

Z6 = cos θ2
∂

∂y4
+ sin θ2

∂

∂y7
.

Then using almost complex structure of M , we have

JZ1 =
∂

∂y1
, JZ2 = − ∂

∂x1
, JZ3 =

∂

∂y2
,

JZ4 = −
(

cos θ1
∂

∂x2
+ sin θ1

∂

∂x3

)
, JZ5 =

∂

∂y4
,

JZ6 = −
(

cos θ2
∂

∂x4
+ sin θ2

∂

∂x7

)
.

Now, let the distributions D = Span{Z1, Z2}, D1 = Span{Z3, Z4}, D2 = Span{Z5, Z6}.
Then it is easy to see that D is invariant, D1 and D2 are slant distributions with slant angles θ1 and θ2

respectively.
Hence f defines a proper 6-dimensional quasi bi-slant submanifold M in M.

Example 5.2. Consider a submanifold N of Kaehler manifold M (see example 1) defined by immersion ψ as
follows:

ψ (u, v, w, r, s, t) =

(
u√
2
, w, 0,

√
3s, 0, 0,

u√
2
,
v√
2
, r, r, t, s, 0,

v√
2

)
By direct computation, it is easy to check that the tangent bundle of N is spanned by a linearly independent

set {X1, X2, X3, X4, X5, X6}, where

X1 =
1√
2

(
∂

∂x1
+

∂

∂x7

)
, X2 =

1√
2

(
∂

∂y1
+

∂

∂y7

)
,

X3 =
∂

∂x2
, X4 =

1√
2

(
∂

∂y2
+

∂

∂y3

)
,

X5 =

√
3

2

∂

∂x4
+

1

2

∂

∂y5
, X6 =

∂

∂y4
.

Then using almost complex structure of M , we have

JX1 =
1√
2

(
∂

∂y1
+

∂

∂y7

)
, JX2 = − 1√

2

(
∂

∂x1
+

∂

∂x7

)
,

JX3 =
∂

∂y2
, JX4 = − 1√

2

(
∂

∂x2
+

∂

∂x3

)
,

JX5 =

√
3

2

∂

∂y4
− 1

2

∂

∂x5
, JX6 = − ∂

∂x4
.

Now, let the distributions D = Span{X1, X2}, D1 = Span{X3, X4}, D2 = Span{X5, X6}.
Then it is easy to see that D is invariant, D1 and D2 are slant distributions with slant angles π

4 and π
6

respectively.
Hence ψ defines a proper 6-dimensional quasi bi-slant submanifold N of M.
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Example 5.3. Consider R2n with standard coordinates (x1, x2, x3, x4, ...., x2n−1, x2n). We can canonically choose
an almost complex structure J on R2n as follows :

J(a1
∂

∂x1
+ a2

∂

∂x2
+ a3

∂

∂x3
+ a4

∂

∂x4
+ ...........+ a2n−1

∂

∂x2n−1
+ a2n

∂

∂x2n
)

= (a1
∂

∂x2
− a2

∂

∂x1
+ a3

∂

∂x4
− a4

∂

∂x3
+ ...........+ a2n−1

∂

∂x2n
− a2n

∂

∂x2n−1
),

where a1, a2, a3, ....a2n are C∞ functions defined on R2n.
Consider a submanifold M of R10 defined by

f(x1, x2, x3, x4, x5, x6) = (
x1 + x2√

2
,
x1 − x2√

2
, x3, x4 cos θ1, x5, x6 cos θ2, 0,

x4 sin θ1, 0, x6 sin θ2)

with {θ1, θ2} ⊂ (0, π2 ).
By direct computation, it is easy to check that the tangent space at each point of M is spanned by a linearly

independent set {Z1, Z2, Z3, Z4, Z5, Z6}, where

Z1 =
1√
2

(
∂

∂x1
+

∂

∂x2

)
, Z2 =

1√
2

(
∂

∂x1
− ∂

∂x2
),

Z3 =
∂

∂x3
, Z4 = cos θ1

∂

∂x4
+ sin θ1

∂

∂x8
,

Z5 =
∂

∂x5
, Z6 = cos θ2

∂

∂x6
+ sin θ2

∂

∂x10
.

Let g be a Hermitian metric on R10 such that

g

(
∂

∂xi
,
∂

∂xi

)
= 1 ; for 1 ≤ i ≤ 10,

and

g

(
∂

∂xi
,
∂

∂xj

)
= 0 i 6= j, for 1 ≤ i, j ≤ 10,

Then, using the canonical Hermitian structure of R10, we have

JZ1 =
1√
2

(
∂

∂x2
− ∂

∂x1

)
, JZ2 =

1√
2

(
∂

∂x1
+

∂

∂x2
), JZ3 =

∂

∂x4
,

JZ4 = − cos θ1
∂

∂x3
− sin θ1

∂

∂x7
, JZ5 =

∂

∂x6
,

JZ6 = − cos θ2
∂

∂x5
− sin θ2

∂

∂x9
.

Let D = Span{Z1, Z2}, D1 = Span{Z3, Z4} and D2 = Span{Z5, Z6}. Then it is easy to see that D is invariant and
D1, D2 are slant distributions with slant angles θ1 and θ2 respectively.
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