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HADAMARD PRODUCT OF HOLOMORPHIC MAPPINGS
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1,2Department of Mathematics, Mirpur University of Science and Technology (MUST)
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Abstract. We define certain subclasses δ−UM(ℓ, η1, η2) and δ−UMℑ(ℓ, η1, η2)

of holomorphic mappings involving some differential inequalities. These func-

tions are actually generalizations of some basic families of starlike and convex
mappings. We study sufficient conditions for f ∈ δ − UM(ℓ, η1, η2). We also

discuss the characterization for f ∈ δ − UMℑ(ℓ, η1, η2) along with the coef-

ficient bounds and other problems. Using certain conditions for functions in
the class δ − UM(ℓ, η1, η2), we also define another class δ − UM∗(ℓ, η1, η2)
and study some subordination related result.

1. Introductory Concept

Let H = H(U) denote the family of mappings f holomorphic in the open unit
disc U := {z ∈ C and |z| < 1} . For m ∈ N and α ∈ C, let f ∈ H[α,m] ⊂ H : f(z) =
α+

∑∞
m=1 αmzm and f ∈ A ⊂ H[α,m] :

f(z) = z +

∞∑
m=2

αmzm, z ∈ U. (1)

Let P denote the family of Carathéodory mappings q with ℜ (q(z)) > 0 and

q(z) = 1 +

∞∑
m=1

qmzm, z ∈ U.

The Möbius transformation l0(z) = 1+z
1−z , z ∈ U is an extremal mapping for the

family P. For f, ℓ ∈ H, we say the mapping f is subordinate to ℓ and mathe-
matically write f(z) ≺ ℓ(z), if for w ∈ H(U) : w(0) = 0 and |w(z)| < 1, we have
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f(z) = ℓ
(
w(z)

)
. For reference, see [10]. Applying subordination, Janowski [8] in-

troduced the family P[η1, η2] for −1 ≤ η2 < η1 ≤ 1. A mapping q ∈ P[η1, η2],
if

q(z) ≺ 1 + η1z

1 + η2z
or q(z) =

1 + η1w(z)

1 + η2w(z)
, z ∈ U,

where w is a Schwarz mapping . For detail of some work related to subordination,

we refer, [2–6, 8, 10]. Clearly, P[η1, η2] is contained in P
(

1−η1

1−η2

)
. This family is

related with the class P. A mappings q ∈ P iff

(η1 + 1) q(z)− (η1 − 1)

(η2 + 1) q(z)− (η2 − 1)
∈ P[η1, η2].

The simplest representation of a conic domain ∆δ, δ ≥ 0 is given in the following:

∆δ =

{
w = u+ iv : u > δ

√
(u− 1)

2
+ v2

}
.

A mapping f ∈ δ − US(β) if the following inequality holds:

ℜ
{
zf ′(z)

f(z)
− β

}
> δ

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U), (2)

where −1 ≤ β < 1 and δ ≥ 0.
A mapping f ∈ δ − UC(β) iff zf ′ ∈ δ − US(β).
The above families are studied by Goodman [7] and Rönning [13]. For mappings

f, ℓ ∈ A, the convolution f ∗ ℓ is defined by

f(z) ∗ ℓ(z) = z +

∞∑
m=2

αmγmzm = ℓ(z) ∗ f(z) (z ∈ U),

where the mapping f is given by (1) and

ℓ(z) = z +
∞∑

m=2
γmzm (z ∈ U). (3)

In 2008, Raina [12] introduced the family δ − US(ℓ, β) which may be defined as
follows:

Definition 1. Let ℓ be given by (3) with γm ≥ 0, we say that f ∈ δ − US(ℓ, β) if
f (z) ∗ ℓ (z) ̸= 0 and

ℜ
{
z (f ∗ ℓ)′ (z)
f (z) ∗ ℓ (z)

− β

}
> δ

∣∣∣∣z (f ∗ ℓ)′ (z)
f (z) ∗ ℓ (z)

− 1

∣∣∣∣ (z ∈ U),

where

(f ∗ ℓ) (z) = z +

∞∑
m=2

αmγmzm (γm ≥ 0, z ∈ U) , (4)

−1 ≤ β < 1 and δ ≥ 0.
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Generally this family consists of uniformly δ-starlike mappings f ∗ ℓ of order β
in U.

In 2011, Noor and Malik [11] introduced the family δ − UM(η1, η2) which is
defined as:

Definition 2. A mapping f ∈ A given by (1), is in the family δ − UM(η1, η2)
provided that f(z) ̸= 0 and

ℜ

 (η2 − 1) zf ′(z)
f(z) − (η1 − 1)

(η2 + 1) zf ′(z)
f(z) + (η1 − 1)

 > δ

∣∣∣∣∣∣ (η2 − 1) zf ′(z)
f(z) − (η1 − 1)

(η2 + 1) zf ′(z)
f(z) + (η1 − 1)

− 1

∣∣∣∣∣∣ (z ∈ U),

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

This family consists of mappings f which are associated with uniformly δ-starlike
mappings in U. Extending the idea of Noor and Malik [11], we define a new family
δ − UM(ℓ, η1, η2) of holomorphic mappings.

Definition 3. Let f ∈ A. Then f ∈ δ−UM(ℓ, η1, η2), if it satisfies the condition:

ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

 > δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

∣∣∣∣∣∣ , (z ∈ U),

(5)
where f ∗ ℓ is given by (4),−1 ≤ η2 < η1 < 1 and δ ≥ 0.

The mapping f ∗ ℓ converges as a convolution of holomorphic mappings defined
in U. Clearly f ∗ ℓ is associated with uniformly δ-starlike mappings in U.

Let ℑ be the family of holomorphic mappings f of positive coefficients and having
the series representation of the form:

f(z) = z −
∞∑

m=2

αmzm, αm ≥ 0, z ∈ U. (6)

For details of this family, we refer [14].
Let f be given by (1). Then f ∈ δ − UMℑ(ℓ, η1, η2), if and only if

f ∈ δ − UM(ℓ, η1, η2) ∩ ℑ,
where −1 ≤ η2 < η1 < 1, δ ≥ 0 and ℑ is given by (6).

For some special choices, we obtain the following known classes:

i. δ − UM
(

z
1−z , η1, η2

)
= δ − US (η1, η2) and δ − UM

(
z

(1−z)2
, 1, η1, η2

)
=

δ − UC (η1, η2).

ii. δ − UM
(

z
1−z , 1,−1

)
= δ − US and δ − UM

(
z

(1−z)2
, 1,−1

)
= δ − UC..

iii. δ−UM
(

z
1−z , 1− 2β,−1

)
= δ−US (β) and δ−UM

(
z

(1−z)2
, 1− 2β,−1

)
=

δ − UC (β).

iv. 0−UM
(

z
1−z , η1, η2

)
= S∗ (η1, η2) and 0−UM

(
z

(1−z)2
, η1, η2

)
= C (η1, η2).
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The class δ − UM(ℓ, η1, η2) also reduces to the families mentioned in (2), see
[13]. For detail of the above classes and various other cases related to the earlier
contributions, see [1, 3, 8, 9, 11,15] with references therein.

2. Preliminaries

Subsequently, we define the subordinating factor sequence.

Definition 4. A sequence ⟨cm : m = 1, 2, 3, ...⟩ is termed as a subordinating factor
sequence for some mappings in C, if for each f ∈ C, we have

∞∑
m=1

αmcmzm ≺ f(z) (α1 = 1, z ∈ U). (7)

Lemma 1. The sequence ⟨cm : m = 1, 2, 3, ...⟩ is a subordinating factor sequence,
iff

ℜ

{
1− 2

∞∑
m=2

cmzm

}
> 0.

For detail, see [9, 16]. Throughout, we assume δ ≥ 0 and −1 ≤ η2 < η1 ≤ 1.

3. Main Discussion

Theorem 1. For a given mapping ℓ defined by (3) with γm ≥ 0, if a mapping
f ∈ A satisfies the inequality

∞∑
m=2

[{3 + 2δ + η2} (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2, (8)

then f ∈ δ − UM(ℓ, η1, η2), where m ≥ 1+η1

1+η2
for −1 ≤ η2 < η1 ≤ 1 and δ ≥ 0.

Proof. To have the desired proof, we only show that

δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

− 1

∣∣∣∣∣∣−ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

− 1

 ≤ 1

where f ∗ ℓ is given by (4),−1 ≤ η2 < η1 < 1 and δ ≥ 0. For f ∗ ℓ given by (4), we
see that

z (f (z) ∗ ℓ (z))′ = z +

∞∑
m=2

m |αm| γmzm.

Consider that

δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1

∣∣∣∣∣∣−ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1


≤ (1 + δ)

∣∣∣∣ (η2 − 1) z (f (z) ∗ ℓ (z))′ − (η1 − 1) f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

− 1

∣∣∣∣



HADAMARD PRODUCT OF HOLOMORPHIC MAPPINGS 109

= 2(1 + δ)

∣∣∣∣ z (f (z) ∗ ℓ (z))′ − f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

∣∣∣∣
≤

2
∞∑

m=2
(1 + δ) (m− 1) |αm| γm

η1 − η2 −
∞∑

m=2
{mη2 − η1 +m− 1} |αm| γm

(
m ≥ 1 + η1

1 + η2

)
.

The last expression is bounded by 1 if
∞∑

m=2

[(3 + 2δ + η2) (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2.

□

We next prove the characterization of the mapping f as below.

Theorem 2. A mapping f given by (6) belongs to the family δ − UMℑ(ℓ, η1, η2)
if and only if

∞∑
m=2

{(m− 1) (1 + 2δ − η2) + η1 − η2}αmγm ≤ η1 − η2, (9)

where −1 ≤ η2 < η1 ≤ 1, γm > 0 and δ ≥ 0.

Proof. Suppose that f ∈ δ − UMℑ(ℓ, η1, η2). Then, making use of the fact that

ℜw > δ |w − 1| ⇔ ℜ
{
w(1 + δeiθ)− δeiθ

}
> 0

and taking

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

,

where f ∗ ℓ is given by (4) with αm ≥ 0,−1 ≤ η2 < η1 < 1, and δ ≥ 0 in (5), we
obtain

ℜ

(1 + δeiθ)
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− δeiθ

 > 0,

or equivalently

ℜ
{
(1 + δeiθ)

(η2 − 1) z (f (z) ∗ ℓ (z))′ − (η1 − 1) f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

− δeiθ
}

> 0,

which on simple manipulation yields

ℜ


(η1 − η2) +

∞∑
m=2

{
mη2 −m− 2δmeiθ + 1− η1 + 2δeiθ

}
αmγmzm−1

(η1 − η2) +
∞∑

m=2
{m (η2 + 1)− 1− η1}αmγmzm−1

 > 0.
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This result holds true for all z ∈ U. Taking the limit z → 1− through real values,
we thus obtain that

ℜ


(η1 − η2) +

∞∑
m=2

{
mη2 −m− 2δmeiθ + 1− η1 + 2δeiθ

}
αmγm

(η1 − η2) +
∞∑

m=2
{m (η2 + 1)− 1− η1}αmγm

 > 0,

which further implies that{
η1 − η2 −

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αmγm

}
> 0,

so we have
∞∑

m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αmγm < η1 − η2.

Conversely, we let the inequality (9) hold true. Then, in view of the fact that
ℜ (w (z)) > 0 if and only if |w(z)− 1| < |w(z) + 1| , where

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1

∣∣∣∣∣∣ .
(10)

we consider

|w(z) + 1|

=

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 + 1)

− δ

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 + 1)

− 1

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
=

2 |z|
|G|

∣∣∣∣∣η1 − η2 +

∞∑
m=2

{mη2 − η1 + δm− δ}αmγmzm−1

∣∣∣∣∣
>

2

|G|

[
η1 − η2 −

∞∑
m=2

{mη2 − η1 + δm− δ}αmγm

]
, (11)

where G = (η2 + 1) z (f ∗ ℓ)′ (z)− (η1 + 1) f (z) ∗ ℓ (z) . Also for |w(z)− 1| = W

W =

∣∣∣∣∣∣∣
(η2 − 1) z(f∗ℓ)′(z)

(f∗ℓ)(z) − η1 1

(η2 + 1) z(f∗ℓ)′(z)
z(f∗ℓ)′(z)
(f∗ℓ)(z)

− η1 − 1
− 1− δ

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

− 1

∣∣∣∣∣∣
∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣ − z(f∗ℓ)′(z)
(f∗ℓ)(z) + 1

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

− δ

∣∣∣∣∣∣ − z(f∗ℓ)′(z)
(f∗ℓ)(z) + 1

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
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<
2 |z|
|G|

∞∑
m=2

(m+mδ − 1− δ)αmγm. (12)

where G = (η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z) . From the condition (9)
and the inequalities (11) and (12), we deduce that

|w(z) + 1| − |w(z)− 1| > 0,

where w is defined by (10). This completes the proof of Theorem 2. □

We next provide coefficient bound for a given mapping f to belong to the family
δ − UMℑ(ℓ, η1, η2).

Corollary 1. A mapping f belongs to the family δ − UMℑ(ℓ, η1, η2) if
∞∑

m=2

αm <
η1 − η2

{1 + 2δ − 2η2 + η1} γ2

, γ2 > 0.

where −1 ≤ η2 < η1 < 1, and δ ≥ 0.

Corollary 2. For a mapping f belonging to the family δ−UMℑ(ℓ, η1, η2), we have

αm <
η1 − η2

{1 + 2δ − 2η2 + η1} γ2

, γ2 > 0.

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

The subsequent theorem deals with the integral representation for a given map-
ping f ∈ δ − UMℑ(ℓ, η1, η2).

Theorem 3. If a mapping f given by (6) belongs to the family δ−UMℑ(ℓ, η1, η2),
then f has the following representation:

f(z) = ℓ(−1) (z) ∗ exp
(

z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
,

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

Proof. For δ = 0, the assertion of the Theorem 3 is obvious. Let δ > 0. Then, for
f ∈ δ − UMℑ(ℓ, η1, η2) and

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

we have
Re(w) > δ|w − 1|,

which implies that

|w − 1

w
| < 1

δ
.

We suppose that
w − 1

w
=

Q(z)

δ



112 S. Z. H. BUKHARI, A. SHAHZAD

and

w (z) =
δ

δ −Q(z)
,

which yields

(η2 − 1) z(f(z)∗ℓ(z))
′

f(z)∗ℓ(z) − (η1 − 1)

(η2 − 1) z(f(z)∗ℓ(z))
′

f(z)∗ℓ(z) − (η1 + 1)
=

δ

δ −Q(z)
.

Thus on simplification, we have

z (f (z) ∗ ℓ (z))′

f (z) ∗ ℓ (z)
=

2δη1 −Q(z)(η1 − 1)

2δ +Q(z)(η2 − 1)
.

which proves that

f (z) ∗ ℓ (z) = exp

(
z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
or

f(z) = ℓ(−1) (z) ∗ exp
(

z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
.

This finishes the proof of Theorem 3. □

Theorem 4. If fj is such that

fj(z) = z −
∞∑

m=2

αm,jz
m ∈ δ − UMℑ(ℓ, η1, η2), (j = 1, 2, z ∈ U),

then

f(z) = (1− λ) f1(z) + λf2(z) ∈ δ − UMℑ(ℓ, η1, η2), (0 ≤ λ ≤ 1, z ∈ U).
Proof. For the mappings fj such that fj(z) = z−

∑∞
m=2 αm,jz

m ∈ δ−UMℑ(ℓ, η1, η2),
by using Theorem 2, we write

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,1γm ≤ η1 − η2 (13)

and
∞∑

m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,2γm ≤ η1 − η2. (14)

In view of (13) and (14), we have

(1− λ)

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,1γm

+ λ

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,2γm

≤ (1− λ) (η1 − η2) + λ (η1 − η2) = η1 − η2.

Again by using Theorem 2, we reach the conclusion. □
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In the following, we define the family δ−UM∗(ℓ, η1, η2) of holomorphic mappings
f satisfying the coefficient conditions (8). Assume that

f(z) = z +

∞∑
m=2

αmzm ∈ A.

Then f ∈ δ − UM∗(ℓ, η1, η2), if it satisfies the condition:

∞∑
m=2

[(3 + 2δ + η2) (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2,

for some γm ≥ 0, δ ≥ 0 and −1 ≤ η2 < η1 ≤ 1.
For special choices of η1, η2, δ and the mapping ℓ, we refer the study of Aouf and

Mostafa [2] and others. Clearly

δ − UM∗(ℓ, η1, η2) ⊂ δ − UM(ℓ, η1, η2).

Adopting the required procedure found in [2, 3, 15], we have:

Theorem 5. If f ∈ δ − UM∗(ℓ, η1, η2) and

ℜ (f(z)) > −η1 − η2 + (3 + 2δ + 2η2 − η1)γ2

(3 + 2δ + 2η2 − η1)γ2

(z ∈ U), (15)

then

(1 + 2δ − 2η2 + η1)γ2

2 [η1 − η2 + (1 + 2δ − 2η2 + η1)] γ2

f (z) ∗ h (z) ≺ h(z) (z ∈ U), (16)

for all h ∈ C. The constant factor (1+2δ−2η2+η1)γ2

2[η1−η2+(1+2δ−2η2+η1)]γ2
in (16) cannot be re-

placed by a larger one.

Proof. Let f ∈ δ − UM∗(ℓ, η1, η2) and let h (z) = z +
∞∑

m=2
cmzm. Then

(3 + 2δ + 2η2 − η1)γ2f (z) ∗ h (z)
2 [η1 − η2 + (3 + 2δ + 2η2 − η1)] γ2

=

(3 + 2δ + 2η2 − η1)γ2

(
z +

∞∑
m=2

αmcmzm
)

2 [η1 − η2 + (3 + 2δ + 2η2 − η1)] γ2

In view of Definition 4 and Lemma 1, (16) will hold true if〈
(3 + 2δ + 2η2 − η1)γ2αm

2 [η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
,m = 1, 2, ...

〉
, α1 = 1 (17)

is a subordinating factor sequence. Using Lemma 1, we observe that (17) is equiv-
alent to

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}
> 0. (18)

The mapping

φ (m) = {(3 + 2δ + η2) (m− 1) + η2 − η1} γm, γm ≥ γ2 > 0.
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is an increasing mapping for m ≥ 2. Considering this fact along with (18), we can
write

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

= ℜ

{
1 +

(3 + 2δ + 2η2 − η1)γ2z

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
+

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

≥ 1− (3 + 2δ + 2η2 − η1)γ2 |z|
[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2 |αm| |z|m

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2 |αm| rm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)η1)γ2]
−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γm |αm| r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

On using (8), we see that

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2 |αm| zm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
− (η1 − η2) r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2] .

= 1− r > 0, r → 1.

This leads to (18). Thus we have (16). Also (15) is obtained from (16) for the
mapping

h (z) =
z

1− z
, (z ∈ U).

For the sharpness of

(3 + 2δ + 2η2 − η1)γ2

2[(η1 − η2) + (3 + 2δ + 2η2 − η1)γ2]
,

we consider the mapping f0 such that

f0(z) = z − (η1 − η2)

(3 + 2δ + 2η2 − η1)
z2. (19)

Combining (16) and (19), we write

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z) ≺

z

1− z
, z ∈ U.
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Consider

ℜ
{

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z)

}
=

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
ℜ (f0(z))

≥ − (3 + 2δ + 2η2 − η1)γ2)

2[(η1 − η2) + (3 + 2δ + 2η2 − η1)γ2]

(
[η1 − η2 + (3 + 2δ + 2η2 − η1))γ2]

(3 + 2δ + 2η2 − η1)γ2

)
.

Thus, we have

min
|z|≤r

ℜ
{

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z)

}
= −1

2
.

This proves that the constant (3+2δ+2η2−η1)γ2

2[η1−η2+(3+2δ+2η2−η1)γ2]
is the best possible. □

4. Concluding Remarks

In this research, we have used convolution between holomorphic mappings in
defining some subfamilies δ−UM(ℓ, η1, η2) and δ−UMℑ(ℓ, η1, η2) of holomorphic
mappings involving starlike and convex mappings and associated with the conic
domains. We derived sufficient conditions for the mappings to be in the family
δ−UM(ℓ, η1, η2). We also discussed the characterization of mappings in the family
δ − UMℑ(ℓ, η1, η2) along with the coefficient bounds, integral representation and
convex combination. Using the sufficient conditions for mappings belonging to the
family δ − UM(ℓ, η1, η2), we also defined a family δ − UM∗(ℓ, η1, η2) and then
making use of a particular sequence, we discussed some subordination result. Our
findings can be related with the existing known results.

5. Research Background and Significance

Goodman studied the uniformly convex and starlike functions, whereas, Kanas
and Wisniowska explored k-uniformly convex and k-uniformly starlike functions.
While using the convolution technique, Raina introduced the similar family of an-
alytic functions. In view of Janowski functions, Noor and Malik extended their
results for the petal like domains. Using Hadamard product used by Raina and in
contaxt of Noor and Malik work, we defined new classes of analytic functions and
studied them in various aspects.

Functions with positive real part as well as function with certain assumptions
on the arguments are of funcdamental importance in the study of starlike, con-
vex, close-to-convex and Bazilevic functions which are related with the Kufarev
differential equation. We study the characterization and bounds on the functions
from the differential and integral ineqalities. Same study for the complex valued
function is carried out using the idea of differential subordination. The study of
the geometric properties of various types of image domains is still a prime focus
of the theorists. Techniques of convolutions and other classical methods are still
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in progress in studying these images of compex analytic univalent and multivalent
functions In this research, we have used convolution between holomorphic map-
pings in defining some subfamilies δ − UM(ℓ, η1, η2) and δ − UMℑ(ℓ, η1, η2) of
holomorphic mappings involving starlike and convex mappings and associated with
the conic domains. We derived sufficient conditions for the mappings to be in the
family δ−UM(ℓ, η1, η2). We also discussed the characterization of mappings in the
family δ−UMℑ(ℓ, η1, η2) along with the coefficient bounds, integral representation
and convex combination. Using the sufficient conditions for mappings belonging
to the family δ − UM(ℓ, η1, η2), we also defined a family δ − UM∗(ℓ, η1, η2) and
then making use of a subordinating factor sequence, we discuss some subordination
result. Our findings can be related with the existing literature of subject. Various
problems like radius of convexity, starlikeness and close-to-convexity are still open.
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