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Fuzzy sets have been applied to various decision-making problems when there is 
uncertainty in real-life problems. In decision-making problems, objective functions 
and constraints sometimes cannot be expressed linearly. In such cases, the problems 
discussed are expressed by nonlinear programming models. Fuzzy multi-objective 
programming models are problems containing multiple objective functions, where 
objective functions and/or constraints include fuzzy parameters. Membership 
functions are crucial to obtain optimal solution of fuzzy multi-objective 
programming model. In this study, a green supply chain network model with fuzzy 
parameters is proposed. Proposed model with nonlinear constraints is a fuzzy 
multi-objective nonlinear programming model that minimizes both transportation 
costs and emissions generated by two vehicle types during transportation. The 
model is used in Zimmermann's Min-Max approach by considering triangular, 
hyperbolic and exponential membership functions and optimal solutions are 
obtained. When optimal solutions are compared, it is seen that optimal solution 
obtained using the hyperbolic membership function is better than the optimal 
solutions obtained from triangular and exponential ones. Maximum common 
satisfaction level calculated using hyperbolic membership function for proposed 
model is λ=0.97. Sensitivity analysis is also carried out by taking into account 
distances between suppliers, manufacturers, distribution centers and customers, as 
well as customer demands.  

  

ÇEŞITLI ÜYELIK FONKSIYONLARI ALTINDA BULANIK ÇOK AMAÇLI 
DOĞRUSAL OLMAYAN PROGRAMLAMA PROBLEMLERİ: KARŞILAŞTIRMALI 

BIR ANALİZ 
 

Anahtar Kelimeler Öz 
Yeşil Tedarik Zinciri,  
Bulanık Çok Amaçlı 
Doğrusal Olmayan 
Programlama, Bulanık Çok 
Amaçlı Programlama,  
Bulanık Kümeler,  
Üyelik Fonksiyonları, 
Zimmermann'ın Min-Max 
Yaklaşımı. 

Bulanık kümeler, gerçek hayat problemlerinde belirsizlik olması durumunda çeşitli 
karar verme problemlerine uygulanmaktadır. Karar verme problemlerinde amaç 
fonksiyonları ve kısıtlar bazen doğrusal olarak ifade edilemez. Bu gibi durumlarda, 
ele alınan problemler doğrusal olmayan programlama modelleri ile ifade edilir. 
Bulanık çok amaçlı programlama modelleri, amaç fonksiyonları ve/veya kısıtların 
bulanık terimler içerdiği birden fazla amaç fonksiyonu olan problemlerdir. Bulanık 
çok amaçlı programlama modellerinin çözümünde kullanılan üyelik fonksiyonları, 
karar verme aşamasında çok önemlidir. Bu çalışmada, bulanık parametrelere sahip 
bir yeşil tedarik zinciri ağı modeli önerilmiştir. Doğrusal olmayan kısıtları olan 
model, hem taşıma maliyetlerini hem de taşıma esnasında iki araç tipi tarafından 
üretilen emisyonları en aza indiren bulanık çok amaçlı doğrusal olmayan 
programlama modelidir. Model, üçgensel, hiperbolik ve üstel üyelik fonksiyonları 
gözönüne alınarak Zimmermann'ın Min-Max yaklaşımında kullanılmış ve optimal 
çözümler elde edilmiştir. Optimal çözümler karşılaştırıldığında, hiperbolik üyelik 
fonksiyonu kullanılarak elde edilen optimal çözümün üçgensel ve üstel üyelik 
fonksiyonlarından elde edilen optimal çözümlerden daha iyi olduğu görülmüştür. 
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Önerilen model için hiperbolik üyelik fonksiyonu kullanılarak hesaplanan 
maksimum ortak memnuniyet düzeyi λ=0.97’dir. Çalışmada, müşteri taleplerinin 
yanı sıra tedarikçiler, üreticiler, dağıtım merkezleri ve müşteriler arasındaki 
mesafeler dikkate alınarak duyarlılık analizi de yapılmıştır. 
 

Alıntı / Cite 
Akarçay Pervin, Ö., Yapıcı Pehlivan, N., (2023). Fuzzy Multi-Objective Nonlinear Programming Problems Under 
Various Membership Functions: A Comparative Analysis, Mühendislik Bilimleri ve Tasarım Dergisi, 11(3), 857-
872. 
Yazar Kimliği / Author ID (ORCID Number)  Makale Süreci / Article Process 
Ö. AKARÇAY PERVİN, 0000-0003-0068-3211 
N. YAPICI PEHLİVAN, 0000-0002-7094-8097 

 Başvuru Tarihi / Submission Date 
 Revizyon Tarihi / Revision Date 
 Kabul Tarihi / Accepted Date 
 Yayım Tarihi / Published Date 

 24.01.2022 
 26.01.2023 
 08.06.2023 
 28.09.2023 

 

FUZZY MULTI-OBJECTIVE NONLINEAR PROGRAMMING PROBLEMS UNDER VARİOUS 
MEMBERSHIP FUNCTIONS: A COMPARATİVE ANALYSIS 
 
Özlem AKARÇAY PERVİN1, Nimet YAPICI PEHLİVAN2†  
1Department of Computer Programing, Vocational School of Commerce and Industry, KTO Karatay University, 
Konya, Turkey. 
2Statistics Department, Science Faculty, Selçuk University, Konya, Turkey 
 

Highlights  

• A fuzzy multi-objective nonlinear programming (FMNOLP) model for a green supply chain 
network (GSCN) is proposed. 

• The model includes linear constraints with fuzzy parameters, nonlinear constraints, and two 
objective functions. 

• Both transportation costs and emissions generated by two vehicle types during transportation 
are minimized.  

• The FMNOLP model is solved by Zimmermann's Min-Max approach under various 
membership functions. 
 

Purpose and Scope  
The aim of the study is to propose a fuzzy multi-objective nonlinear programming (FMNOLP) model for a green 
supply chain network (GSCN) model. The proposed model includes linear constraints with fuzzy parameters, 
nonlinear constraints, and two objective functions that minimize both transportation costs and emissions 
generated by two vehicle types during transportation. 

Design/methodology/approach  
The proposed FMNOLP model is solved by using Zimmermann's Min-Max approach under triangular, hyperbolic 
and exponential membership functions. 

Findings  
The optimal solution obtained for the FMNOLP model using the hyperbolic membership function is better than 
the optimal solutions obtained from the triangular and exponential membership functions.   

Research limitations/implications  
The limitation of the study is to consider a FMONLP model with two objective functions with linear and nonlinear 
constraints for a simple green supply chain network structure. In future studies, the proposed FMONLP model 
can be applied to more complicated GSCN models. Different nonlinear membership functions, different 
defuzzification techniques for fuzzy parameters or different linearization techniques can be handled. In addition, 
other solution methods in the literature proposed for FMOP problems can be applied under various linear and/or 
nonlinear membership functions. 
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Originality  
In the study, FMNOLP model which includes two objective functions as well as linear and nonlinear constraints 
is proposed. Linear constraints are dealt with demands of customers, fuzzy capacities of manufacturers, 
distribution centers and suppliers, and vehicle capacities. Nonlinear constraints are related to constraints on 
maximum capacity utilization for the manufacturers and distribution centers. In order to provide this, variability, 
i.e. standard deviation, must be minimum. The variability is the constant obtained by taking these two constraints 
as individual objective functions and solving them under the other constraints, and is added to these constraints 
as a right-hand side. Proposed FMNOLP model for green supply chain network is solved under various 
membership functions. A sensitivty analysis is also performed through capoacities and distances.  

 
1. Introduction 
 
Rapidly increased environmental problems adversely affect the world in various aspects such as health problems, 
costs, air pollution, environmental pollution, and the deterioration of the natural life cycle and pose a threat to 
future generations. In recent years, the effects of global warming and related climate change have reached serious 
levels, causing plenty of living creatures and even natural resources to face many dangers, especially destruction. 
Among the causes of climate change, the uses of greenhouse gases and insoluble raw materials in nature have a 
large share. These problems caused by people can still be prevented and compensated. For this purpose, many 
companies have created green supply chains by making some changes in supply chain management through 
environmentally friendly strategies and legal regulations. 
 
Some real-life problems may include both fuzzy parameters and multiple objectives. For companies, cost is an 
important factor in the construct of green supply chain besides the amount of environmental damage. In some 
cases, high costs may be required due to the high technology used to prevent environmental pollution. In such 
cases, while trying to minimize the damage to the environment, the cost for the sustainability of the companies 
should be kept in mind and the problem should be considered as a fuzzy multi-objective programming model.  
The Min-Max approach proposed by Zimmermann (1978) is a method that combines fuzzy set theory and multi-
objective programming. In addition, Sakawa and Yano (1985), Bit et al. (1993), Kuwano (1996), Liang and Cheng 
(2009) and etc. contributed to the literature by developing some approaches and integrated algorithms to solve 
fuzzy multi-objective programming problems. 
 
The multi-objective nonlinear programming problem involving fuzzy parameters was first introduced by Orlovski 
et al. (1984). Afterwards, Sakawa and Yano (1985) introduced a multi-objective nonlinear programming (MONLP) 
model with fuzzy objective functions. This model was discussed on a numerical example using triangular, 
exponential, hyperbolic, piecewise linear, and inverse hyperbolic membership functions. Zhao and Bose (2002) 
assessed different types of membership functions like triangular, trapezoidal, Gaussian, sigmoidal, and polynomial, 
in fuzzy control of an induction motor driver. At first, fuzzy controller sensitivity was analyzed and then 
comparisons between triangular membership functions and different membership functions were made. Bit 
(1993) aimed to obtain efficient and best compromise solutions for a fuzzy multi-objective transportation problem 
with capacity constraints by using hyperbolic membership function. In order to show the effectiveness of the 
methodology, solutions were obtained by fuzzy programming with linear and hyperbolic membership functions 
on a numerical example and a comparison was made.  
 
In a fuzzy context, Wang and Liang (2004) proposed a fuzzy multi-objective linear programming (FMOLP) model 
to solve the multi-product aggregate production planning choice problem. For all objective functions, the problem 
was transformed into a linear programming problem using a piecewise linear membership function. In order to 
find solutions for integrated production/transport planning issues with fuzzy multiple objective functions, Liang 
(2007) proposed a fuzzy goal programming (FGP) approach. In the proposed approach, piecewise linear 
membership functions was considered for each of the fuzzy goals. Zangiabadi and Maleki (2007) proposed a fuzzy 
goal programming approach for the multi-objective transportation problem. They focused on minimization of the 
negative deviation variables from 1 to specify an optimal compromise solution assuming the objective functions 
have fuzzy goals. One of the nonlinear membership functions, hyperbolic, was used for each objective function in 
order to define all fuzzy goals.  
 
Bodkhe et al. (2010) presented a fuzzy multi-objective programming method considering hyperbolic membership 
function for solving bi-objective transportation problem to compare with those obtained from the triangular 
membership function. Peidro and Vasant (2011) addressed the multi-objective problem of transportation 
planning decision (TPD) problem which has fuzzy goals, supplies and forecast demands. In order to solve 
considered problem in which fuzzy data is specified by modified S-curve membership functions, an interactive 
method was presented. In the proposed method, it was aimed to simultaneously minimize total production costs, 
transportation costs, and total delivery time by considering several constraints such as budget, available supply, 
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machine capacities, forecasted demand, and warehouse space. Using the interactive fuzzy approach, the 
performance of the membership function types of S-curve and linear, are compared for solving the multi-objective 
TPD problem and a agreement solution is obtained.   
 
Zangiabadi and Maleki (2013) carried out FGP to a linear multiobjective transportation problem. Nonlinear 
membership functions like hyperbolic and exponential were used to obtain an optimal compromise solution for 
multi-objective transportation problem and compare it with the solution obtained using the linear membership 
function. Singh and Yadav (2018) presented intuitionistic fuzzy multi-objective linear programming (ITFMOLP) 
problems which have mixed constraints. Triangular intuitionistic fuzzy numbers were considered for constraint 
functions, objective function coefficients, and right hand sides of constraints. The ITFMOLP problem was 
transformed into a multi- objective linear programming problem using the accuracy function, and then it was 
transformed into a fuzzy goal programming (FGP) model considering scalarization technique. Linear, parabolic 
and hyperbolic membership functions were used for solving the FGP problem to obtain optimal results. Medina-
González et al. (2018) introduced a fuzzy multi-objective optimization model for sustainable design and planning 
related to water supply chains considering nonlinear membership functions. Linear membership functions are 
taken into account for economic profit and water consumption objectives, while a nonlinear membership function 
was handled for land usage objective.  
 
Li et al.(2020), provides an optimal model for allocating agricultural water and soil resources under consideration. 
Heuristic fuzzy numbers, fuzzy reliability restricted programming, mixed integer nonlinear programming, and 
multi-objective programming are all part of the approach. For model solution, a nonlinear membership function 
and fuzzy programming approach are applied. Kara and Kocken (2021) presented a multi-objective solid transport 
problem model that takes into account to evaluate the performance of linear and nonlinear membership functions.  
The model was solved using both the hyperbolic and linear membership functions by a numerical example. From 
the results, it was seen that the hyperbolic membership function gives the best optimal solutions. Miah et al. (2022) 
addressed the multi-objective goal programming approach for the transportation problem. At the solution phase, 
the optimal solutions were compared through exponential and hyperbolic membership functions. Das (2022) 
handled a multi-objective inventory problem using several techniques such as geometric programming, fuzzy 
programming technique with hyperbolic membership function, and fuzzy nonlinear programming.  
 
In this study, it is aimed to examine whether the selected membership functions make any difference for the 
solution of fuzzy multi-objective nonlinear supply chain problems involving uncertainty.  
 
Remainder of this study is arranged as follows: Fuzzy multi-objective programming models, Zimmerman's Min-
Max approach and various membership functions related to the approach are explained in Section 2. In Section 3, 
a fuzzy multi-objective nonlinear supply chain problem is considered as a numerical example. Comparative results 
according to sensitivity analysis considering various membership functions are given in Section 4. Future studies 
are given in Section 5. 
 
2. Fuzzy Multi-Objective Programming Model 
 
In real world decision-making problems, uncertainties have been existed due to decision makers may have not 
information regarding exact values of the coefficients or parameters related to the problem. Applying the fuzzy set 
theory proposed by Zadeh (1965), more efficient and more flexible solutions are provided for such problems. 
Bellman and Zadeh (1970), who carried out the first study in which fuzzy sets were applied to decision making 
problems, proposed a fuzzy decision model characterized by membership functions using minimum operators. 
Zimmermann (1978) extended the fuzzy linear programming approach to multi-objective linear programming 
(MOLP) problems and this method was called the Min-Max approach.  In the study, the extended problem was 
transformed into a classical LP problem by defining each objective function with its corresponding membership 
function and using the minimum operator proposed by Bellman and Zadeh (1970).  
 
Fares and Kaminska (1995) modelled a problem with fuzzy nonlinear objective function and fuzzy constraints 
using nonlinear membership functions. Verma et al. (1997) presented an optimal solution by using two nonlinear 
membership functions, hyperbolic and exponential, to solve the multi-objective transportation problem. Wang 
(2004) introduced a fuzzy multi-objective linear programming (FMOLP) model to obtain a solution for the multi-
product aggregate production planning decision problem which contains fuzzy parameters. The model was solved 
by considering piecewise membership function for all objective functions. Liang (2006) presented an interactive-
FMOLP method with piecewise linear membership function for solving transportation problems. Zeng et al. (2010) 
presented a FMOLP model with triangular fuzzy numbers. The model and its corresponding fuzzy goal 
programming problem were converted into to crisp ones. Hu (2017) introduced a multi-objective programming 
model for the printed circuit board (PCB) line assignment problem on the basis of the transportation problem and 
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assignment problem. To obtain a solution for the presented model, the fuzzy goal programming method with 
nonlinear hyperbolic membership function was applied.  
 
The fuzzy multi-objective programming (FMOP) model is given as follows: 
 

𝐌𝐢𝐧 𝐙𝐢(𝐱) ≅ (𝐙𝟏(𝐱), 𝐙𝟐(𝐱),… , 𝐙𝐤(𝐱))
𝐓

                                                 

                                                  𝐠𝐣(𝐱) ≤ 𝟎,  𝐣 = 𝟏,… , 𝐭                          (1)           

 

In Equation (1), 𝑍𝑖(𝑥) denotes the objective function i (𝑖 = 1, … , 𝑘), 𝑥 indicates decision variables and 𝑔𝑗(𝑥) defines 

inequality constraint j (𝑗 = 1,… , 𝑡).  
The FMOP given in Equation (1) is called FMOLP in case of objective functions and constraints are all linear. On 
the other hand, it is called fuzzy multi-objective nonlinear programming (FMONLP) when at least one of the 
objective functions and/or constraints are nonlinear. Various methods have been introduced for solving the FMOP 
models. 
 
In this study, a FMONLP model is introduced for green supply chain network.  In the solution phase of this model, 
Zimmermann (1978)’s Min-Max approach is applied which is explained step by step below. 
Step 1. The FMONLP model is constructed. 
Step 2. 𝑍𝑖(𝑥)′𝑠, 𝑖 = 1,… , 𝑘 are solved individually under the same constraints.  
Step 3. Using optimal solutions obtained from Step 2, corresponding values for each objective function is 
calculated at each optimal solution derived. Pay-off matrix is created using each optimal solution corresponding 
to each objective function.  
Step 4. The lower value (𝑍𝑖

𝐿) and the upper value (𝑍𝑖
𝑈) of all objective functions are determined from the pay-off 

matrix given in Table 1.  
 

Table 1. Pay-off matrix 

Min 𝒁𝟏(𝒙) 𝒁𝟐(𝒙)      … 𝒁𝒌(𝒙) 

𝒁𝟏(𝒙) 𝒁𝟏𝟏 𝒁𝟏𝟐 … 𝒁𝟏𝒌 

𝒁𝟐(𝒙)      𝒁𝟐𝟏 𝒁𝟐𝟐 … 𝒁𝟐𝒌 

     
𝒁𝒌(𝒙) 𝒁𝒌𝟏 𝒁𝒌𝟐 … 𝒁𝒌𝒌 

 𝒁𝒊
𝑳 𝒁𝟏

𝑳  𝒁𝟐
𝑳  … 𝒁𝒌

𝑳  

𝒁𝒊
𝑼 𝒁𝟏

𝑼 𝒁𝟐
𝑼 … 𝒁𝒌

𝑼 

 

Step 5. Membership function μi(Zi(x)) for each objective function is obtained by using the values of  Zi
L and  Zi

U 

given in Table 1.   
 
Triangular, hyperbolic and exponential type membership functions for the objective function Zi(x) are defined in 
Equations (2), (3), and (4), respectively.  
 

𝛍𝐢
𝐓(𝐙𝐢(𝐱)) =

{
 

 
𝟏,                       𝐙𝐢(𝐱) ≤ 𝐙𝐢

𝐋

𝐙𝐢
𝐔−𝐙𝐢(𝐱)

𝐙𝐢
𝐔−𝐙𝐢

𝐋  ,     𝐙𝐢
𝐋 ≤ 𝐙𝐢(𝐱) ≤ 𝐙𝐢

𝐔

𝟎,                     𝐙𝐢(𝐱) ≥ 𝐙𝐢
𝐔

                                            (2) 

 

𝛍𝐢
𝐇(𝐙𝐢(𝐱)) = {

𝟏,                                              𝐙𝐢(𝐱) ≤ 𝐙𝐢
𝐋

𝟏

𝟐
𝐭𝐚𝐧𝐡(

𝐙𝐢
𝐔+𝐙𝐢

𝐋

𝟐
− 𝐙𝐢) 𝛂𝐢 +

𝟏

𝟐
 ,  𝐙𝐢

𝐋 ≤ 𝐙𝐢(𝐱) ≤ 𝐙𝐢
𝐔

𝟎,                                              𝐙𝐢(𝐱) ≥ 𝐙𝐢
𝐔

              (3) 

 

𝛍𝐢
𝐄(𝐙𝐢(𝐱)) = {

𝟏    ,                   𝐙𝐢(𝐱) ≤ 𝐙𝐢
𝐋

𝐞−𝐬𝛙𝐢(𝐱)−𝐞−𝐬

𝟏−𝐞−𝐬
,   𝐙𝐢

𝐋 ≤ 𝐙𝐢(𝐱) ≤ 𝐙𝐢
𝐔

𝟎       ,                𝐙𝐢(𝐱) ≥ 𝐙𝐢
𝐔

                                        (4) 

 

In Equations (3) and (4),  αi =
6

Zi
U−Zi

L , ψi(x) =
Zi(x)−Zi

L

Zi
U−Zi

L , s is a non-zero parameter defined by desicion maker. 
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Step 6. The membership functions corresponding to each objective function are added to model given in Equation 
(1) as constraints. Thus, problem is converted into a single objective programming model by using variable λ which 
defines the common satisfaction level for all objective functions, as follows: 

                         𝐌𝐚𝐱 𝛌 

                                  𝛌 ≤ 𝛍𝐢(𝐙𝐢(𝐱)), 𝐢 = 𝟏, 𝟐, … , 𝐤 

                                  𝐠𝐣(𝐱) ≤ 𝟎,  𝐣 = 𝟏, … , 𝐭 

𝐱 ≥ 𝟎 
                                                    𝛌 ∈ [𝟎, 𝟏]                                              (5) 

 
The solution to the single-objective programming model given in Equation (5) provides an optimal solution for 
the FMONLP model. 
 
 
3. Numerical Example 
 
People and institutions have started to interest in environmental problems arising from logistics services since 
1980s. The concept of green supply chain network (GSCN) has emerged with the development of modern logistics 
management and supply chain management Chunguang at al.  (2008). The GSCN was introduced by the University 
of Michigan Research Society in 1996 to assess environmental impacts and resource use in the supply chain 
Zhang(2005). The GSCN aims to minimize or eliminate hazardous chemicals, emissions, energy, and solid wastes 
arising from supply chain processes Chin et al.(2015). Shaw et al. (2012) introduced a combined approach to the 
carbon emission problem by using FMOLP and fuzzy analytic hierarchy process to select most preferred supplier. 
Kannan et al. (2013) presented a FMOLP model for GSCN problem using fuzzy AHP, TOPSIS and Zimmermann’s 
Min-Max approaches. Mohammed and Wang (2017) introduced a fuzzy multi-objective optimization model for a 
meat supply chain network under multiple uncertainties. In the model, the goal is to reduce total transportation 
costs, implementation costs, CO2 emissions from transportation, product distribution time, and average delivery 
rate while satisfying product quantities. In the solution phase, methods of LP-metrics, goal programming, and ε-
constraint were used to optimize the objective functions simultaneously. 
 
3.1. Problem Description 
 
This section deals with a green supply chain network (GSCN) model that minimizes both total transport costs and 
total CO2 emissions between suppliers, manufacturers, distribution centres, and customers. This model includes 
two suppliers, three manufacturers, two distribution centers, three customer groups, and two different vehicle 
types, as illustrated in Figure 1. It is aimed to develop a FMONLP model for proposed GSCN that takes into account 
fuzzy capacities of suppliers, manufacturers, distribution centres, and demand of customers. Two objective 
functions are simultaneously minimized. The first one minimizes transport costs between suppliers, factories, 
distribution centers and customers. The second one minimizes the amount of CO2 emissions for two different types 
of vehicles used during transportation. In order to determine the amount of product to be transported on which 
route with which vehicle type, the proposed FMONLP is solved under triangular membership function which is a 
linear membership function, as well as hyperbolic and exponential membership functions which are non-linear 
membership functions (Akarçay, 2019). 

 
Figure 1. Proposed Green Supply Chain Network Model 

 
The indices, decision variables, parameters, objective functions, and constraints related to the construction of the 
mathematical model of the proposed FMONLP problem are defined as follows: 
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Indices: 
s: suppliers (s=1,2) 
m: manufacturers (m=1,2,3) 
d: distribution centers (d=1,2) 
c: customers (c=1,2,3) 
v: vehicle types (v=1,2) 
 
Decision variables: 
𝑎𝑠𝑚𝑣: quantity of the product transported from supplier s to manufacturer m with vehicle v 
𝑏𝑚𝑑𝑣: quantity of the product transported from manufacturer m to distribution center d with vehicle v 
𝑟𝑑𝑐𝑣: quantity of the product transported from distribution center d to customer c with vehicle v 

𝑦𝑑𝑐𝑣 = {
1,    𝑖𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑑  𝑠𝑒𝑟𝑣𝑒𝑠 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑐 𝑤𝑖𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 

 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                                                                        

 

Parameters: 
ℎ𝑣: transportation capacity of vehicle type v  
𝑑𝑠𝑚𝑣: unit cost of product transportation from supplier s to manufacturer  m with vehicle v  
𝑒𝑚𝑑𝑣: unit cost of product transportation from manufacturer m  to distribution center d  with vehicle v 
𝑓𝑑𝑐𝑣: unit cost of product transportation from distribution center d  to customer c  with vehicle v  
𝐶𝑂2: quantity of 𝐶𝑂2 produced by vehicles per km 
𝑝: demand of customers 
𝐺̃(𝑑): fuzzy capacity of distribution center d  
𝐻̃(𝑚): fuzzy capacity of manufacturer  m  
𝑆̃(𝑠): fuzzy capacity of supplier  s 
𝑑𝑖𝑠𝑠𝑚: distance between supplier  s and manufacturer  m 
𝑑𝑖𝑠𝑚𝑑: distance between manufacturer m and distribution center  d 
𝑑𝑖𝑠𝑑𝑐 : distance between distribution center d and customer c 
 
Objective Functions: 
MinZ1 = ∑ ∑ ∑ dsmvasmv

2
v=1

3
m=1

2
s=1 +∑ ∑ ∑ emcvbmcv

2
v=1

2
d=1

3
m=1 + ∑ ∑ ∑ fdcvrdcv

2
v=1

3
c=1

2
d=1               (6) 

MinZ2 = ∑ ∑ ∑
asmv

hv

2
v=1 CO2(smv)dissm

3
m=1

2
s=1 +∑ ∑ ∑

bmdv

hv

2
v=1 CO2(mdv)dismd

2
d=1

3
m=1 +

                                   ∑ ∑ ∑
rdcv

hv

2
v=1 CO2(dcv)disdc

3
c=1

2
d=1                                                                                   (7) 

 

In Equation (6), 𝑍1 minimizes total transportation costs between suppliers and manufacturers, between 
manufacturers and distribution centers, and between distribution centers and customers. In Equation (7), 𝑍2 
minimizes total amount of 𝐶𝑂2 emissions for two types of vehicles used in transportation. 
 
Constraints: 

∑ ∑ ydcv
3
c=1

2
v=1 = 1, ∀d                                                                       (8) 

∑ ∑ bmdv =
3
m=1

2
v=1 ∑ ∑ rdcv

3
c=1

2
v=1 , ∀d                                           (9) 

rdcv = p × ydcv, ∀d, c, v                                                                   (10) 
∑ bmdv
2
d=1 ≤ H̃(m), ∀m, v                                                               (11) 
∑ ∑ ydcv × p

2
d=1

2
v=1 ≤ G̃(d), ∀c                                                     (12) 

∑ asmv
3
m=1 ≤ S̃(s), ∀s, v                                                                  (13) 

√∑ (∑
bmdv

H̃(m)
2
d=1 −

∑ bmdv
2
d=1

∑ H̃(m)3
j=1

)
2

3
m=1 ≤ 0.7, ∀v                                (14) 

√∑ (∑
rdcv

G̃(d)
3
c=1 −

∑ cdcv
3
c=1

∑ G̃(d)2
d=1

)
2

2
d=1 ≤ 0.7, ∀v                                   (15) 

asmv ≤ hv, ∀s, m, v                                                                            (16) 
bmdv ≤ hv, ∀m, d, v                                                                           (17) 
rdcv ≤ hv, ∀d, c, v                                                                               (18) 
asmv ≥ 0, ∀s,m, v                                                                              (19) 
bmdv ≥ 0, ∀m, d, v                                                                             (20) 
rdcv ≥ 0,∀d, c, v                                                                                 (21) 

 
Equations (8)-(10) represent that the demands of each customer group are completely fulfilled. Equation (11) 
defines fuzzy capacity constraint for manufacturer production, Equation (12) describes fuzzy distribution center 
capacity constraint and Equation (13) represents fuzzy supplier capacity constraint. Constraints on maximum 
capacity utilization for the manufacturers and distribution centers are given in Equation (14) and Equation (15), 
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respectively. In order to provide these constraints, variability, i.e. standard deviation, must be minimum. When 
these two constraints are taken as individual objective function and solved under other constraints, the minimum 
deviation is calculated as 0.7. Thus, the maximum utilization capacity ratio is determined as 0.7 and taken as the 
right-hand side constant. Constraints on the vehicle capacity for transported products are given in Equations (16)-
(18). Non-negativity constraints on transported products are shown in Equations (19)-(21). 
 
The fuzzy capacities of suppliers, manufacturers, distribution centers, and also the demand of customers are given 
in Table 2. Capacities and  𝐶𝑂2  emissions for two vehicle types are shown in Table 3. The product transportation 
costs per unit by two vehicle types from suppliers to manufacturers, from manufacturers to distribution centers 
and from distribution centers to customers are shown in Tables 4, 5 and 6.  
 

Table 2. Fuzzy Capacities Of Suppliers, Manufacturers, Distribution Centers And Demand Of Customers 

 Suppliers 
𝑺̃(𝒊) 

Manufacturers 
𝑯̃(𝒋) 

Distribution Centers  
𝑮̃(𝒏) 

Customers 

(
p

) 
1 (5500,6000) (5500,6500) (6200,7000) 2750 
2 (5400,6000) (920,1080) (6100,7900) 2750 
3 - (2000,3000) - 2750 

 
Table 3. Capacities and emissions for two vehicle types 

  Capacities (kg) 
(𝒉𝒌) 

Amounts of 𝑪𝑶𝟐 (kg/km) 

Vehicle Type Van 3000 0.000263 
Truck 5000 0.000657 

 
Table 4. Product Transportation Costs Per Unit From Suppliers To Manufacturers For Two Vehicle Types 

𝒅𝒊𝒋𝒌 
 

Vehicle Type 
Manufacturers 

1             2               3 

Suppliers 
1 

Van 0.7 0.4 0.6 

Truck 0.4 0.6 0.5 

2 
Van 0.3 0.2 0.1 

Truck 0.5 0.7 0.3 

 
Table 5. Product Transportation Costs Per Unit From Manufacturers To Distribution Centers For Two Vehicle Types 

 
 Distribution Centers 

𝒆𝒋𝒏𝒌 Vehicle Type 1 2 

Manufacturers 

1 
Van 1.5 1.2 

Truck 1.2 1.6 

2 
Van 1.3 1.6 

Truck 1.3 1.7 

3 
Van 1.4 1.3 

Truck 1.4 1.5 

 
Table 6. Product Transportation Costs Per Unit From Distribution Centers To Customers For Two Vehicle Types 

nmkf
 

 Customers 

 Vehicle Type 1 2 3 

Distribution Centers 
1 

Van 0.6 0.7 0.4 
Truck 0.3 0.4 0.6 

2 
Van 0.5 0.3 0.6 

Truck 0.8 0.4 0.9 

 
 

The quantity of 𝑪𝑶𝟐 emission is proportional to the distance transported and the amount of weight carried. The distances 
between the suppliers, manufacturers, distribution centers, and customers in kilometers are shown in Figure 2. 
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Figure 2. Distances Between The Suppliers, Manufacturers, Distribution Centers And, Customers 

 
3.2. Solution of the Problem 
 
In the solution phase, at first, fuzzy parameters are defuzzified using mean of maxima method to convert  into crisp 
ones. Each objective function (𝑍1,𝑍2) is solved individually under the same constraints. The optimal values of the 
decision variables from solving the 𝑍1 are used to calculate the 𝑍2 value. On the other hand, the optimal values of 
the decision variables from solving the 𝑍2 are used to calculate the 𝑍1 value. Thus, pay-off matrix given in Table 7 
is constituted by utilizing these objective function values.  

 
Table 7. Pay-Off Matrix Of Problem 

Min 𝒁𝟏(𝒙) 𝒁𝟐(𝒙) 

𝒁𝟏(𝒙) 16380 0.186 

𝒁𝟐(𝒙) 18617.408 0.152 

𝒁𝒊
𝑳 16380 0.152 

𝒁𝒊
𝑼 18617.408 0.186 

 

The Min-Max approach of Zimmermann (1978) is implemented for the proposed FMONLP problem in order to 
obtain optimal solutions. For this aim, membership functions of triangular, hyperbolic and exponential are 
constructed by using the pay-off matrix in Table 7.  Triangular membership functions related to objective functions  
𝑍1 and 𝑍2, are defined as follows: 

 

𝜇1
𝑇(𝑍1(𝑥)) =

{
 
 

 
 
1,                                 Z1(x) ≤ 16380

18617.408−Zi(x)

18617.408−16380
 ,   16380 ≤ Z1(x) ≤ 18617.408

0,                                Z1(x) ≥ 18617.408

                          (22)    

 

μT2(Z2) =

{
 
 

 
 
1,                        Z2 < 0.152

0.186−Z2

0.186−0.152
,    0.152 ≤ Z2 ≤ 0.186

0,                       Z2 > 0.186

                                                                          (23) 

 

For Z1 and Z2, hyperbolic membership functions are obtained as: 
 

μ1
H(Z1) =

{
 
 

 
 
1,                                                      Z1 < 16380

1

2
tanh (

34997.408

2
− Z1)0.0026 +

1

2
,  16380 ≤ Z1 ≤ 18617.408

0,                                                     Z1 > 18617.408

                   (24) 

 

μ2
H(Z2) =

{
 
 

 
 
1,                                                  Z2 < 0.152

1

2
tanh (

0.338

2
− Z2) 0.0026 +

1

2
, 0.152 ≤ Z2 ≤ 0.186

0 ,                                                 Z2 > 0.186

                                    (25) 
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For Z1 and Z2, exponential membership functions are constituted as follows: 
 

μE
1
(Z1) =

{
 
 

 
 
1 ,                         Z1 < 16380

e
−
Z1−16380
2237.408 −e−1

1−e−1
,       16380 ≤ Z1 ≤ 18617.408

0,                           Z1 > 18617.408

                  (26) 

 

μE
2
(Z2) =

{
 
 

 
 
1 ,                            Z2 < 0.152

e
−
Z2−0.152
0.034 −e−1

1−e−1
,        0.152 ≤ Z2 ≤ 0.186

0,                             Z2 > 0.186

                                               (27) 

 

where;  𝑠 =1,  𝜓1 =
𝑍1−16380

2237.408
  and  𝜓2 =

𝑍2−0.152

0.034
 

 
To convert the fuzzy single-objective nonlinear programming model, common satisfaction level and membership 
functions of the 𝑍1 and 𝑍2 are added to the presented FMONLP model as follows: 
 
                                                                                           𝑀𝑎𝑥 𝜆 
                                                                                                    𝜆 ≤ 𝜇1(𝑍1) 

    𝜆 ≤ 𝜇2(𝑍2)                                                                                                                                         
                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (8) − (21)                                          (28) 

 
The model given in Equation (28) is solved under triangular, hyperbolic, and exponential membership functions 
for objective functions. Optimal solutions and common satisfaction levels are computed and given in Table 8. 
Additionally, optimal solutions obtained under triangular, hyperbolic and exponantial membership functions are 
illustrated in Figure 3, Figure 4, and Figure 5, respectively. 

 
Table 8. Optimal Solutions 

Membership Function Types 

Objective 
Functions 

Triangular Hyperbolic Exponential 

𝒁𝟏 16829.296 16812.158 16829.296 

𝒁𝟐 0.159 0.159 0.159 

𝝀 0.80 0.97 0.72 

Decision Variables 

𝒂𝟏𝟏𝟏 2260.741 2217.894 2260.741 

𝒂𝟏𝟐𝟏 1000 1000 1000 

𝒂𝟐𝟏𝟏 2489.259 2532.106 2489.259 

𝒂𝟐𝟑𝟏 2500 2500 2500 

𝒃𝟏𝟏𝟏 2000 2000 2000 

𝒃𝟏𝟐𝟏 2750 2750 2750 

𝒃𝟐𝟏𝟏 340.095 340.093 340.119 

𝒃𝟐𝟏𝟐 659.905 659.907 659.881 

𝒃𝟑𝟏𝟏 2378.895 2378.897 2378.880 

𝒃𝟑𝟏𝟐 121.105 121.103 121.120 

𝒓𝟏𝟏𝟐 2750 2750 2750 

𝒓𝟏𝟑𝟏 2750 2750 2750 

𝒓𝟐𝟐𝟏 2750 2750 2750 
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4. Sensitivity Analysis 
 
In this section, a sensitivity analysis is carried out in order to show the accuracy of the proposed model. Different 
scenarios are created by making changes for customer demands and for distances between the suppliers, 
manufacturers, distribution centers and, customers. Then, the proposed model is solved under triangular, 
exponential and hyperbolic membership functions.  
 
4.1. Sensitivity to Changes in Customer Demands 
 
Two scenarios are created by decreasing the customer demands in the current model by 10% and increasing them 
by 10%. According to new parameters, the proposed model is solved under triangular, hyperbolic, and exponential 
membership functions and optimal solutions are given in Table 9. 

 
Table 9. Optimal Solutions For Customer Demands 

Customer Demands(-%10) Customer Demands (+%10) 

Membership Function Types Membership Function Types 

Objective 
Functions 

Triangular Hyperbolic Exponential 
Objective 
Functions 

Triangular Hyperbolic Exponential 

𝒁𝟏 14519.361 14539.673 14541.655 𝒁𝟏 18583.485 18604.373 18605.321 

𝒁𝟐 0.143 0.143 0.143 𝒁𝟐 0.200 0.200 0.200 

𝝀 0.74 0.94 0.64 𝝀 0.67 0.87 0.56 

Decision Variables Decision Variables 

𝒂𝟏𝟏𝟏 664.536 665.575 672.185 𝒂𝟏𝟏𝟏 187.586 190.458 193.370 

𝒂𝟏𝟏𝟐 60.464 259.425 252.815 𝒂𝟏𝟏𝟐 2187.414 2384.542 2381.630 

𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 

𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 

𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 

𝒃𝟏𝟏𝟏 1450.000 1450.000 1450.000 𝒃𝟏𝟏𝟏 1824.030 1824.118 1824.366 

𝒃𝟏𝟐𝟏 2475.000 2475.000 2475.000 𝒃𝟏𝟏𝟐 750.970 750.882 750.634 

𝒃𝟐𝟏𝟏 716.687 716.687 716.687 𝒃𝟏𝟐𝟏 3000.000 3000.000 3000.000 

𝒃𝟐𝟏𝟐 283.313 283.313 283.313 𝒃𝟐𝟏𝟏 262.550 262.523 262.476 

𝒃𝟑𝟏𝟏 2500.000 2500.000 2500.000 𝒃𝟐𝟏𝟐 737.450 737.477 737.524 

𝒓𝟏𝟏𝟐 2475 2475 2475 𝒃𝟑𝟏𝟏 2227.941 2227.923 2227.853 

𝒓𝟏𝟑𝟏 2475 2475 2475 𝒃𝟑𝟏𝟐 247.059 247.077 247.147 

𝒓𝟐𝟐𝟏 2475 2475 2475 𝒃𝟑𝟐𝟐 25.000 25.000 25.000 

    𝒓𝟏𝟏𝟐 3025 3025 3025 

    𝒓𝟏𝟑𝟐 3025 3025 3025 

    𝒓𝟐𝟐𝟐 3025 3025 3025 

 
4.2. Sensitivity to Changes in Distances 
 
Six scenarios are created by decreasing the distances on the current model by 20% and increasing it by 20%. These 
changes are made for the distances between the supplier and the manufacturer, between the manufacturer and 
the distribution center, and between the distribution center and the customer. According to the new parameters, 
the model is solved according to the triangular, hyperbolic and, exponential membership functions. Comparison 
results are given in Tables 10, 11 and 12, respectively.   
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Table 10. Optimal Solutions For The Distance Between Supplier And Manufacturers 

Change (-%20) Change (+%20) 

Membership Function Types Membership Function Types 

Objective 
Functions 

Triangular Hyperbolic Exponential 
Objective 
Functions 

Triangular Hyperbolic Exponential 

𝒁𝟏 16282.546 16288.043 16290.023 𝒁𝟏 16175.038 16197.326 16197.409 

𝒁𝟐 0.157 0.157 0.157 𝒁𝟐 0.171 0.171 0.171 

𝝀 0.68 0.90 0.58 𝝀 0.70 0.91 0.59 

Decision Variables Decision Variables 

𝒂𝟏𝟏𝟏 657.152 626.809 633.409 𝒂𝟏𝟏𝟏 706.257 714.608 715.894 

𝒂𝟏𝟏𝟐 874.848 1123.191 1116.591 𝒂𝟏𝟏𝟐 843.743 1035.392 1034.106 

𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 

𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 

𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 

𝒃𝟏𝟏𝟏 2000.000 2000.000 2000.000 𝒃𝟏𝟏𝟏 1610.536 1609.811 1608.804 

𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 𝒃𝟏𝟏𝟐 389.464 390.189 391.196 

𝒃𝟐𝟏𝟏 340.095 340.084 340.098 𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 

𝒃𝟐𝟏𝟐 659.905 659.916 659.902 𝒃𝟐𝟏𝟏 396.562 396.928 397.435 

𝒃𝟑𝟏𝟏 2378.895 2378.902 2378.893 𝒃𝟐𝟏𝟐 603.438 603.072 602.565 

𝒃𝟑𝟏𝟐 121.105 121.098 121.107 𝒃𝟑𝟏𝟏 2500.000 2500.000 2500.000 

𝒓𝟏𝟏𝟐 2750 2750 2750 𝒓𝟏𝟏𝟐 2750 2750 2750 

𝒓𝟏𝟑𝟏 2750 2750 2750 𝒓𝟏𝟑𝟏 2750 2750 2750 

𝒓𝟐𝟐𝟏 2750 2750 2750 𝒓𝟐𝟐𝟏 2750 2750 2750 

 
Table 11. Optimal Solutions For The Distance Between Manufacturers And Distribution Centers 

Change (-%20) Change (+%20) 

Membership Function Types Membership Function Types 

Objective 
Functions 

Triangular Hyperbolic Exponential 
Objective 
Functions 

Triangular Hyperbolic Exponential 

𝒁𝟏 16294.805 16317.354 16317.612 𝒁𝟏 16182.292 16227.828 16202.053 

𝒁𝟐 0.146 0.146 0.146 𝒁𝟐 0.177 0.177 0.177 

𝝀 0.66 0.87 0.55 𝝀 0.69 0.90 0.59 

Decision Variables Decision Variables 

𝒂𝟏𝟏𝟏 1275.893 1281.953 1282.813 𝒂𝟏𝟏𝟏 340.974 426.092 340.176 

𝒂𝟏𝟏𝟐 274.107 468.047 467.187 𝒂𝟏𝟏𝟐 1209.026 1323.908 1409.824 

𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 

𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 

𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 

𝒃𝟏𝟏𝟏 1440.125 1442.560 1442.559 𝒃𝟏𝟏𝟏 2000.000 2000.000 2000.000 

𝒃𝟏𝟏𝟐 559.875 557.440 557.441 𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 

𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 𝒃𝟐𝟏𝟏 336.782 336.782 336.783 

𝒃𝟐𝟏𝟏 470.771 469.843 469.843 𝒃𝟐𝟏𝟐 663.218 663.218 663.217 

𝒃𝟐𝟏𝟐 529.229 530.157 530.157 𝒃𝟑𝟏𝟏 2380.984 2380.984 2380.984 

𝒃𝟑𝟏𝟏 2500.000 2500.000 2500.000 𝒃𝟑𝟏𝟐 119.016 119.016 119.016 

𝒓𝟏𝟏𝟐 2750 2750 2750 𝒓𝟏𝟏𝟐 2750 2750 2750 

𝒓𝟏𝟑𝟏 2750 2750 2750 𝒓𝟏𝟑𝟏 2750 2750 2750 

𝒓𝟐𝟐𝟏 2750 2750 2750 𝒓𝟐𝟐𝟏 2750 2750 2750 
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Table 12. Optimal Solutions For The Distance Between Distribution Centers And Costumers 

Change (-%20) Change (+%20) 

Membership Function Types Membership Function Types 

Objective 
Functions 

Triangular Hyperbolic Exponential 
Objective 
Functions 

Triangular Hyperbolic Exponential 

𝒁𝟏 16165.714 16215.788 16187.411 𝒁𝟏 16835.169 16798.550 16835.169 

𝒁𝟐 0.154 0.154 0.154 𝒁𝟐 0.166 0.166 0.166 

𝝀 0.70 0.90 0.60 𝝀 0.66 0.87 0.56 

Decision Variables Decision Variables 

𝒂𝟏𝟏𝟏 514.370 615.792 521.328 𝒂𝟏𝟏𝟏 2275.423 2183.874 2275.423 

𝒂𝟏𝟏𝟐 1035.630 1134.208 1228.672 𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 

𝒂𝟏𝟐𝟏 1000.000 1000.000 1000.000 𝒂𝟐𝟏𝟏 2474.577 2566.126 2474.577 

𝒂𝟐𝟏𝟏 3200.000 3000.000 3000.000 𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 

𝒂𝟐𝟑𝟏 2500.000 2500.000 2500.000 𝒃𝟏𝟏𝟏 2000.000 2000.000 2000.000 

𝒃𝟏𝟏𝟏 1771.344 1770.168 1770.042 𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 

𝒃𝟏𝟏𝟐 228.656 229.832 229.958 𝒃𝟐𝟏𝟏 339.980 340.095 340.040 

𝒃𝟏𝟐𝟏 2750.000 2750.000 2750.000 𝒃𝟐𝟏𝟐 660.020 659.905 659.960 

𝒃𝟐𝟏𝟏 349.355 349.365 349.398 𝒃𝟑𝟏𝟏 2378.968 2378.895 2378.931 

𝒃𝟐𝟏𝟐 650.645 650.635 650.602 𝒃𝟑𝟏𝟐 121.032 121.105 121.069 

𝒃𝟑𝟏𝟏 2469.560 2470.030 2470.059 𝒓𝟏𝟏𝟐 2750 2750 2750 

𝒃𝟑𝟐𝟏 30.440 29.970 29.941 𝒓𝟏𝟑𝟏 2750 2750 2750 

𝒓𝟏𝟏𝟐 2750 2750 2750 𝒓𝟐𝟐𝟏 2750 2750 2750 

𝒓𝟏𝟑𝟏 2750 2750 2750     

𝒓𝟐𝟐𝟏 2750 2750 2750     

 
According to the results of the sensitivity analysis, the hyperbolic membership function provides the highest level 
of satisfaction in all scenarios created by the changes made in the parameters. Therefore, it is suggested that the 
hyperbolic membership function can be used to obtain optimal solutions for the considered FMONLP problem. 
 
5. Result and Discussion 
 
In this study, a green supply chain network model on the basis of transportation problem is presented. This model is 
remarkable because of the nonlinear structure of its constraints and considering the environmental impact factor, especially 
𝑪𝑶𝟐 emissions. The model is examined as a FMONLP problem in which the total transportation costs and total 𝑪𝑶𝟐 emissions 
generated by two different vehicles during transportation are minimized. In the presented FMONLP model, the most efficient 
membership function is tried to be determined and tested on a numerical example. 
 
It is found that the maximum common satisfaction level is 𝝀 = 𝟎.𝟗𝟕 using the hyperbolic membership function. Total 
transportation cost is minimized in the first objective function 𝒁𝟏. The total transportation cost calculated using both triangular 
and exponential membership functions are 𝒁𝟏 = 𝟏𝟔𝟖𝟐𝟗. 𝟐𝟗𝟔, while it is calculated as 𝒁𝟏 = 𝟏𝟔𝟖𝟏𝟐. 𝟏𝟓𝟖 using the hyperbolic 
membership function. In the second objective function 𝒁𝟐, total amount of 𝑪𝑶𝟐 emission is minimized. The total 𝑪𝑶𝟐 emission 
calculated using triangular, exponential, and hyperbolic membership functions are equal, that is, 𝒁𝟐 = 𝟎. 𝟏𝟓𝟗 kg.  

 
 

Figure 3. Optimal Distribution Network Under Triangular Membership Function 



AKARÇAY PERVIN and YAPICI PEHLIVAN 10.21923/jesd.1062118 

 

870 
 

 
 

Figure 4. Optimal Distribution Network Under Hyperbolic Membership Function 

 

Figure 5. Optimal Distribution Network Under Exponential Membership Function 

 
According to the results, the nonlinear hyperbolic membership function is provided a higher satisfaction level than 
the linear triangular membership function for the proposed FMONLP model. Sensitivity analyses are then carried 
out to measure the sensitivity of the model results for different parameter values for demand of customers and 
also distances between suppliers, manufacturers, distribution centers, and customers.  
The increasing or decreasing demand of customers directly affects the satisfaction levels (λ) of the presented 
model. For instance, a 10% decrease in demand of customers results in 0.74, 0.94, and 0.64 for triangular, 
hyperbolic and exponential membership functions, respectively, while a 10% increase in demand of customers 
results in 0.67, 0.87, and 0.56. 
 
On the other hand, the increasing or decreasing distances between suppliers, manufacturers, distribution centers, 
and customers have important effects on the satisfaction levels (λ) of the presented model. For example, a 20% 
decrease in distances results in 0.68, 0.90, and 0.58,  for triangular, hyperbolic and exponential membership 
functions, respectively, while. a 20% increase in distances results in 0.70, 0.91, and 0.59. Similar results are 
obtained according to other changes in distances.  Thus, the proposed FMONLP model with hyperbolic 
membership functions performs better than triangular and exponential in all of the scenarios. Although linear 
membership functions have been applied in real life problems due to their ease of implementation in most of the 
studies, it is seen that nonlinear membership functions also give good solutions.  
 
In future studies, the proposed FMONLP model can be applied to more complicated GSCN models and it can be 
solved by adding various constraints and objective functions in linear or nonlinear form. FMONLP models can be 
compared under different nonlinear membership functions, different defuzzification techniques for fuzzy 
parameters or different linearization techniques. In addition, other solution methods in the literature proposed 
for FMOP problems can be carried out and comparisons can be made under various linear and/or nonlinear 
membership functions. 
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