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Fuzzy sets have been applied to various decision-making problems when there is
uncertainty in real-life problems. In decision-making problems, objective functions
and constraints sometimes cannot be expressed linearly. In such cases, the problems
discussed are expressed by nonlinear programming models. Fuzzy multi-objective
programming models are problems containing multiple objective functions, where
objective functions and/or constraints include fuzzy parameters. Membership
functions are crucial to obtain optimal solution of fuzzy multi-objective
programming model. In this study, a green supply chain network model with fuzzy
parameters is proposed. Proposed model with nonlinear constraints is a fuzzy
multi-objective nonlinear programming model that minimizes both transportation
costs and emissions generated by two vehicle types during transportation. The
model is used in Zimmermann's Min-Max approach by considering triangular,
hyperbolic and exponential membership functions and optimal solutions are
obtained. When optimal solutions are compared, it is seen that optimal solution
obtained using the hyperbolic membership function is better than the optimal
solutions obtained from triangular and exponential ones. Maximum common
satisfaction level calculated using hyperbolic membership function for proposed
model is A=0.97. Sensitivity analysis is also carried out by taking into account
distances between suppliers, manufacturers, distribution centers and customers, as
well as customer demands.

CESITLI UYELIK FONKSIYONLARI ALTINDA BULANIK COK AMACLI
DOGRUSAL OLMAYAN PROGRAMLAMA PROBLEMLERI: KARSILASTIRMALI

BIR ANALIZ

Anahtar Kelimeler

0z

Yesil Tedarik Zinciri,
Bulanik Cok Amagh
Dogrusal Olmayan
Programlama, Bulanik Cok
Amacli Programlama,
Bulanik Kiimeler,

Uyelik Fonksiyonlari,
Zimmermann'in Min-Max
Yaklasimi.

Bulanik kiimeler, gercek hayat problemlerinde belirsizlik olmas1 durumunda gesitli
karar verme problemlerine uygulanmaktadir. Karar verme problemlerinde amag
fonksiyonlar1 ve kisitlar bazen dogrusal olarak ifade edilemez. Bu gibi durumlarda,
ele alinan problemler dogrusal olmayan programlama modelleri ile ifade edilir.
Bulanik ¢ok amagh programlama modelleri, amag¢ fonksiyonlar1 ve/veya kisitlarin
bulanik terimler icerdigi birden fazla amag fonksiyonu olan problemlerdir. Bulanik
¢ok amacgh programlama modellerinin ¢ézimiinde kullanilan tyelik fonksiyonlari,
karar verme asamasinda ¢ok 6nemlidir. Bu ¢alismada, bulanik parametrelere sahip
bir yesil tedarik zinciri ag1 modeli dnerilmistir. Dogrusal olmayan kisitlar1 olan
model, hem tagima maliyetlerini hem de tasima esnasinda iki arag tipi tarafindan
iiretilen emisyonlar1 en aza indiren bulanik ¢ok amagh dogrusal olmayan
programlama modelidir. Model, tiggensel, hiperbolik ve iistel iiyelik fonksiyonlar:
gozoniine alinarak Zimmermann'in Min-Max yaklasiminda kullanilmis ve optimal
coziimler elde edilmistir. Optimal ¢ozlimler karsilastirildiginda, hiperbolik iiyelik
fonksiyonu kullanilarak elde edilen optimal ¢dziimiin tggensel ve lstel iiyelik
fonksiyonlarindan elde edilen optimal ¢ozlimlerden daha iyi oldugu gorilmiistiir.

" ilgili yazar / Corresponding author: nimet@selcuk.edu.tr, +90-332-223-3991

857


mailto:nimet@selcuk.edu.tr

AKARCAY PERVIN and YAPICI PEHLIVAN 10.21923/jesd. 1062118

Onerilen model icin hiperbolik iiyelik fonksiyonu kullamilarak hesaplanan
maksimum ortak memnuniyet diizeyi A=0.97’dir. Calismada, miisteri taleplerinin
yani sira tedarikgiler, iireticiler, dagiim merkezleri ve miisteriler arasindaki
mesafeler dikkate alinarak duyarlilik analizi de yapilmistir.
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Highlights

e A fuzzy multi-objective nonlinear programming (FMNOLP) model for a green supply chain
network (GSCN) is proposed.

e The model includes linear constraints with fuzzy parameters, nonlinear constraints, and two
objective functions.

e Both transportation costs and emissions generated by two vehicle types during transportation
are minimized.

e The FMNOLP model is solved by Zimmermann's Min-Max approach under various
membership functions.

Purpose and Scope

The aim of the study is to propose a fuzzy multi-objective nonlinear programming (FMNOLP) model for a green
supply chain network (GSCN) model. The proposed model includes linear constraints with fuzzy parameters,
nonlinear constraints, and two objective functions that minimize both transportation costs and emissions
generated by two vehicle types during transportation.

Design/methodology/approach

The proposed FMNOLP model is solved by using Zimmermann's Min-Max approach under triangular, hyperbolic
and exponential membership functions.

Findings

The optimal solution obtained for the FMNOLP model using the hyperbolic membership function is better than
the optimal solutions obtained from the triangular and exponential membership functions.

Research limitations/implications

The limitation of the study is to consider a FMONLP model with two objective functions with linear and nonlinear
constraints for a simple green supply chain network structure. In future studies, the proposed FMONLP model
can be applied to more complicated GSCN models. Different nonlinear membership functions, different
defuzzification techniques for fuzzy parameters or different linearization techniques can be handled. In addition,
other solution methods in the literature proposed for FMOP problems can be applied under various linear and/or
nonlinear membership functions.
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Originality

In the study, FMNOLP model which includes two objective functions as well as linear and nonlinear constraints
is proposed. Linear constraints are dealt with demands of customers, fuzzy capacities of manufacturers,
distribution centers and suppliers, and vehicle capacities. Nonlinear constraints are related to constraints on
maximum capacity utilization for the manufacturers and distribution centers. In order to provide this, variability,
i.e.standard deviation, must be minimum. The variability is the constant obtained by taking these two constraints
as individual objective functions and solving them under the other constraints, and is added to these constraints
as a right-hand side. Proposed FMNOLP model for green supply chain network is solved under various
membership functions. A sensitivty analysis is also performed through capoacities and distances.

1. Introduction

Rapidly increased environmental problems adversely affect the world in various aspects such as health problems,
costs, air pollution, environmental pollution, and the deterioration of the natural life cycle and pose a threat to
future generations. In recent years, the effects of global warming and related climate change have reached serious
levels, causing plenty of living creatures and even natural resources to face many dangers, especially destruction.
Among the causes of climate change, the uses of greenhouse gases and insoluble raw materials in nature have a
large share. These problems caused by people can still be prevented and compensated. For this purpose, many
companies have created green supply chains by making some changes in supply chain management through
environmentally friendly strategies and legal regulations.

Some real-life problems may include both fuzzy parameters and multiple objectives. For companies, cost is an
important factor in the construct of green supply chain besides the amount of environmental damage. In some
cases, high costs may be required due to the high technology used to prevent environmental pollution. In such
cases, while trying to minimize the damage to the environment, the cost for the sustainability of the companies
should be kept in mind and the problem should be considered as a fuzzy multi-objective programming model.
The Min-Max approach proposed by Zimmermann (1978) is a method that combines fuzzy set theory and multi-
objective programming. In addition, Sakawa and Yano (1985), Bit et al. (1993), Kuwano (1996), Liang and Cheng
(2009) and etc. contributed to the literature by developing some approaches and integrated algorithms to solve
fuzzy multi-objective programming problems.

The multi-objective nonlinear programming problem involving fuzzy parameters was first introduced by Orlovski
etal. (1984). Afterwards, Sakawa and Yano (1985) introduced a multi-objective nonlinear programming (MONLP)
model with fuzzy objective functions. This model was discussed on a numerical example using triangular,
exponential, hyperbolic, piecewise linear, and inverse hyperbolic membership functions. Zhao and Bose (2002)
assessed different types of membership functions like triangular, trapezoidal, Gaussian, sigmoidal, and polynomial,
in fuzzy control of an induction motor driver. At first, fuzzy controller sensitivity was analyzed and then
comparisons between triangular membership functions and different membership functions were made. Bit
(1993) aimed to obtain efficient and best compromise solutions for a fuzzy multi-objective transportation problem
with capacity constraints by using hyperbolic membership function. In order to show the effectiveness of the
methodology, solutions were obtained by fuzzy programming with linear and hyperbolic membership functions
on a numerical example and a comparison was made.

In a fuzzy context, Wang and Liang (2004) proposed a fuzzy multi-objective linear programming (FMOLP) model
to solve the multi-product aggregate production planning choice problem. For all objective functions, the problem
was transformed into a linear programming problem using a piecewise linear membership function. In order to
find solutions for integrated production/transport planning issues with fuzzy multiple objective functions, Liang
(2007) proposed a fuzzy goal programming (FGP) approach. In the proposed approach, piecewise linear
membership functions was considered for each of the fuzzy goals. Zangiabadi and Maleki (2007) proposed a fuzzy
goal programming approach for the multi-objective transportation problem. They focused on minimization of the
negative deviation variables from 1 to specify an optimal compromise solution assuming the objective functions
have fuzzy goals. One of the nonlinear membership functions, hyperbolic, was used for each objective function in
order to define all fuzzy goals.

Bodkhe et al. (2010) presented a fuzzy multi-objective programming method considering hyperbolic membership
function for solving bi-objective transportation problem to compare with those obtained from the triangular
membership function. Peidro and Vasant (2011) addressed the multi-objective problem of transportation
planning decision (TPD) problem which has fuzzy goals, supplies and forecast demands. In order to solve
considered problem in which fuzzy data is specified by modified S-curve membership functions, an interactive
method was presented. In the proposed method, it was aimed to simultaneously minimize total production costs,
transportation costs, and total delivery time by considering several constraints such as budget, available supply,
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machine capacities, forecasted demand, and warehouse space. Using the interactive fuzzy approach, the
performance of the membership function types of S-curve and linear, are compared for solving the multi-objective
TPD problem and a agreement solution is obtained.

Zangiabadi and Maleki (2013) carried out FGP to a linear multiobjective transportation problem. Nonlinear
membership functions like hyperbolic and exponential were used to obtain an optimal compromise solution for
multi-objective transportation problem and compare it with the solution obtained using the linear membership
function. Singh and Yadav (2018) presented intuitionistic fuzzy multi-objective linear programming (ITFMOLP)
problems which have mixed constraints. Triangular intuitionistic fuzzy numbers were considered for constraint
functions, objective function coefficients, and right hand sides of constraints. The ITFMOLP problem was
transformed into a multi- objective linear programming problem using the accuracy function, and then it was
transformed into a fuzzy goal programming (FGP) model considering scalarization technique. Linear, parabolic
and hyperbolic membership functions were used for solving the FGP problem to obtain optimal results. Medina-
Gonzalez et al. (2018) introduced a fuzzy multi-objective optimization model for sustainable design and planning
related to water supply chains considering nonlinear membership functions. Linear membership functions are
taken into account for economic profit and water consumption objectives, while a nonlinear membership function
was handled for land usage objective.

Lietal.(2020), provides an optimal model for allocating agricultural water and soil resources under consideration.
Heuristic fuzzy numbers, fuzzy reliability restricted programming, mixed integer nonlinear programming, and
multi-objective programming are all part of the approach. For model solution, a nonlinear membership function
and fuzzy programming approach are applied. Kara and Kocken (2021) presented a multi-objective solid transport
problem model that takes into account to evaluate the performance oflinear and nonlinear membership functions.
The model was solved using both the hyperbolic and linear membership functions by a numerical example. From
the results, it was seen that the hyperbolic membership function gives the best optimal solutions. Miah et al. (2022)
addressed the multi-objective goal programming approach for the transportation problem. At the solution phase,
the optimal solutions were compared through exponential and hyperbolic membership functions. Das (2022)
handled a multi-objective inventory problem using several techniques such as geometric programming, fuzzy
programming technique with hyperbolic membership function, and fuzzy nonlinear programming.

In this study, it is aimed to examine whether the selected membership functions make any difference for the
solution of fuzzy multi-objective nonlinear supply chain problems involving uncertainty.

Remainder of this study is arranged as follows: Fuzzy multi-objective programming models, Zimmerman's Min-
Max approach and various membership functions related to the approach are explained in Section 2. In Section 3,
a fuzzy multi-objective nonlinear supply chain problem is considered as a numerical example. Comparative results
according to sensitivity analysis considering various membership functions are given in Section 4. Future studies
are given in Section 5.

2. Fuzzy Multi-Objective Programming Model

In real world decision-making problems, uncertainties have been existed due to decision makers may have not
information regarding exact values of the coefficients or parameters related to the problem. Applying the fuzzy set
theory proposed by Zadeh (1965), more efficient and more flexible solutions are provided for such problems.
Bellman and Zadeh (1970), who carried out the first study in which fuzzy sets were applied to decision making
problems, proposed a fuzzy decision model characterized by membership functions using minimum operators.
Zimmermann (1978) extended the fuzzy linear programming approach to multi-objective linear programming
(MOLP) problems and this method was called the Min-Max approach. In the study, the extended problem was
transformed into a classical LP problem by defining each objective function with its corresponding membership
function and using the minimum operator proposed by Bellman and Zadeh (1970).

Fares and Kaminska (1995) modelled a problem with fuzzy nonlinear objective function and fuzzy constraints
using nonlinear membership functions. Verma et al. (1997) presented an optimal solution by using two nonlinear
membership functions, hyperbolic and exponential, to solve the multi-objective transportation problem. Wang
(2004) introduced a fuzzy multi-objective linear programming (FMOLP) model to obtain a solution for the multi-
product aggregate production planning decision problem which contains fuzzy parameters. The model was solved
by considering piecewise membership function for all objective functions. Liang (2006) presented an interactive-
FMOLP method with piecewise linear membership function for solving transportation problems. Zeng et al. (2010)
presented a FMOLP model with triangular fuzzy numbers. The model and its corresponding fuzzy goal
programming problem were converted into to crisp ones. Hu (2017) introduced a multi-objective programming
model for the printed circuit board (PCB) line assignment problem on the basis of the transportation problem and
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assignment problem. To obtain a solution for the presented model, the fuzzy goal programming method with
nonlinear hyperbolic membership function was applied.

The fuzzy multi-objective programming (FMOP) model is given as follows:

Min Z;(x) = (Z1(x), Zz (%), ..., Zx(x))"
gi(x)<0,j=1,..,t (@)

In Equation (1), Z;(x) denotes the objective function i (i = 1, ..., k), x indicates decision variables and g;(x) defines
inequality constraintj (j = 1, ..., t).

The FMOP given in Equation (1) is called FMOLP in case of objective functions and constraints are all linear. On
the other hand, it is called fuzzy multi-objective nonlinear programming (FMONLP) when at least one of the
objective functions and/or constraints are nonlinear. Various methods have been introduced for solving the FMOP
models.

In this study, a FMONLP model is introduced for green supply chain network. In the solution phase of this model,
Zimmermann (1978)’s Min-Max approach is applied which is explained step by step below.

Step 1. The FMONLP model is constructed.

Step 2. Z;(x)'s,i = 1, ..., k are solved individually under the same constraints.

Step 3. Using optimal solutions obtained from Step 2, corresponding values for each objective function is
calculated at each optimal solution derived. Pay-off matrix is created using each optimal solution corresponding
to each objective function.

Step 4. The lower value (ZF) and the upper value (Z/) of all objective functions are determined from the pay-off
matrix given in Table 1.

Table 1. Pay-off matrix

Min Z;(x) Z;(x) .. Zp(x)
Zi(x) Zn Zy AT
Zy(x) Zy Zy; AT
Zy(x) Zia Zy o Ly
z} z; V43 S 47
z! zy zy - ZY

Step 5. Membership function ui(Zi(x)) for each objective function is obtained by using the values of Z!and Z'
given in Table 1.

Triangular, hyperbolic and exponential type membership functions for the objective function Z;(x) are defined in
Equations (2), (3), and (4), respectively.

(1, Zi(x) < ZF
AR A
W (Zi) = i LAY sz <z @
0, Zi(x) = ZV
1, Zi(x) < 7t
U L
W'(zi0) = {2tanh (E - z) o +1, Zb < Z,(0) < 7Y 3
0, Zi(x) = 7!
1, Zi(x) < 7}
—sPi(X) _a—s
mE(Z;x) = %' Iy <Z(x) < Z} 4
o , Zi(x) = 77
Zi(x)-Zf

In Equations (3) and (4), a; = ﬁ (%) = s is a non-zero parameter defined by desicion maker.

U L
7P -7}
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Step 6. The membership functions corresponding to each objective function are added to model given in Equation
(1) as constraints. Thus, problem is converted into a single objective programming model by using variable A which
defines the common satisfaction level for all objective functions, as follows:
Max A
A< w(Zi®)i=12, ..k
g(x)<0,j=1,..,t
x>0
Ae(o0,1] )

The solution to the single-objective programming model given in Equation (5) provides an optimal solution for
the FMONLP model.

3. Numerical Example

People and institutions have started to interest in environmental problems arising from logistics services since
1980s. The concept of green supply chain network (GSCN) has emerged with the development of modern logistics
management and supply chain management Chunguang atal. (2008). The GSCN was introduced by the University
of Michigan Research Society in 1996 to assess environmental impacts and resource use in the supply chain
Zhang(2005). The GSCN aims to minimize or eliminate hazardous chemicals, emissions, energy, and solid wastes
arising from supply chain processes Chin et al.(2015). Shaw et al. (2012) introduced a combined approach to the
carbon emission problem by using FMOLP and fuzzy analytic hierarchy process to select most preferred supplier.
Kannan et al. (2013) presented a FMOLP model for GSCN problem using fuzzy AHP, TOPSIS and Zimmermann'’s
Min-Max approaches. Mohammed and Wang (2017) introduced a fuzzy multi-objective optimization model for a
meat supply chain network under multiple uncertainties. In the model, the goal is to reduce total transportation
costs, implementation costs, COz emissions from transportation, product distribution time, and average delivery
rate while satisfying product quantities. In the solution phase, methods of LP-metrics, goal programming, and e-
constraint were used to optimize the objective functions simultaneously.

3.1. Problem Description

This section deals with a green supply chain network (GSCN) model that minimizes both total transport costs and
total CO2 emissions between suppliers, manufacturers, distribution centres, and customers. This model includes
two suppliers, three manufacturers, two distribution centers, three customer groups, and two different vehicle
types, as illustrated in Figure 1. It is aimed to develop a FMONLP model for proposed GSCN that takes into account
fuzzy capacities of suppliers, manufacturers, distribution centres, and demand of customers. Two objective
functions are simultaneously minimized. The first one minimizes transport costs between suppliers, factories,
distribution centers and customers. The second one minimizes the amount of COz emissions for two different types
of vehicles used during transportation. In order to determine the amount of product to be transported on which
route with which vehicle type, the proposed FMONLP is solved under triangular membership function which is a
linear membership function, as well as hyperbolic and exponential membership functions which are non-linear
membership functions (Akarcay, 2019).

Manufacturers Distribution Centers Customers

b

mdy ¢ /‘ ‘

Suppliers
a

& smy

&
BB B
? 3

Figure 1. Proposed Green Supply Chain Network Model
The indices, decision variables, parameters, objective functions, and constraints related to the construction of the

mathematical model of the proposed FMONLP problem are defined as follows:
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Indices:

s: suppliers (s=1,2)

m: manufacturers (m=1,2,3)
d: distribution centers (d=1,2)
c: customers (c=1,2,3)

v: vehicle types (v=1,2)

Decision variables:
Asmy: quantity of the product transported from supplier s to manufacturer m with vehicle v
b4t quantity of the product transported from manufacturer m to distribution center d with vehicle v
T4cpt quantity of the product transported from distribution center d to customer ¢ with vehicle v
1, if distribution center d serves customer c with vehicle v
Ydcv =
0, otherwise
Parameters:
h,: transportation capacity of vehicle type v
dgmy: Unit cost of product transportation from supplier s to manufacturer m with vehicle v
emay: unit cost of product transportation from manufacturer m to distribution center d with vehicle v
facv: unit cost of product transportation from distribution center d to customer c with vehicle v
CO0,: quantity of CO, produced by vehicles per km
p: demand of customers
G (d): fuzzy capacity of distribution center d
H(m): fuzzy capacity of manufacturer m
S(s): fuzzy capacity of supplier s
disspy,: distance between supplier s and manufacturer m
dis;,gq: distance between manufacturer m and distribution center d
disy.: distance between distribution center d and customer c

Objective Functions:
Minzl = Zgzl ngnzl Z\ZI=1 dsmvasmv + Zr3n:1 25:1 2\27:1 emcvbmcvb+ 23:1 22:1 2\21:1 fdcvrdcv (6)
. asm . .
MinZ, = ¥2_; Xi-1 Xo=s ;_VV COz(smv)dissm + =1 Xz X9 K}T_Vdv CO2(mav)disma +
r .
Yia XXl ﬁiv CO2(devydisge (7)

In Equation (6), Z; minimizes total transportation costs between suppliers and manufacturers, between
manufacturers and distribution centers, and between distribution centers and customers. In Equation (7), Z,
minimizes total amount of C 0, emissions for two types of vehicles used in transportation.

Constraints:
2\21=1 Zg=1 Ydev = 1,vd ®
\21=1 Z?n:l bmay = 23:1 23:1 I4ev, Vd 9)
Tdey = P X Ydev, Vd, ¢,V (10)
Y41 bmay < H(m),vm,v 1
2\2/=1 Zﬁ:l Ydey x p < G(d),ve (12)
33 —1asmy < S(s),Vs, v (13)
2
3 2 bmdv _ Eé=1bmdv) <
J m=1 (Zdzl A~ 37, m) =07V (14)
2 3 Tdcv 22=1Cdcv 2
Zd:l( C=1G(d)_m> <0.7,vv (15)
asmyv < hy, Vs, m,v (16)
bmav < hy,Vm,d,v a7
rqev < hy,Vd, c, v (18)
Asmy = 0,Vs, m,v (19)
by = 0,Vm,d, v (20)
rgey = 0,Vd, ¢, v 21

Equations (8)-(10) represent that the demands of each customer group are completely fulfilled. Equation (11)
defines fuzzy capacity constraint for manufacturer production, Equation (12) describes fuzzy distribution center
capacity constraint and Equation (13) represents fuzzy supplier capacity constraint. Constraints on maximum
capacity utilization for the manufacturers and distribution centers are given in Equation (14) and Equation (15),
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respectively. In order to provide these constraints, variability, i.e. standard deviation, must be minimum. When
these two constraints are taken as individual objective function and solved under other constraints, the minimum
deviation is calculated as 0.7. Thus, the maximum utilization capacity ratio is determined as 0.7 and taken as the
right-hand side constant. Constraints on the vehicle capacity for transported products are given in Equations (16)-
(18). Non-negativity constraints on transported products are shown in Equations (19)-(21).

The fuzzy capacities of suppliers, manufacturers, distribution centers, and also the demand of customers are given
in Table 2. Capacities and CO, emissions for two vehicle types are shown in Table 3. The product transportation
costs per unit by two vehicle types from suppliers to manufacturers, from manufacturers to distribution centers
and from distribution centers to customers are shown in Tables 4, 5 and 6.

Table 2. Fuzzy Capacities Of Suppliers, Manufacturers, Distribution Centers And Demand Of Customers
Suppliers Manufacturers Distribution Centers Customers

NO) H(j) G(n) ( p )
1 (5500,6000) (5500,6500) (6200,7000) 2750
2 (5400,6000) (920,1080) (6100,7900) 2750
3 - (2000,3000) - 2750

Table 3. Capacities and emissions for two vehicle types
Capacities (kg) Amounts of CO, (kg/km)

(hy)
Vehicle Type  Van 3000 0.000263
Truck 5000 0.000657

Table 4. Product Transportation Costs Per Unit From Suppliers To Manufacturers For Two Vehicle Types

Manufacturers
diji Vehicle Type 1 2 3
Van 0.7 0.4 0.6
. Truck 0.4 0.6 0.5
Suppliers Van 03 02 01
2 Truck 0.5 0.7 0.3

Table 5. Product Transportation Costs Per Unit From Manufacturers To Distribution Centers For Two Vehicle Types
Distribution Centers

€jnk Vehicle Type 1 2
Van 1.5 1.2
Truck 1.2 1.6
Van 1.3 1.6
Manufacturers 2 Truck 13 17
3 Van 1.4 1.3
Truck 1.4 1.5

Table 6. Product Transportation Costs Per Unit From Distribution Centers To Customers For Two Vehicle Types

f Customers
nmk

Vehicle Type 1 2 3
Van 06 0.7 04
Truck 03 04 0.6
Van 05 03 0.6
Truck 0.8 04 09

Distribution Centers

The quantity of CO, emission is proportional to the distance transported and the amount of weight carried. The distances
between the suppliers, manufacturers, distribution centers, and customers in kilometers are shown in Figure 2.
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Suppliers Manufacturers
i

ﬂ 100 km 35 km

Distribution Centers ~ Customers

‘v,. ,,/ /

Figure 2. Distances Between The Suppliers, Manufacturers, Distribution Centers And, Customers

3.2. Solution of the Problem

In the solution phase, at first, fuzzy parameters are defuzzified using mean of maxima method to convert into crisp
ones. Each objective function (Z;,Z,) is solved individually under the same constraints. The optimal values of the
decision variables from solving the Z; are used to calculate the Z, value. On the other hand, the optimal values of
the decision variables from solving the Z, are used to calculate the Z; value. Thus, pay-off matrix given in Table 7
is constituted by utilizing these objective function values.

Table 7. Pay-Off Matrix Of Problem
Min Z;(x) Z5(x)

Z,(x) 16380  0.186

Z,(x) 18617.408 0.152

zt 16380  0.152

Z? 18617.408 0.186

The Min-Max approach of Zimmermann (1978) is implemented for the proposed FMONLP problem in order to
obtain optimal solutions. For this aim, membership functions of triangular, hyperbolic and exponential are

constructed by using the pay-off matrix in Table 7. Triangular membership functions related to objective functions
Z4 and Z,, are defined as follows:

1, 71(x) < 16380
W (2,(00) = { o200 16380 < 7, (x) < 18617.408 (22)
7,(x) > 18617.408
1, Z, < 0.152
WT,(Zy) = { e, 0.152 < 7, < 0.186 (23)
0, Z, > 0.186
For Z, and Z,, hyperbolic membership functions are obtained as:
1, Z, < 16380
Wi(zy) = { stanh (22242 — 7,)0.0026 +3, 16380 < Z; < 18617.408 (24)
0, Z, > 18617.408
1, 7, < 0.152
W (Z;) = {3ta h(@—zz)ooozm 0.152 < Z, < 0.186 (25)

lo,

7, > 0.186
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For Z, and Z,, exponential membership functions are constituted as follows:

HEZ(Zz) =

e 0034 —e71

1, Z, < 16380
_Z1-16380 .

uk, (Z)) = % 16380 < Z, < 18617.408
0, 7, > 18617.408

1, Z, < 0.152

_Z3-0.152

, 0.152 <Z, £0.186

1-e1
0, Z, > 0.186
o _ 7;-16380 _ Z2-0.152
where; s =1, 1y === and ¥, ==

(26)

(27)

To convert the fuzzy single-objective nonlinear programming model, common satisfaction level and membership
functions of the Z; and Z, are added to the presented FMONLP model as follows:

Max A
A< (Zy)
A< up(Z3)
Equations (8) — (21)

(28)

The model given in Equation (28) is solved under triangular, hyperbolic, and exponential membership functions
for objective functions. Optimal solutions and common satisfaction levels are computed and given in Table 8.
Additionally, optimal solutions obtained under triangular, hyperbolic and exponantial membership functions are
illustrated in Figure 3, Figure 4, and Figure 5, respectively.

Table 8. Optimal Solutions

Membership Function Types

2111)1]1 (::(t:it(i)‘:fs Triangular Hyperbolic Exponential

Z4 16829.296 16812.158 16829.296
Z, 0.159 0.159 0.159
y 0.80 0.97 0.72

Decision Variables

a1 2260.741 2217.894 2260.741
a2, 1000 1000 1000
a1 2489.259 2532.106 2489.259
331 2500 2500 2500
by11 2000 2000 2000
by, 2750 2750 2750
bz11 340.095 340.093 340.119
by12 659.905 659.907 659.881
b311 2378.895 2378.897 2378.880
b31, 121.105 121.103 121.120
T112 2750 2750 2750
T131 2750 2750 2750
221 2750 2750 2750
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4. Sensitivity Analysis

In this section, a sensitivity analysis is carried out in order to show the accuracy of the proposed model. Different
scenarios are created by making changes for customer demands and for distances between the suppliers,
manufacturers, distribution centers and, customers. Then, the proposed model is solved under triangular,
exponential and hyperbolic membership functions.

4.1. Sensitivity to Changes in Customer Demands

Two scenarios are created by decreasing the customer demands in the current model by 10% and increasing them
by 10%. According to new parameters, the proposed model is solved under triangular, hyperbolic, and exponential
membership functions and optimal solutions are given in Table 9.

Table 9. Optimal Solutions For Customer Demands

Customer Demands(-%10)

Customer Demands (+%10)

Membership Function Types

Membership Function Types

Objective

Objective

Functions Triangular  Hyperbolic  Exponential Functions Triangular  Hyperbolic =~ Exponential
Z, 14519.361 14539.673 14541.655 Z, 18583.485  18604.373  18605.321
Z, 0.143 0.143 0.143 Z, 0.200 0.200 0.200
A 0.74 0.94 0.64 Yl 0.67 0.87 0.56
Decision Variables Decision Variables

a1 664.536 665.575 672.185 a1 187.586 190.458 193.370
ai12 60.464 259.425 252.815 ai1s 2187.414 2384.542 2381.630
a2 1000.000 1000.000 1000.000 a2 1000.000 1000.000 1000.000
asqq 3200.000 3000.000 3000.000 aziq 3200.000 3000.000 3000.000
azsq 2500.000 2500.000 2500.000 azsq 2500.000 2500.000 2500.000
bi11 1450.000 1450.000 1450.000 b111 1824.030 1824.118 1824.366
b1z 2475.000 2475.000 2475.000 bi12 750.970 750.882 750.634
by11 716.687 716.687 716.687 bi21 3000.000 3000.000 3000.000
by1 283.313 283.313 283.313 by11 262.550 262.523 262.476
b311 2500.000 2500.000 2500.000 b1z 737.450 737477 737.524
T112 2475 2475 2475 ba1y 2227.941 2227.923 2227.853
T131 2475 2475 2475 b3ty 247.059 247.077 247.147
T221 2475 2475 2475 b3z, 25.000 25.000 25.000

T112 3025 3025 3025

T132 3025 3025 3025

T222 3025 3025 3025

4.2. Sensitivity to Changes in Distances

Six scenarios are created by decreasing the distances on the current model by 20% and increasing it by 20%. These
changes are made for the distances between the supplier and the manufacturer, between the manufacturer and
the distribution center, and between the distribution center and the customer. According to the new parameters,
the model is solved according to the triangular, hyperbolic and, exponential membership functions. Comparison
results are given in Tables 10, 11 and 12, respectively.

867



AKARCAY PERVIN and YAPICI PEHLIVAN

10.21923/jesd.1062118

Table 10. Optimal Solutions For The Distance Between Supplier And Manufacturers

Change (-%20)

Change (+%20)

Membership Function Types

Membership Function Types

Objective

Objective

Functions Triangular Hyperbolic  Exponential Functions Triangular Hyperbolic  Exponential
Z, 16282.546 16288.043 16290.023 Z, 16175.038 16197.326 16197.409
Z, 0.157 0.157 0.157 Z, 0.171 0.171 0.171
Yl 0.68 0.90 0.58 Y} 0.70 0.91 0.59

Decision Variables Decision Variables
ajh 657.152 626.809 633.409 ajir 706.257 714.608 715.894
ajq; 874.848 1123.191 1116.591 aiq; 843.743 1035.392 1034.106
aiz 1000.000 1000.000 1000.000 aiz 1000.000 1000.000 1000.000
a1 3200.000 3000.000 3000.000 azip 3200.000 3000.000 3000.000
aszy 2500.000 2500.000 2500.000 assy 2500.000 2500.000 2500.000
bi11 2000.000 2000.000 2000.000 bi11 1610.536 1609.811 1608.804
b121 2750.000 2750.000 2750.000 bi12 389.464 390.189 391.196
bz11 340.095 340.084 340.098 bq21 2750.000 2750.000 2750.000
bz12 659.905 659.916 659.902 bz11 396.562 396.928 397.435
b311 2378.895 2378.902 2378.893 by12 603.438 603.072 602.565
b31; 121.105 121.098 121.107 b311 2500.000 2500.000 2500.000
T112 2750 2750 2750 T112 2750 2750 2750
T131 2750 2750 2750 T131 2750 2750 2750
T221 2750 2750 2750 T221 2750 2750 2750

Table 11. Optimal Solutions For The Distance Between Manufacturers And Distribution Centers
Change (-%20) Change (+%20)
Membership Function Types Membership Function Types

g:lll (::iit(i)‘:les Triangular Hyperbolic Exponential I?l:)l];:lt;;es Triangular Hyperbolic Exponential
Z,y 16294.805 16317.354 16317.612 Z, 16182.292 16227.828 16202.053
Z, 0.146 0.146 0.146 Z, 0.177 0.177 0.177
A 0.66 0.87 0.55 A 0.69 0.90 0.59

Decision Variables Decision Variables
aj 1275.893 1281.953 1282.813 aj 340.974 426.092 340.176
a2 274.107 468.047 467.187 ajz 1209.026 1323.908 1409.824
ajz 1000.000 1000.000 1000.000 ajz 1000.000 1000.000 1000.000
azi 3200.000 3000.000 3000.000 azi 3200.000 3000.000 3000.000
asy 2500.000 2500.000 2500.000 azy 2500.000 2500.000 2500.000
b111 1440.125 1442.560 1442.559 b111 2000.000 2000.000 2000.000
bq12 559.875 557.440 557.441 by21 2750.000 2750.000 2750.000
by21 2750.000 2750.000 2750.000 bz11 336.782 336.782 336.783
bz11 470.771 469.843 469.843 bz12 663.218 663.218 663.217
bz12 529.229 530.157 530.157 b311 2380.984 2380.984 2380.984
b311 2500.000 2500.000 2500.000 b312 119.016 119.016 119.016
T112 2750 2750 2750 T112 2750 2750 2750
T131 2750 2750 2750 T131 2750 2750 2750
T221 2750 2750 2750 T221 2750 2750 2750
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Table 12. Optimal Solutions For The Distance Between Distribution Centers And Costumers

Change (-%20) Change (+%20)
Membership Function Types Membership Function Types
g:rll G::iit(i)‘:fs Triangular Hyperbolic Exponential 1?1?1]1 i:lt:)‘:li Triangular Hyperbolic  Exponential
z, 16165.714  16215.788 16187.411 Z, 16835.169 16798.550  16835.169
Z, 0.154 0.154 0.154 Z, 0.166 0.166 0.166
A 0.70 0.90 0.60 Yl 0.66 0.87 0.56
Decision Variables Decision Variables

a1 514.370 615.792 521.328 ay1s 2275.423 2183.874 2275.423
a 1035.630 1134.208 1228.672 aqzq 1000.000 1000.000 1000.000
a2 1000.000 1000.000 1000.000 az11 2474.577 2566.126 2474.577
azi1 3200.000 3000.000 3000.000 | a3y 2500.000 2500.000 2500.000
az31 2500.000 2500.000 2500.000 bi11 2000.000 2000.000 2000.000
bi11 1771344 1770.168 1770.042 | byyy 2750.000 2750.000 2750.000
b1z 228.656 229.832 229.958 | byyq 339.980 340.095 340.040
bi21 2750.000 2750.000 2750.000 | by, 660.020 659.905 659.960
by11 349.355 349.365 349.398 bs3q1 2378.968 2378.895 2378.931
by, 650.645 650.635 650.602 bsq1, 121.032 121.105 121.069
b311 2469.560 2470.030 2470.059 T112 2750 2750 2750
b3z, 30.440 29.970 29.941 T131 2750 2750 2750
T112 2750 2750 2750 T221 2750 2750 2750
T131 2750 2750 2750

T221 2750 2750 2750

According to the results of the sensitivity analysis, the hyperbolic membership function provides the highest level
of satisfaction in all scenarios created by the changes made in the parameters. Therefore, it is suggested that the
hyperbolic membership function can be used to obtain optimal solutions for the considered FMONLP problem.

5. Result and Discussion

In this study, a green supply chain network model on the basis of transportation problem is presented. This model is
remarkable because of the nonlinear structure of its constraints and considering the environmental impact factor, especially
€O, emissions. The model is examined as a FMONLP problem in which the total transportation costs and total €0, emissions
generated by two different vehicles during transportation are minimized. In the presented FMONLP model, the most efficient
membership function is tried to be determined and tested on a numerical example.

It is found that the maximum common satisfaction level is 4 = 0.97 using the hyperbolic membership function. Total
transportation cost is minimized in the first objective function Z,. The total transportation cost calculated using both triangular
and exponential membership functions are Z; = 16829. 296, while it is calculated as Z; = 16812.158 using the hyperbolic
membership function. In the second objective function Z,, total amount of CO5 emission is minimized. The total CO, emission
calculated using triangular, exponential, and hyperbolic membership functions are equal, that is, Z, = 0. 159 kg.

2260.741

Van

ssssssss Truck

Figure 3. Optimal Distribution Network Under Triangular Membership Function
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Figure 4. Optimal Distribution Network Under Hyperbolic Membership Function

2217.894

Figure 5. Optimal Distribution Network Under Exponential Membership Function

According to the results, the nonlinear hyperbolic membership function is provided a higher satisfaction level than
the linear triangular membership function for the proposed FMONLP model. Sensitivity analyses are then carried
out to measure the sensitivity of the model results for different parameter values for demand of customers and
also distances between suppliers, manufacturers, distribution centers, and customers.

The increasing or decreasing demand of customers directly affects the satisfaction levels (A) of the presented
model. For instance, a 10% decrease in demand of customers results in 0.74, 0.94, and 0.64 for triangular,
hyperbolic and exponential membership functions, respectively, while a 10% increase in demand of customers
results in 0.67, 0.87, and 0.56.

On the other hand, the increasing or decreasing distances between suppliers, manufacturers, distribution centers,
and customers have important effects on the satisfaction levels (A) of the presented model. For example, a 20%
decrease in distances results in 0.68, 0.90, and 0.58, for triangular, hyperbolic and exponential membership
functions, respectively, while. a 20% increase in distances results in 0.70, 0.91, and 0.59. Similar results are
obtained according to other changes in distances. Thus, the proposed FMONLP model with hyperbolic
membership functions performs better than triangular and exponential in all of the scenarios. Although linear
membership functions have been applied in real life problems due to their ease of implementation in most of the
studies, it is seen that nonlinear membership functions also give good solutions.

In future studies, the proposed FMONLP model can be applied to more complicated GSCN models and it can be
solved by adding various constraints and objective functions in linear or nonlinear form. FMONLP models can be
compared under different nonlinear membership functions, different defuzzification techniques for fuzzy
parameters or different linearization techniques. In addition, other solution methods in the literature proposed
for FMOP problems can be carried out and comparisons can be made under various linear and/or nonlinear
membership functions.
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