http://communications.science.ankara.edu.tr

TIMELIKE ROTATIONAL HYPERSURFACES WITH TIMELIKE AXIS IN MINKOWSKI FOUR-SPACE

Erhan GÜLER
Department of Mathematics, Faculty of Sciences, Bartın University Kutlubey Campus, 74100 Bartın, TÜRKİYE

Abstract

We introduce the timelike rotational hypersurfaces \mathbf{x} with timelike axis in Minkowski 4 -space \mathbb{E}_{1}^{4}. We obtain the equations for the curvatures of the hypersurface. Moreover, we present a theorem for the rotational hypersurfaces with timelike axis supplying $\Delta \mathbf{x}=\mathcal{T} \mathbf{x}$, where \mathcal{T} is a 4×4 real matrix.

1. Introduction

Geometers have been focused on the geometry of the surfaces and hypersurfaces in space forms for years. Some of the works on the topic are indicated in alphabetical order:

Arslan et al. 1 studied the generalized rotation surfaces in Euclidean four space \mathbb{E}^{4}; Arslan, et al. [2] worked the Weyl pseudosymmetric hypersurfaces; Arslan and Milousheva 3 focused the meridian surfaces of elliptic or hyperbolic type in Minkowski 4-space \mathbb{E}_{1}^{4}; Arvanitoyeorgos et al. [4] introduced the Lorentz hypersurfaces satisfying $\Delta H=\alpha H$ in \mathbb{E}_{1}^{4}; Beneki et al. 5 served the helicoidal surfaces in Minkowski 3-space; Chen [6] worked the total mean curvature and the finite type submanifolds; Cheng and Wan 7 presented the complete hypersurfaces in \mathbb{R}^{4} with CMC; Cheng and Yau [8] studied the hypersurfaces with constant scalar curvature; Dillen et al. 9] stated the rotation hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$; Do Carmo and Dajczer $[10$ derived the rotation hypersurfaces in spaces of constant curvature; Dursun [11] considered the hypersurfaces with pointwise 1-type Gauss map.

On the other hand, Dursun and Turgay (12] worked the space-like surfaces in \mathbb{E}_{1}^{4} with pointwise 1-type Gauss map; Ferrandez et al. 13 focused some class of conformally at Euclidean hypersurfaces; Ganchev and Milousheva 14 considered the general rotational surfaces in \mathbb{E}_{1}^{4}; Güler 15 introduced the helical hypersurfaces in

[^0]\mathbb{E}_{1}^{4}; Güler 16 obtained the fundamental form $I V$ with the curvatures of the hypersphere; Güler 17] worked the rotational hypersurfaces satisfying $\Delta^{I} R=A R$ in \mathbb{E}^{4}; Güler et al. 18 examined the Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4 -space; Güler et al. 19 studied Laplace-Beltrami operator of a helicoidal hypersurface in four-space; Güler and Turgay 20 focused the Cheng-Yau operator and Gauss map of the rotational hypersurfaces in 4 -space.

Hasanis and Vlachos 21] worked hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field; Kim and Turgay [22] served the surfaces with L_{1}-pointwise 1-type Gauss map in \mathbb{E}^{4}; Lawson 23 introduced the minimal submanifolds; Magid et al. 24 focused the affine umbilical surfaces in \mathbb{R}^{4}; Moore 25 revealed the surfaces of rotation in \mathbb{E}^{4}; Moore 26 also indicated the rotation surfaces of constant curvature in \mathbb{E}^{4}; O'Neill 27] presented the semi-Riemannian geometry.

Takahashi 28] served that minimal surfaces and spheres are the only surfaces in \mathbb{E}^{3} satisfying the condition $\Delta r=\lambda r, \lambda \in \mathbb{R}$; Turgay and Upadhyay 29 worked the biconservative hypersurfaces in 4-dimensional Riemannian space forms.

In this work, we consider the timelike rotational hypersurfaces \mathbf{x} with timelike axis in Minkowski 4 -space \mathbb{E}_{1}^{4}. We give the notions of \mathbb{E}_{1}^{4} in Section 2 . In Section 3, we present the definition of the timelike rotational hypersurfaces with timelike axis, and compute its curvatures. In addition, we give the timelike rotational hypersurfaces with timelike axis supplying $\Delta \mathbf{x}=\mathcal{T} \mathbf{x}$, where \mathcal{T} is a 4×4 real matrix in Section 4 Finally, we serve the results and conclusion in the last section.

2. Preliminaries

In this section, we indicate the first and second fundamental forms, matrix of the shape operator \mathbf{S}, the curvatures \mathfrak{C}_{i} of the hypersurface $\mathbf{x}=\mathbf{x}(u, v, w)$ in Minkowski 4 -space \mathbb{E}_{1}^{4}. We identify a vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) with its transpose $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})^{t}$ in the rest of this paper.

Let \mathbf{x} be an isometric immersion of a hypersurface from M_{1}^{3} to $\mathbb{E}_{1}^{4}=\left(\mathbb{R}^{4}, \cdot\right)$, where $\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$ is a Lorentzian inner product of vectors $\vec{x}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, and x_{i} are the pseudo-Euclidean coordinates of type $(3,1)$. The vector product of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, $\vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of \mathbb{E}_{1}^{4} is defined by

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & -e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right)
$$

A vector \vec{x} is called timelike if $\vec{x} \cdot \vec{x}<0$, and a hypersurface \mathbf{x} is timelike if $\mathbf{x} \cdot \mathbf{x}<0$. In \mathbb{E}_{1}^{4}, the hypersurface \mathbf{x} has the following first and second fundamental
form matrices, resp.,

$$
I=\left(\begin{array}{lll}
E & F & A \\
F & G & B \\
A & B & C
\end{array}\right), \quad I I=\left(\begin{array}{ccc}
L & M & P \\
M & N & T \\
P & T & V
\end{array}\right)
$$

and

$$
\begin{aligned}
\operatorname{det} I & =\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2} \\
\operatorname{det} I I & =\left(L N-M^{2}\right) V-L T^{2}+2 M P T-N P^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
E & =\mathbf{x}_{u} \cdot \mathbf{x}_{u}, F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, G=\mathbf{x}_{v} \cdot \mathbf{x}_{v}, A=\mathbf{x}_{u} \cdot \mathbf{x}_{w}, B=\mathbf{x}_{v} \cdot \mathbf{x}_{w}, C=\mathbf{x}_{w} \cdot \mathbf{x}_{w} \\
L & =\mathbf{x}_{u u} \cdot e, M=\mathbf{x}_{u v} \cdot e, N=\mathbf{x}_{v v} \cdot e, P=\mathbf{x}_{u w} \cdot e, T=\mathbf{x}_{v w} \cdot e, V=\mathbf{x}_{w w} \cdot e
\end{aligned}
$$

and also e is the Gauss map of the hypersurface \mathbf{x} :

$$
\begin{equation*}
e=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}}{\left\|\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}\right\|} \tag{1}
\end{equation*}
$$

The shape operator matrix $\mathbf{S}=I^{-1} \cdot I I$ is defined by

$$
\mathbf{S}=\frac{1}{\operatorname{det} I}\left(\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right)
$$

where

$$
\begin{aligned}
& s_{11}=A B M-C F M-A G P+B F P+C G L-B^{2} L \\
& s_{12}=A B N-C F N-A G T+B F T+C G M-B^{2} M \\
& s_{13}=A B T-C F T-A G V+B F V+C G P-B^{2} P \\
& s_{21}=A B L-C F L+A F P-B P E+C M E-A^{2} M \\
& s_{22}=A B M-C F M+A F T-B T E+C N E-A^{2} N \\
& s_{23}=A B P-C F P+A F V-B V E+C T E-A^{2} T \\
& s_{31}=-A G L+B F L+A F M-B M E+G P E-F^{2} P \\
& s_{32}=-A G M+B F M+A F N-B N E+G T E-F^{2} T \\
& s_{33}=-A G P+B F P+A F T-B T E+G V E-F^{2} V
\end{aligned}
$$

Theorem 1. The hypersurface \mathbf{x} in \mathbb{E}_{1}^{4} has the following curvature formulas, $\mathfrak{C}_{0}=1$ (by definition),

$$
\begin{align*}
\mathfrak{C}_{1}= & \frac{\left\{\begin{array}{c}
(E N+G L-2 F M) C+\left(E G-F^{2}\right) V-L B^{2}-N A^{2} \\
-2(A P G-B P F-A T F+B T E-A B M)
\end{array}\right\}}{3\left[\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}\right]}, \tag{2}\\
\mathfrak{C}_{2}= & \frac{\left\{\begin{array}{c}
(E N+G L-2 F M) V+\left(L N-M^{2}\right) C-E T^{2}-G P^{2} \\
-2(A P N-B P M-A T M+B T L-P T F)
\end{array}\right\}}{3\left[\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}\right]}, \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\mathfrak{C}_{3}=\frac{\left(L N-M^{2}\right) V-L T^{2}+2 M P T-N P^{2}}{\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}} \tag{4}
\end{equation*}
$$

See 16 for Euclidean details. Next, we define the rotational hypersurface in \mathbb{E}_{1}^{4}.
Definition 1. Let $\gamma: I \subset \mathbb{R} \longrightarrow \Pi$ be a curve in a plane Π and ℓ be a straight line in Π in \mathbb{E}_{1}^{4}. A rotational hypersurface in \mathbb{E}_{1}^{4} is defined as a hypersurface rotating a curve γ around a line ℓ (called the profile curve and the axis, respectively).

Therefore, we introduce the rotational hypersurfaces with timelike axis in \mathbb{E}_{1}^{4} in the following section.

3. Timelike Rotational Surfaces with Timelike Axis

We may suppose ℓ spanned by the timelike vector $(1,0,0,0)^{t}$. The orthogonal matrix is given by

$$
\mathbf{A}(v, w)=\left(\begin{array}{cccc}
\cos v \cos w & -\sin v & -\cos v \sin w & 0 \tag{5}\\
\sin v \cos w & \cos v & -\sin v \sin w & 0 \\
\sin w & 0 & \cos w & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $v, w \in \mathbb{R}$. The following holds: $\operatorname{det} \mathbf{A}=1$, A. $\ell=\ell, \quad \mathbf{A}^{t} \varepsilon \mathbf{A}=\varepsilon$, where $\varepsilon=\operatorname{diag}(1,1,1,-1)$. Supposing the axis of rotation is ℓ, there is a Lorentz transformation that the axis is ℓ transformed to the x_{4}-axis of \mathbb{E}_{1}^{4}. The parametrization of the timelike profile curve is given by $\gamma(u)=(u, 0,0, \varphi(u))$. Here, we assume that the profile curve is timelike, i.e., $\gamma^{\prime} \cdot \gamma^{\prime}=1-\varphi^{\prime 2}<0, \varphi(u): \mathrm{I} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a differentiable function for all $u \in \mathrm{I}$. So, the rotational hypersurface spanned by the vector $(0,0,0,1)$, is given by $\mathbf{x}(u, v, w)=\mathbf{A}(v, w) \gamma(u)^{t}$ in \mathbb{E}_{1}^{4}, where $u \in \mathrm{I}, v, w \in \mathbb{R}$. If $w=0$, we get the rotational surface with timelike axis as in three dimensional Minkowski space \mathbb{E}_{1}^{3}.

Next, we obtain the curvatures of the following rotational hypersurface with timelike axis

$$
\mathbf{x}(u, v, w)=\left(\begin{array}{c}
u \cos v \cos w \tag{6}\\
u \sin v \cos w \\
u \sin w \\
\varphi(u)
\end{array}\right)
$$

where $u \in \mathbb{R}-\{0\}$ and $0 \leq v, w \leq 2 \pi$. Using the first differentials of (6), we get the first fundamental form matrix as follows

$$
I=\left(\begin{array}{ccc}
1-\varphi^{\prime 2} & 0 & 0 \\
0 & u^{2} \cos ^{2} w & 0 \\
0 & 0 & u^{2}
\end{array}\right)
$$

where $\varphi=\varphi(u), \varphi^{\prime}=\frac{d \varphi}{d u}$. We obtain $\operatorname{det} I=u^{4}\left(1-\varphi^{\prime 2}\right) \cos ^{2} w<0$. So, the hypersurface is the timelike rotational hypersurface with timelike axis. Using the
second differentials with respect to u, v, w, we have the second fundamental form matrix as follows

$$
I I=\left(\begin{array}{ccc}
-\frac{\varphi^{\prime \prime}}{\left(\varphi^{\prime 2}-1\right)^{1 / 2}} & 0 & 0 \\
0 & -\frac{u \varphi^{\prime} \cos ^{2} w}{\left(\varphi^{\prime 2}-1\right)^{1 / 2}} & 0 \\
0 & 0 & -\frac{u \varphi^{\prime}}{\left(\varphi^{\prime 2}-1\right)^{1 / 2}}
\end{array}\right)
$$

and $\operatorname{det} I I=-\frac{u^{2} \varphi^{\prime 2} \varphi^{\prime \prime} \cos ^{2} w}{\left(\varphi^{\prime 2}-1\right)^{3 / 2}}$. Therefore, the shape operator matrix of the hypersurface is given by

$$
\mathbf{S}=\left(\begin{array}{ccc}
\frac{\varphi^{\prime \prime}}{\left(\varphi^{\prime 2}-1\right)^{3 / 2}} & 0 & 0 \\
0 & -\frac{\varphi^{\prime}}{u\left(\varphi^{\prime 2}-1\right)^{1 / 2}} & 0 \\
0 & 0 & -\frac{\varphi^{\prime}}{u\left(\varphi^{\prime 2}-1\right)^{1 / 2}}
\end{array}\right)
$$

Finally, we calculate the curvatures of the timelike rotational hypersurface with timelike axis, and give the results of it in the following.

Corollary 1. The timelike rotational hypersurface (6) with timelike axis has the following curvatures

$$
\begin{aligned}
& \mathfrak{C}_{1}=H=\frac{u \varphi^{\prime \prime}-2\left(\varphi^{2}-1\right) \varphi^{\prime}}{3 u\left(\varphi^{\prime 2}-1\right)^{3 / 2}} \\
& \mathfrak{C}_{2}=\frac{-2 u \varphi^{\prime} \varphi^{\prime \prime}+\left(\varphi^{\prime 2}-1\right) \varphi^{\prime 2}}{3 u^{2}\left(\varphi^{\prime 2}-1\right)^{2}} \\
& \mathfrak{C}_{3}=K=\frac{\varphi^{\prime 2} \varphi^{\prime \prime}}{u^{2}\left(\varphi^{\prime 2}-1\right)^{5 / 2}}
\end{aligned}
$$

Proof. By using the eqs. (2), (3), (4) for the timelike rotational hypersurface with timelike axis (6), we get the curvatures.

Corollary 2. When the timelike rotational hypersurface (6) with timelike axis has $\mathfrak{C}_{i}=0, i=1,2,3$, respectively, then it has the following general φ solutions, respectively,

$$
\begin{array}{cccc}
u \varphi^{\prime \prime}-2 \varphi^{\prime 3}+2 \varphi^{\prime}=0 & \Leftrightarrow & \varphi=\mp i^{1 / 2} e^{-c_{1} / 2} F\left[i \arg \sinh \left(\left(i e^{c_{1}} u\right)^{1 / 2}\right),-1\right]+c_{2} \\
2 u \varphi^{\prime} \varphi^{\prime \prime}-\varphi^{\prime 4}+\varphi^{\prime 2}=0 & \Leftrightarrow & \text { or } \varphi=c_{1} \\
\varphi^{\prime 2} \varphi^{\prime \prime}=0 & \Leftrightarrow & \varphi=\mp 2 e^{-2 c_{1}}\left(1+e^{2 c_{1}} u\right)^{1 / 2}+c_{2} \\
\text { or } \varphi=c_{1} \\
& \varphi=c_{1} u+c_{2} \text { or } \varphi=c_{1}
\end{array}
$$

where $F[\phi, m]=\int_{0}^{\phi}\left(1-m \sin ^{2} \theta\right)^{-1 / 2} d \theta$ gives the elliptic integral of the first kind for $-\pi / 2<\phi<\pi / 2, i=(-1)^{1 / 2}, c_{1}, c_{2} \in \mathbb{R}$.

4. Timelike Rotational Surfaces with Timelike Axis Satisfying $\Delta \mathrm{x}=\mathcal{T} \mathrm{x}$

Definition 2. The Laplace-Beltrami operator of the hypersurface $\left.\mathbf{x}(u, v, w)\right|_{D \subset \mathbb{R}^{4}}$ of class C^{3} is given by

$$
\Delta \mathbf{x}=\frac{1}{(\operatorname{det} I)^{1 / 2}}\left\{\begin{array}{l}
\frac{\partial}{\partial u}\left(\frac{\left(C G-B^{2}\right) \mathbf{x}_{u}+(A B-C F) \mathbf{x}_{v}+(B F-A G) \mathbf{x}_{w}}{(\operatorname{det} I)^{1 / 2}}\right) \tag{7}\\
+\frac{\partial}{\partial v}\left(\frac{(A B-C F) \mathbf{x}_{u}+\left(C E-A^{2}\right) \mathbf{x}_{v}+(A F-B G) \mathbf{x}_{w}}{(\operatorname{det} I)^{1 / 2}}\right) \\
+\frac{\partial}{\partial w}\left(\frac{(B F-A G) \mathbf{x}_{u}+(A F-B G) \mathbf{x}_{v}+\left(E G-F^{2}\right) \mathbf{x}_{w}}{(\operatorname{det} I)^{1 / 2}}\right)
\end{array}\right\}
$$

By using above definition with the hypersurface (6), we have the following Laplace-Beltrami operator

$$
\Delta \mathbf{x}=\frac{u \varphi^{\prime \prime}-2 \varphi^{\prime 3}+2 \varphi^{\prime}}{u W^{2}}\left(\begin{array}{c}
\varphi^{\prime} \cos v \cos w \\
\varphi^{\prime} \sin v \cos w \\
\varphi^{\prime} \sin w \\
1
\end{array}\right)
$$

where $W=\varphi^{\prime 2}-1$. The Gauss map of the rotational hypersurface (6) with timelike axis is given by

$$
e=\frac{1}{W^{1 / 2}}\left(\begin{array}{c}
\varphi^{\prime} \cos v \cos w \\
\varphi^{\prime} \sin v \cos w \\
\varphi^{\prime} \sin w \\
1
\end{array}\right)
$$

Considering $3 H e=\mathcal{T} \mathbf{x}$, we obtain

$$
\begin{aligned}
& \left(\begin{array}{c}
\left(\Psi \varphi^{\prime}-t_{11} u\right) \cos v \cos w-t_{12} u \cos w \sin v-t_{13} u \sin w \\
t_{21}-u \cos v \cos w+\left(\Psi \varphi^{\prime}-t_{22} u\right) \sin v \cos w-t_{23} u \sin w \\
-t_{31} u \cos v \cos w-t_{32} u \sin v \cos w+\left(\Psi \varphi^{\prime}-t_{33} u\right) \sin w \\
\Psi
\end{array}\right) \\
= & \left(\begin{array}{c}
t_{14} \varphi(u) \\
t_{24} \varphi(u) \\
t_{34} \varphi(u) \\
t_{41} u \cos v \cos w+t_{42} u \sin v \cos w+t_{43} u \sin w+t_{44} \varphi(u)
\end{array}\right),
\end{aligned}
$$

where \mathcal{T} is a 4×4 real matrix with the components $t_{i j}$, and also $\Psi(u)=3 H W^{-1 / 2}$. The equation $\Delta \mathbf{x}=\mathcal{T} \mathbf{x}$ with respect to the first quantity I, and $\Delta \mathbf{x}=3 H e$ give rises to the following system

$$
\begin{aligned}
\left(\Psi \varphi^{\prime}-t_{11} u\right) \cos v \cos w-t_{12} u \sin v \cos w-t_{13} u \sin w & =t_{14} \varphi(u), \\
-t_{21} u \cos v \cos w+\left(\Psi \varphi^{\prime}-t_{22} u\right) \sin v \cos w-t_{23} u \sin w & =t_{24} \varphi(u), \\
-t_{31} u \cos v \cos w-t_{32} u \sin v \cos w+\left(\Psi \varphi^{\prime}-t_{33} u\right) \sin w & =t_{34} \varphi(u), \\
-t_{41} u \cos v \cos w-t_{42} u \sin v \cos w-t_{43} u \sin w+\Psi & =t_{44} \varphi(u) .
\end{aligned}
$$

Differentiating ODE's two times depends on v, we have

$$
\begin{equation*}
t_{14}=t_{24}=t_{34}=t_{44}=0, \quad \Psi=0 \tag{8}
\end{equation*}
$$

From (8), we see the following

$$
\begin{aligned}
& t_{11} u \cos v+t_{12} u \sin v=0 \\
& t_{21} u \cos v+t_{22} u \sin v=0 \\
& t_{31} u \cos v+t_{32} u \sin v=0 \\
& t_{41} u \cos v+t_{42} u \sin v=0
\end{aligned}
$$

When we use these equality in the equation system, we get

$$
\begin{equation*}
t_{13}=t_{23}=t_{33}=t_{43}=0 \tag{9}
\end{equation*}
$$

Then, matrix \mathcal{T} becomes zero matrix. So, if $\Delta \mathbf{x}=\mathcal{T} \mathbf{x}$, then $\mathcal{T}=0$ and the hypersurface is a minimal.

Also, the cos and sin are the linearly independent functions of v, then we obtain $t_{i j}=0$. Since $\Psi=3 H W^{-1 / 2}$, we find $H=0$. Therefore, \mathbf{x} is a timelike minimal hypersurface with timelike axis.

Hence, we serve the following theorem:
Theorem 2. Let timelike $\mathbf{x}: M_{1}^{3} \longrightarrow \mathbb{E}_{1}^{4}$ be an isometric immersion given by (6). $\Delta \mathbf{x}=\mathcal{T} \mathbf{x}$, where \mathcal{T} is a 4×4 real matrix iff \mathbf{x} is a timelike minimal hypersurface with timelike axis, i.e., $H=\mathfrak{C}_{1}=0$.

5. Results and Conclusion

The concepts of rotational hypersurfaces are studied by many mathematician and geometers. It is shown that the timelike rotational hypersurface has three different curvatures in Minkowski 4-space. Moreover, the minimality condition of it by using the Laplace-Beltrami operator has presented. These concepts propose for the other space forms may be useful in the future.

Declaration of Competing Interests The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Arslan, K., Bayram, B. K., Bulca, B., Öztürk, G., Generalized rotation surfaces in \mathbb{E}^{4}, Results Math., 61(3) (2012), 315-327. https://doi.org/10.1007/s00025-011-0103-3
[2] Arslan, K., Deszcz, R., Yaprak, Ş., On Weyl pseudosymmetric hypersurfaces, Colloq. Math., 72(2) (1997), 353-361.
[3] Arslan, K., Milousheva, V., Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math., 20(2) (2016), 311-332. https://doi.org/10.11650/tjm.19.2015.5722
[4] Arvanitoyeorgos, A. , Kaimakamis, G., Magid, M., Lorentz hypersurfaces in \mathbb{E}_{1}^{4} satisfying $\Delta H=\alpha H$, Illinois J. Math., 53(2) (2009), 581-590. https://doi.org/10.1215/ijm/1266934794
[5] Beneki, Chr. C., Kaimakamis, G., Papantoniou, B. J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002), 586-614. https://doi.org/10.1016/S0022-247X(02)00269-X
[6] Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, 2nd Ed., World Scientific, Singapore, 2014. https://doi.org/10.1142/9237
[7] Cheng, Q. M., Wan, Q. R., Complete hypersurfaces of \mathbb{R}^{4} with constant mean curvature, Monatsh. Math., 118 (1994), 171-204. https://doi.org/10.1007/BF01301688
[8] Cheng, S. Y., Yau, S. T., Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204. https://doi.org/10.1007/BF01425237
[9] Dillen, F., Fastenakels, J., Van der Veken, J., Rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, Note Mat., 29(1) (2009), 41-54. https://doi.org/10.1285/i15900932v29n1p41
[10] Do Carmo, M. P., Dajczer, M., Rotation hypersurfaces in spaces of constant curvature, Trans. Am. Math. Soc., 277 (1983), 685-709. https://doi.org/10.1007/978-3-642-25588-517
[11] Dursun, U., Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math., 11(5) (2007), 1407-1416. https://doi.org/10.11650/twjm/1500404873
[12] Dursun, U., Turgay, N. C., Space-like surfaces in Minkowski space \mathbb{E}_{1}^{4} with pointwise 1-type Gauss map, Ukr. Math. J., 71(1) (2019), 64-80. https://doi.org/10.1007/s11253-019-01625-8
[13] Ferrandez, A., Garay, O. J., Lucas, P., On a certain class of conformally flat Euclidean hypersurfaces, In Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, vol 1481. Springer, Heidelberg, Berlin, Germany, 1991, 48-54. https://doi.org/10.1007/BFb0083627
[14] Ganchev, G., Milousheva, V., General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38 (2014), 883-895. https://doi.org/10.3906/mat-1312-10
[15] Güler, E., Helical hypersurfaces in Minkowski geometry \mathbb{E}_{1}^{4}, Symmetry, 12(8) (2020), 1-16. https://doi.org/10.3390/sym12081206
[16] Güler, E., Fundamental form $I V$ and curvature formulas of the hypersphere, Malaya J. Mat., 8(4) (2020), 2008-2011. https://doi.org/10.26637/MJM0804/0116
[17] Güler, E., Rotational hypersurfaces satisfying $\Delta^{I} R=A R$ in the four-dimensional Euclidean space, J. Polytech., 24(2) (2021), 517-520. https://doi.org/10.2339/politeknik. 670333
[18] Güler, E., Hacısalihoğlu, H. H., Kim, Y.H., The Gauss map and the third LaplaceBeltrami operator of the rotational hypersurface in 4-space, Symmetry, 10(9) (2018), 1-12. https://doi.org/10.3390/sym10090398
[19] Güler, E., Magid, M., Yayl, Y., Laplace-Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys., 41 (2016), 77-95. https://doi.org/10.7546/jgsp-41-2016-77-95
[20] Güler, E., Turgay, N. C., Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math., 16(3) (2019), 1-16. https://doi.org/10.1007/s00009-019-1333-y
[21] Hasanis, Th., Vlachos, Th., Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145-169. https://doi.org/10.1002/mana. 19951720112
[22] Kim, Y. H., Turgay, N. C., Surfaces in \mathbb{E}^{4} with L_{1}-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(3) (2013), 935-949. http://dx.doi.org/10.4134/BKMS.2013.50.3.935
[23] Lawson, H. B., Lectures on Minimal Submanifolds, Vol. I., Second ed., Mathematics Lecture Series, 9. Publish or Perish, Wilmington, Del., 1980.
[24] Magid, M., Scharlach, C., Vrancken, L., Affine umbilical surfaces in \mathbb{R}^{4}, Manuscripta Math., 88 (1995), 275-289. http://dx.doi.org/10.1007/BF02567823
[25] Moore, C., Surfaces of rotation in a space of four dimensions, Ann. Math., 21 (1919), 81-93. https://doi.org/10.2307/2007223
[26] Moore, C., Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26 (1920), 454-460. https://doi.org/10.1090/S0002-9904-1920-03336-7
[27] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[28] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385. https://doi.org/10.2969/jmsj/01840380
[29] Turgay, N. C., Upadhyay, A., On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr., 292(4) (2019), 905-921. https://doi.org/10.1002/mana.201700328

[^0]: 2020 Mathematics Subject Classification. 53A35, 53C42.
 Keywords. Rotational hypersurface, timelike axis, Laplace-Beltrami operator, curvature, Minkowski 4-space.
 ■eguler@bartin.edu.tr; ©0000-0003-3264-6239.

