
 
 
CBÜ Fen Bil. Dergi., Cilt 12, Sayı 2,167-171 s                                                                      CBU J. of Sci., Volume 12, Issue 2, p 167-171  

167 
 

 

The Numerical Approximation for the Single-walled Carbon 

Nanotubes Conveying Fluid  
 

Duygu Dönmez Demir* 

 
Celal Bayar University, Faculty of Art & Sciences, Department of Mathematics, Manisa, +90 236 2013215,  

duygu.donmez@cbu.edu.tr 

*Corresponding author / İletişimden sorumlu yazar 
 

Received / Geliş: 29th March (Mart) 2016 

Accepted / Kabul: 17th June (Haziran) 2016 

DOI: http://dx.doi.org/10.18466/cbujos.10833  

 
Abstract 

This study introduces the free vibration of single-walled carbon nanotubes conveying fluid. The 

variational iteration method is applied to the problem of single-walled carbon nanotubes. The 

governing equation is based on the model of the beam with the local, coriolis and centripetal 

acceleration components. The velocity of fluid flow is assumed as a constant mean velocity. The 

numerical results are illustrated for this method with high accuracy and simplicity. 
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1 Introduction 

Many models of carbon nanotubes (CNTs) due to 

some excellent properties appear extensively in 

the literature. There are many new applications of 

CNTs in nanobiological devices and nanomechan-

ical systems [1]. Recently, the CNTs conveying 

fluid have become quite popular. In the literature, 

many investigations exist about the CNTs filled 

with fluid as well as the studies involving the 

elastic properties of CNTs. The vibration behav-

iors of CNTs conveying fluid are widely studied 

by using the theories based continuum [2-4].  

 

Yoon [2] et al. introduced the free vibration of 

cantilever carbon nanotubes with a continuum 

elastic model. The stability of the single-walled 

carbon nanotubes (SWCNTs) was structurally 

studied by Reddy [5]. He presented how the flow 

velocity influences natural frequency and the 

fundamental mode shape. The effects of flow ve-

locity on the structure were investigated by Lee 

and Chang [1]. Also, they [6] used the Timoshen-

ko beam theory for obtaining the velocity of flow 

fluid and geometric parameters on the frequency 

and mode shape of the SWCNT. 

 

Recently, Lin and Qiao [7] applied the differential 

quadrature method to discretize the governing  

 

 

equation of CNTs conveying fluid. Thus, they 

analysed the vibration and instability of CNTs. 

Wang [8] introduced the model of fluid-

conveying SWCNTs based on elastic Bernoulli-

Euler beam.  

 

Natsuki et al. [9] used wave propagation ap-

proach method for the vibrations of CNTs con-

veying fluid. Yan et al. [10] presented the analysis 

of the fluid-filled MWCNTs. Aminikhah and 

Hemmatnezhad [11] obtained the nonlinear vibra-

tions of MWCNTs by applying the variational 

iteration method. Wang et al. [12] considered free 

vibration of multi-walled carbon nanotubes 

(MWCNTs) based on the Timoshenko beam mod-

el. Zhang et al. [13] studied transverse vibrations 

of double-walled carbon nanotubes subject to 

compressive axial load via the beam modelled 

with the Bernoulli–Euler beam theory. 

 

In this study, the single-walled carbon nanotubes 

are presented. The model of SWCNT in [5] is con-

sidered as dimensionless. The variational iteration 

method (VIM) is applied to the governing equa-

tion. VIM is a highly effective method for approx-

imate solutions of many vibrating systems [14-18]. 

Besides, this method gives the approximations 
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converging rapidly to the exact solutions for the 

free vibrations of a SWCNTs conveying fluid. 

 

2 Variational Iteration Method  

For an approximate solution, we present the basic 

ideas of VIM [11]. The general nonlinear differen-

tial equation is considered in the form 

      Lu t Nu t f t  

where L  is a linear operator, N is nonlinear op-

erator, and  f t  is a known function. Using the 

variational iteration method, the iteration formu-

lation is constructed as  

       

 

1

0

t

n n n nu t u t Lu Nu

g d

  

 

   

 


 

so called a correction functional with initial ap-

proximation  0u t . Here,   is a general La-

grange multiplier, which can be optimally deter-

mined via variational theory; the subscript n  

means the n th approximation; nu  is a restricted 

variation, i.e. 0nu   [19]. Now, let us apply 

VIM to the problem of the free vibrations of 

SWCNT.     

3 Applying VIM for free vibration analysis 

of a SWCNT 

Consider the SWCNT with length  L , the mass 

per unit length cm , the mass of fluid per unit 

length 
fm , the uniform mean flow velocity of the 

fluid v̂   and the bending rigidity YI . The 

governing equation gives the flexural vibration 

motion of SWCNT. The vibration equation for the 

carbon nanotube conveying fluid [5] is 

 
2 2 2
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 



   (1)                                 

where the first term corresponds to the inertial 

term regarding both structure and fluid, the 

second and third terms are coriolis and 

centrifugal terms related to the fluid flow, the last 

term is exactly related to SWCNT. Here, ŵ  

represents the transverse displacement depending 

on time t̂  and the spatial coordinate x̂ . Here, the 

bending rigidity YI  instead of the assumed val-

ues of Young’s modulus and wall thickness in 

literature is used as in [1]. The boundary 

conditions given for Eq. (1) correspond to the 

conditions which the displacement and slope 

equal to zero at 0x  and 1x  such that 

   
0 1

ˆ ˆ
ˆ ˆ0, 1, 0

ˆ ˆ
 

 
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 x x

w w
w t w t

x x
                

(2) 

The dimensionless parameters are defined as 

ˆ
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c f

t YI
t

L m m
, 




f

r

c f

m
m

m m
, ˆ

fm
v v L

YI
                               (3) 

where rm  is the mass ratio. Then, Eq. (1) 

transforms to the following dimensionless 

equation 

2 2 2 4
2

2 2 4
2 0

   
   
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(5) 

Applying VIM, the correction functional on Eq. (4) 

is obtained as 

     
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(6) 

where nw  is n th approximate solution and nw  is 

a restricted variation, i.e. 0 nw . Applying 

 ,0 0 nw x  for making the correction func-

tional stationary, we get 
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     (7) 

Then, the stationary conditions are obtained as 

 
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(8) 

If the problem is solved, the Lagrange multiplier 

is readily found  

   s s t                                                                    

(9) 

 Substituting the Lagrange multiplier into Eq. (6), 

the iteration formula becomes 

     
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(10)              

For approximate solution of Eq. (4), the initial 

approximation is assumed as 

     0 , exp w x t X x i t                                       

(11) 

where   is the natural frequency. Substituting 

the initial approximation into Eq. (4) leads to  

2 22 0     iv

rX v X iv m X X                 

(12)        0 1 0 1 0    X X X X                     

(13) 

for which the solution is the following form 

 
4

1

 nir x

n

n

X x c e                                                                

(14) 

where  1,2,3,4nr n  satisfies the characteristic 

equation 

4 2 2 22 0    rr v r iv m r                           

(15) 

Applying the boundary conditions (13) yields 

1 2 3 4 0   c c c c                                                              

(16) 

1 1 2 2 3 3 4 4 0   rc r c r c r c                                              

(17) 

31 2 4

1 2 3 4 0   
i ri r i r i r

c e c e c e c e                             

(18) 

31 2 4

1 1 2 2 3 3 4 4 0   
i ri r i r i r

c re c r e c r e c r e                

(19) 

 and nr can be numerically calculated by using 

the characteristic equation and the boundary con-

dition. The coefficients nc  are obtained by elimi-

nation from Eqs. (16)-(19). 
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Figure 1: Variation of natural frequency with the velocity for the different value rm . Circles, stars and squares represent 

the values 0.1 , 0.5  and 0.9  of rm , respectively (for first mode). 
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Figure 2: Variation of natural frequency with the velocity for the various modes. Dots, stars and circles denote first, sec-

ond and third modes, respectively. 

 

In Fig. 1, the natural frequency-velocity graphics 

are shown for the different values of mass ratio. 

For first mode, the natural frequency decreases as 

the flow velocity increases. Thus, the fluid flow in 

the nanotube does not influence damping of the 

SWCNT. As the flow velocity increases to approx-

imately  , natural frequency is equal to zero.  

 

In Fig. 2, the natural frequency becomes zero. 

Then, the velocity is defined as the critical velocity 

which is equal to approximately . Also, SWCNT 

is unstable at this velocity. 

4 Conclusion 

The free vibrations of a SWCNTs conveying fluid 

are analysed. The model presented for SWCNT is 

reduced to dimensionless form. The equation of 

motion is modelled as the beam with local, Corio-

lis and centripetal acceleration components. This 

partial differential equation is solved by varia-

tional iteration method. The stability of the 
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SWCNT is structurally studied. Also, the critical 

velocity of fluid flow is determined. The numeri-

cal results are graphically given. 
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