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1. Introduction  

In this article, we study the following Steklov boundary value problem involving -Laplacian 

operator 
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where is a bounded with smooth boundary, , Rf →   R   : is a 

Carathéodory function,  is a positive parameter,  is the outer unit normal derivative on  , 

( ) NRxa →   R   :, N
 

is the continuous derivative with respect to   the mapping

( ) NRxA →   R  :, N , and ( )( ) ,  uxadiv  is Laplacian type operator. 

The operator ( )( )uxadiv , , which appears in (P), is a more general operator than the -

Laplacian operator 
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In this study, we assume that ,  and satisfy the following conditions: 

 (A1) The following inequality holds: 
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(A3) The monotonicity condition holds:  

( ) ( )( )( ) ,0    ,  ,  −−  xaxa
 

for all x  and all 
NR ,  with equality if and only if  = . 

(A4) The following inequality holds:  
( )

( ) ( ) ( )  ,     ,   xAxpxa
xp

 ,  

for all x  and all 
NR . 

(A5) is uniformly convex: There exists a constant 0m  such that 
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for all x   and all NR , . 

 (f1) RRf →:
 
is a Carathéodory condition such that  
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where c and 1c  are positive constants and ( ) ( )Cxq  such that ( ) ( )xpxqqp −+  . 
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(AR) Ambrosetti-Rabinowitz's condition:  there exist  and +p such that 

                            ( ) ( ) , , ,  0 ttxftxF    , for all x . 
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In recent years, the study of variational problems in the variable exponent Lebesgue-Sobolev 

spaces is an interesting topic of research due to its significant role in many fields of mathematics. These 

types of problems have been interesting topics like electrorheological fluids, elastic mechanics, 

stationary thermo-rheological viscous flows of non-Newtonian fluids, and image processing 

[2,5,12,13,18].  

Recently, many authors have intensively studied the nonlinear boundary value problems 

involving -Laplacian operator [1,4,7,8,14,15,17]. For example, in [3], the author studied the 

existence and multiplicity of solutions by using a variation of the Mountain Pass for the following 

Steklov problem standard growth condition,   
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where f is not satisfy the Ambrosetti-Rabinowitz type condition. 

In [9], the authors constrained the existence and multiplicity of solutions by using the Mountain 

Pass theorem and Ricceri's three critical points theorem under the appropriate conditions for the 

following Steklov problem standard growth condition,   
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Motivated by the above paper, we get some existing results of weak solutions to the problem (P). 

This paper is organized as follows. In Section 2, we recall the definition of the variable exponent 

Lebesgue - Sobolev spaces. In Section 3, we give the main results. 

 

2. Preliminaries 

We state some definitions and basic properties of variable exponent Lebesgue-Sobolev spaces

,  and  [8,10,13,16]. 

Set  

𝐶+(Ω̅) = {𝑝: 𝑝(𝑥) ∈ 𝐶(Ω̅), 𝑖𝑛𝑓𝑝(𝑥) > 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω̅} 
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Similarly, we can define for ( ) ( ) +Cxp , 
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where is the measure on the boundary. ( )( )
)(

)( ,
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xp uL   becomes a Banach space. 

The variable exponent Sobolev space  is denied by 
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for any ( ) )( xpLu  and ( ). )('

 xpLv  
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(i) There exists two positive real numbers  and r  such that  ( ) uI with ru = , 

(ii) There exists Xu 1 such that ru 1 and ( ) 01 uI .     

 

Put  ( ) ( ) ( ) 11   and  00 : ,1,0   uggXCgG === .  Set  ( )( )    : 1,0    max  inf GggI = . 

Then   and   is a critical value of .I  

 

3. Main Results 

Let X denote the variable exponent Sobolev space ( ))(,1

0

xp
W . The main results of the present 

paper is: 

   

Theorem 3.1. If (A1) - (A5), (f1), (f2), and (AR) hold, then problem (P)  has a nontrivial weak solution 
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(iv) I is weakly lower semi-continuous on X . 

(v)  I is well-defined on X . 

(vi)  For all Xvu ,  
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Therefore, from Proposition 2.3, Proposition 3.1, and Lemma 3.3, it is easy to see that
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mapping RXI →:  

( ) ( ) ( ) ,  ,    ,  , '  dvuxfdxvuxavuI  
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for any [8,15,17]. 

Lemma 3.5. Assume that the conditions (A1) - (A4), (f1), (f2), and (AR) hold. Then the following 
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where 8c is constant. Since  
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From (f1) and Proposition 2.1, we write 

( )( ) ( )( )( )

( )

( )

( ) ( )
.         

             ,  

1

1211

1

1

xqn
xq

xq

nxqn

n

xq

nnn

uuucuuc

duuuccduuuxf

−+−

−+−



−



−

  

 

Moreover, thanks to the compact embedding 
( ) ( )→ xqLX , we have  

                        uun →  (strongly convergent) in 
( )( )xqL

 
.                     (1.5) 

By Proposition 2.2 and relation (1.5), we get 

( ) ( ) 0    , →−  duuuxf nn  as →n .          

 

Taking into account the above inequality, we have 

( )( ) 0  , →− dxuuuxa nn  as →n . 

That is, 

( ) 0  ,   lim ' =−
→

uuu nn
n

. 

Then, from Lemma 3.4 (vi), we can write 

( ) ( ) ( )( ) ( ) ( )n
n

n
n

nn
n

uuuuuuu   lim      lim  ,   lim0 ' −=−−=
→→→

 

or  

( ) ( )uun
n

  lim 
→

 

and from Lemma 3.4 (iii), we obtain 

( ) ( )uun
n

   lim =
→

. 

Now, we assume by contradiction that    nu does not converge strongly to u  in X . Then, 

there exists and a subsequence  
knu of    nu such that −   uu

kn . Moreover, by Lemma 

3.4(vii), we can write the following inequality 

( ) ( ) −
−

−











 +
−+ p

p

n

n

n muum
uu

uu
k

k

k
  

2
  

2

1
 

2

1
. 

 Letting in the above inequality, we have 

( )
−

−











 +


→

pn

n
mu

uu
k  

2
  suplim . 

We also have converges weakly to u  in X  . On the other hand, using Lemma 3.4 (iii), we 

obtain 

( ) 











 +


→ 2
  inflim kn

n

uu
u , 

0

→k







 +

2

knuu
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and this is a contradiction. Hence, it follows that converges strongly to u  in X . The proof of 

Lemma 3.6 is complete. 

 

Proof of Theorem 3.1. from Lemma 3.5, Lemma 3.6, and ( ) 00 =I  from (A2), I
 
satisfies all 

statements of Lemma 2.6. Thus, I  has a nontrivial critical point, i.e., problem (P) has a nontrivial weak 

solution. 

4. Conclusion 

Through this paper, we have studied the existence of a nontrivial weak solution of the nonlinear 

Steklov boundary value problem in variable exponent Sobolev spaces and using the variational method 

under appropriate conditions on f  and  a . 
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