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1. Introduction

In this article, we study the following Steklov boundary value problem involving p(Xx) -Laplacian
operator

div(a(x,Vu))=0, xe Q,

a(x,Vu)% =2 f(xu), xe aQ’(P)

where Q< R" (N >2)is a bounded with smooth boundary, p < c(g_z), f:00xR —> Ris a
. . ou . . I
Carathéodory function, A is a positive parameter, 8_ is the outer unit normal derivative on 0Q,
v

a(x,g):g_zx R — R"™ is the continuous derivative with respect to & the mapping
A(x,£):QxR" —R" and div(a(x,Vu))is p(x)— Laplacian type operator.

The operatordiv(a(x,Vu)), which appears in (P), is a more general operator than the p(X)-
Laplacian operator

A ol = div (] vu |p(x)_2Vu )
In this study, we assume that A ,a and f satisfy the following conditions:
(A1) The following inequality holds:

la(x,e)|< c(1+|g| P ) forall xe Q and alle e RV .

(A2) A(x,0)=0, forallx € Q.
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(A3) The monotonicity condition holds:
(a(xe)-alxn))e-n)20,

forall x e Q and all g,n € R" with equality ifand only ife = 77.
(A4) The following inequality holds:

|8 |p(x) <a(x,g)e<p(x)A(x &),

forall xeQ andall e e R".
(A5) Ais p(x)— uniformly convex: There exists a constant m > 0 such that

1 1 p(x
A1 558 s Ak Ale)-ml ¢

forall xe Q andall £,¢ eR",

(f1) f :0Q2xR — R is a Carathéodory condition such that
f(x,t)<c+ cl|t|q(x)_1

where cand c, are positive constants and q(x) e C(AQ) such that p* < g~ < q(x) < p°(x).

(f2) f (x,t):o[|t|"*1) ast —> 0, forall xedQ and p* <q".

(AR) Ambrosetti-Rabinowitz's condition: there exist t* >0 and p* < @ such that
0<OF (x,t)< f(xt)t, t|>]t", forall xeoQ.

Moreover, throughout this paper, we define

Np(x) (N-2)p(x) .
0 (=N - p()’ Tf N > p(x) ad p0)=1 N_p) ° -|f N > p(x)
o, if N < p(x) o, if N < p(x)

In recent years, the study of variational problems in the variable exponent Lebesgue-Sobolev
spaces is an interesting topic of research due to its significant role in many fields of mathematics. These
types of problems have been interesting topics like electrorheological fluids, elastic mechanics,
stationary thermo-rheological viscous flows of non-Newtonian fluids, and image processing
[2,5,12,13,18].

Recently, many authors have intensively studied the nonlinear boundary value problems
involving p(X)-Laplacian operator [1,4,7,8,14,15,17]. For example, in [3], the author studied the
existence and multiplicity of solutions by using a variation of the Mountain Pass for the following
Steklov problem standard growth condition,

A p(x)-2

sl =u" U xe

-2 0U
Vu" ™ = = f(xu), xe a0
ov
where f is not satisfy the Ambrosetti-Rabinowitz type condition.

In [9], the authors constrained the existence and multiplicity of solutions by using the Mountain
Pass theorem and Ricceri's three critical points theorem under the appropriate conditions for the
following Steklov problem standard growth condition,

div(a(x,Vu))=0, xeQ,
{a(x,Vu)v = f(x,u), xeoQ,
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Motivated by the above paper, we get some existing results of weak solutions to the problem (P).
This paper is organized as follows. In Section 2, we recall the definition of the variable exponent
Lebesgue - Sobolev spaces. In Section 3, we give the main results.

2. Preliminaries

We state some definitions and basic properties of variable exponent Lebesgue-Sobolev spaces
LPX(Q), WP () and W,"P¥(Q) [8,10,13,16].
Set
C,(Q) ={p:p(x) € C(Q),infp(x) > 1, forall x € Q}
For any p(x)e C, (Q_Z) , We write
1<p =inf p(x) and p* :=sup p(x) <o

xeQ
Define the variable exponent Lebesgue space by

LP¥(Q) = {u|u:Q — Ris measurablesuch that _[Q|u(x)| "My < oo !,

p(x)
dx <1 },

u(x)

with the norm

|u|p(x) = inf{ﬂ>0: _[Q 5

and (Lp(x) 02), u )becomes a Banach space.

Similarly, we can define for p(x)e C, (6Q),
LP® (6Q) = {u| u: 82 — Ris measurable such that LQ|u(x] "o < }

with the norm

|u|Lp(x)(m) = inf {g >0: IQ

where do is the measure on the boundary. (L™ (6Q),|u| . (X)) becomes a Banach space.

p(x)
M do <1 }
-

The variable exponent Sobolev space W P (Q) is denied by
WH®(Q)={ ueL’®(Q) : [Vu|e L"¥(Q)},

and equipped with the norm,
ul Ul + VUl YU eWHPM(Q)

1po Ml

The space W,""*(€2) is denoted as the closure of C*(€2)in W*P®(€2) with respect to the norm

ul, - For U eW,""™(Q) , we can define an equivalent norm |ul = |Vul.

' 1 1
Proposition 2.1.[ 3,6,12 1 L") (Q) is the conjugate space of L"*(Q2), where—— + —— =1.

p(x)  p'(x)
Then, we write Holder-Type inequality

1 1
‘ Jguvdx ‘S(p—Jer |u|p(X)|V| TONE
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forany ue L™ (Q)and ve LP®(Q)
The modular of the LP™ (Q2)space, which is the mapping p,,, (u): L"*(€2) — R defined by

P (U)= J'Qu(x)dx, Vuel"™(Q)
Proposition 2.2. [6,10,16] If u,u, € L"®(Q) (n = 1,2,..) and p* < oo, we denote
(i) U =1(<l>1)s p,,U)=1(<1 >1),

p(X)
Gy min{[uf? o ) < g @)= max( 2l ).
(i) Juf,p =0 (5 0) & ppy(uy) =0 (=),
) Ju, Ul >0 (= 0) & pylU, —u) >0 (=),

Proposition 2.3. [14,15,17] We define ¢, ,, (u) = jag|u|p(x)da, Vu e L"®(6Q). Then
(i) Ul o oy Z1=> [ P roga) <@ (W) <yl P oo )

W) (Ul <1= Y " e < @0 (W) <[ v

Proposition 2.4. [10,15]
()  1fl<p <p" <othenthespaces LP¥(Q), WP (Q2) and W, "™ (Q) are
separable, reflexive and uniformly convex Banach spaces,

i) 1fax)ecC, (5) and 1< q(x)< p*(x) forall x e Q, then the embedding
W PO () - L9™(Q2) is compact and continuous,

iy 1f q(x)eC,(6Q)and 1< q(x)< p®(x)forall x € 6, then the trace embedding
W PO (Q) — L9)(502) is compact and continuous,

(iii)  Poincaré inequality, i.e. there exists a positive constant C > 0 such that

Jul <Clvul . forall u eW,""(Q).

Definition 2.5. [16] Let X be a Banach space and the function | Cl(X, R). We say that | satisfies
the Palais-Smale condition (PS) in X if any sequence {un} in X such thatl(un)is bounded and
I(u,)— 0 as N — oo has a convergent subsequence. | € C*(X,R)

Lemma 2.6. (Mountain Pass Theorem) [16] Let X be a Banach space and the function | € Cl(X, R)

satisfies the Palais-Smale condition. Assume that I (0) = 0, and the following conditions
hold.
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(i)  There exists two positive real numbers 7 and r such that 1(u)> zwith|u|=r,

(i)  There exists u, € X such that |u,| > rand(u,)<0.

PutG={geC([01] X ):g(0)=0and g(1)=u,}. Setg=inf{max1(g([01])): geG }.
Then S >7and f isa critical value of I.

3. Main Results

Let X denote the variable exponent Sobolev space Wol'p(x) (Q) The main results of the present

paper is:

Theorem 3.1. If (A1) - (A5), (f1), (f2), and (AR) hold, then problem (P) has a nontrivial weak solution
forany 4 € (0,0).
We say that U € X is a weak solution of (P) if

IQa(x,Vu)Vv dx— 4 LQ f(x,u)vdo =0

forallve X .
The energy functional corresponding to the problem (P) is definedas | : X —> R

I (u)= _[Q A(x,Vu)dx— 4 LQ F(x,u)do = A(u)-23(u),
where A(u)= .[Q A(x,Vu)dx and J(u)= LQ F(x,u)do.
Proposition 3.2. [3,9] Let f :0Qx R — R is a Carathéodory function satisfying (f1). Foreach u € X
set J(u)= IBQF(X’U)dG' Then, J (u)e C*(X,R)) and

(3" (u)v) = .LQ f(x,u)vdo,

forall ve X . Moreover, the operator J': X — X is compact.

Lemma 3.3. [9, 11]
0] A verifies the growth condition: for all X e Qandall £ e RV,

|A(xe)| e, (e +]e™ ).

(i) Alis p(x) -homogeneous: forall z>1, x e Qand c¢eRY,
geRY A(x,ze)< A(x, &)z,

Lemma 3.4. [6, 9, 11, 14]
(i) The functional A(u) is well-defined on X .

(i)  The functional A(u) is of class C*(X,R) and

(A(u)v) :La(x,Vu) Vv dx, forallu,v e X .

(iiiy  The functional A(u) is weakly lower semi-continuous on X .
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(iv) | is weakly lower semi-continuous on X .
(V) I is well-defined on X .

(vi) Forall u,ve X
A (u )—A(V)Z<A' (v),u—v>

(vii)  Forall u,ve X and m > Ois a constant

u+v 1 1 B Vs
A( > jSZA(u)+2A(V) mfu—v|® .

Therefore, from Proposition 2.3, Proposition 3.1, and Lemma 3.3, it is easy to see that
I(u)e C*(X,R) the critical points | are weak solutions of (P). Moreover, the derivate of | is the

mapping | : X > R
(') =_[Qa(x,Vu)Vv dx—/i.[mf (x,u)vdo,
forany u,v e X [8,15,17].

Lemma 3.5. Assume that the conditions (Al) - (A4), (f1), (f2), and (AR) hold. Then the following
statements hold:

(i)  There exist two positive real numbers 7 and r such that I(u)>r > Owith |u| =7,
(i)  Thereexists U, € X such that ||u,| > zand1(u,)<0.

Proof (i): For ||u] <1, from (f1) and (f2), we have

ul®™ forall (x,u)e GQxR. (1.1)

Then, using the above inequality (1.1) and (A4), we write
I(u)= _[Q A(x,Vu)dx— 4 LQ F(x,u)do

1 p(x) p* a(x)
> [, gl =2 [ (el +e ™ )do
On the other hand, by Proposition 2.4 (iii), we can write
X 5L (Q)and X - LY (6Q) - L (6Q)

Thus, there exist constants C,,C,,Cc, >0forall ue X ,

|F(xu)|<elu” +c,

t

[ dxsc, ol | do<c,|u|* and[ | dosc, u]* (L2)

Moreover, using Proposition 2.1, Proposition 2.2, Proposition 2.3, (A4), the inequalities (1.1) and (1.2),
we obtain

C + + -
)= >l ~2(es ol +e.c ")

+ !

C .
Choose & >0 small enough such that A ¢, ¢ < > >, we obtain
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+ c oy
0=l 2 )

Let us define the function 7 : [O,l] — Rby

nlt)= -

2p*

where C.,Csand C, are positive constants. Since p* < g~ the function 7 is strictly positive in a

-_nt
tq P,

neighborhood of zero.
(i) Let @ € X /{0} and t >1 . From (AR), we obtain | F (x,t)|> ¢, [f| for all (x,t)e 8Qx R
and c, is a positive constant. Then, by Lemma 3.3 (ii), we get

|(tw)= L A(x,Vtw)dx — A _LQ F (x,tw)do

cy t? Acg th x
< gp‘ IQA(X,Vw)dX—;—+I69|w|q( 'do

where Cg is constant. Since ¢~ > p~ we conclude that I(ta))< 0 ast — o .Thereexists u, =tw e X
such that || u, | > zand 1(u,) <0 The proof is completed.

Lemma 3.6. Suppose that the conditions (Al) - (A5), (f1), (f2) and (AR) hold. Then | satisfies the (PS)
condition.

Proof; Suppose that {un }c X isa (PS)-sequence that satisfy the properties:

I (u,)—>cypand 1'(u,)—>0in X* asn — oo, (1.3)
where X" is dual space of X and C,, is a positive constant.
We prove that{ u, } possesses a convergent subsequence. Firstly, we show that {un }is bounded in

X . We do the proof by contradiction. That is, we show that | u, || — 0 as n— .
By using the condition (A4) we can write
J.Q|Vun| J. x,Vu,)Vu, dx < p I x,Vu, )dx. (1.4)

Moreover, using (1.3), (1.4), (AR), and Proposition 2.2 and considering | u,, | >1 for n large

enough, we have
1+C10 2 | (un)__< Ir(un)’un >

1 A
='[QA(X,Vun)dx—ﬂ,LQF (x,un)da—gLa(x,Vun)Vun dx+5J.aQ f(x,u,)u, do

1 1 -
23
p

Since@ > p*, we obtain that {un }is bounded in X and u € X such that u, — u (weak convergent)

in X . Now, we prove that{un } strongly convergentto U in X .

By relation (L.3), we obtain the following (1’ (u, ),u, —u ) — 0 as n — oo,
That is,
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< I' (u, )u, —u >

=IQa(x,Vun)(Vun ~Vu )dx—/ij-mf (x,u,)(u, —u)do — 0.
From (f1) and Proposition 2.1, we write

Hagf (x,u,)(u, —u)da‘gum(mrcl |un|Q(X)_1 )(un ~u )da‘

| u |Q(X)—1

<y Uy —u, o +Cy

q'(X)| Uo —H |q(x)'

(x)
Moreover, thanks to the compact embedding X — Lq(x)(éﬂ), we have
u, — U (strongly convergent) in L"(X)(GQ) : (1.5)
By Proposition 2.2 and relation (1.5), we get
[, fxu,) U, -u)do—>0an—>c.

Taking into account the above inequality, we have
La(x,Vun)(Vun ~Vu)dx — 0 as n — .

That is,
lim (A’ (u,)u, —u)=0.

n—oo

Then, from Lemma 3.4 (vi), we can write
0= lim < A (u,)u, —u >s lim(A(u)-A(u,))=A)-limA(u,)

n—o n—oo nN—o0
or
limA(u,)<A(u)

N—oo
and from Lemma 3.4 (iii), we obtain
lim A (u,)=A(u).

n—oo

Now, we assume by contradiction that {un }does not converge strongly to U in X . Then,

there exists & > 0 and a subsequence {unk }of {un }such that‘

U, —u H > & . Moreover, by Lemma

3.4(vii), we can write the following inequality
u+u
1A(u)+1A(un )-A “xmfu-u, |’
2 2 “ 2 «
Letting kK — o in the above inequality, we have

u+u, ]
IimsupA( , k]SA(U)—mg" .

n—o

72m(§p7.

u+u
We also have { 5 L }converges weakly to U in X . On the other hand, using Lemma 3.4 (iii), we

obtain

u-+u,
A (u)< liminf A ( 5 J

n—oo
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and this is a contradiction. Hence, it follows that {un}converges strongly to U in X . The proof of
Lemma 3.6 is complete.

Proof of Theorem 3.1. from Lemma 3.5, Lemma 3.6, and | (O): 0 from (A2), | satisfies all

statements of Lemma 2.6. Thus, | has a nontrivial critical point, i.e., problem (P) has a nontrivial weak
solution.

4. Conclusion

Through this paper, we have studied the existence of a nontrivial weak solution of the nonlinear
Steklov boundary value problem in variable exponent Sobolev spaces and using the variational method
under appropriate conditionson f and a .
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