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Highlights 

• This paper is focused on viscoelastic beam with a lengthwise crack under sinusoidal strains. 

• A viscoelastic model for describing the behavior of the beam is presented. 

• A parametric analysis of the influence of various factors on the lengthwise fracture is performed. 
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Abstract 

This paper describes a research of lengthwise fracture in a viscoelastic inhomogeneous cantilever 

beam under strain that is a sinusoidal function of time. The beam mechanical behavior is 

investigated by a model having two linear springs and a linear dashpot. The beam material is 

continuously inhomogeneous along thickness. Therefore, the modules of elasticity of the springs 

and the coefficient of viscosity of the dashpot vary smoothly in the thickness direction. The 

compliance method is applied to derive the strain energy release rate (SERR) for the lengthwise 

crack in the beam structure. The integral J is applied for verification. The stress-strain-time 

dependence of the viscoelastic model is used for describing the behavior of the beam when 

obtaining solutions of the SERR and the J-integral. Solutions are derived for both positive and 

negative rotation angle of the lower crack arm end (when the angle is positive, the upper crack 

arm is load free, while at negative angle both crack arms are loaded). The effects of various factors 

including the sign of the angle of rotation on the SERR are analyzed.        
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1. INTRODUCTION 

 

The technical progress is inextricably bound up with utilization of various types of inhomogeneous 

structural materials in the recent years [1, 2]. Among them, the materials with continuous inhomogeneity 

are very attractive for both scientists and practicing engineers. Their properties are smooth functions of one 

or more coordinates. One of the most efficient materials of this type is the functionally graded material 

(FGM) [3-7]. The concept of FGM is developed originally in Japan in year 1984. The FGM represents a 
continuous mix of several materials. The composition of FGM changes smoothly within the structural 

member [8-15]. The basic idea is by varying continuously the microstructure of the material with a definite 

gradient along one or more spatial coordinates to manufacture a composite material with smoothly changing 

properties. The concept of FGM is very suitable for designing of materials aimed for use in specific 

structural applications [16-20]. Due to their superior properties, the FGM applied in aerospace industry, 

nuclear fusion reactors, biomedicine, automotive industry, etc. are an important factor for enhancing the 

operational reliability of facilities in these areas.    

  

Studying fracture plays an essential role in design of engineering constructions made of continuously 

inhomogeneous (functionally graded) materials [21-24]. Failure of various load-bearing structures very 

often is due to appearance of cracks. Therefore, ensuring of durability and operational reliability of 

continuously inhomogeneous engineering constructions and facilities requires development and application 

of different fracture analyses in the process of structural design.  
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In their life-time, continuously inhomogeneous load-bearing structures often are under external loadings 

and influences which change according to a sinusoidal law. Also, these structures exhibit viscoelastic 

mechanical behaviour in their life-time that should be considered when analyzing fracture. In view of this, 

the current paper studies lengthwise fracture of a continuously inhomogeneous cantilever under sinusoidal 

strains. Viscoelastic behaviour is analyzed by a linear model. The stress-strain-time dependence under 

sinusoidal strains is derived. This dependence is used when obtaining solution of the SERR for the 

lengthwise crack. It should be mentioned that earlier  lengthwise fracture studies deal with constant loading 

or loading that changes linearly with time [25, 26]. Hence, the novelty here is the consideration of the 

sinusoidal strains and their effects on the lengthwise crack.   
 

2.VISCOELASTIC BEAM WITH LENGTHWISE CRACK SUBJECTED TO SINUSOIDAL 

STRAINS 

 

The linear viscoelastic model under consideration is with two linear springs, DE  and HE , and a linear 

dashpot,  , assembled as displayed in Figure 1.  

 

 
Figure 1. Viscoelastic model  

 

The model strain is  . The variation of strain with time, t , follows sinusoidal law 

  

 ( )t sin0=  
                                                                             

(1) 

 

where 0  and   are the amplitude and the angular frequency.  

 

The relation between stress, strain and time for the viscoelastic model is derived by applying the following 

approach. First, relations between strains are written as 

 

HD  =+ , 
                                                                             

(2) 

 

 =H  
                                                                             

(3) 

  

where  , D  and H  are strains in the dashpot and in the springs, respectively (Figure 1). 
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The equations of equilibrium of the components of the model are obtained as 

 

 =+ H , 
                                                                             

(4) 

 

D =  
                                                                             

(5) 

 

where  , D   and H  are the stresses. 

 

They are expressed as 

 

  = , 
                                                                             

(6) 

 

DDD E  = , 
                                                                             

(7) 

 

HHH E  = . 
                                                                             

(8) 

 

In formula (6),   is the first derivative of  .  

 

By combining of (1) – (8) and performing some mathematical transformations, one obtains the following 

first-order linear inhomogeneous ordinary differential equation: 

 

( )t  sin=+  
                                                                             

(9) 

 

where 

 


 DE
= ,                                                                           (10) 

 

0 = . 
                                                                           

(11) 

                 

Equation (9) is used to determine  . In result, we have 

 

( ) 


  += − tCet .                                                                           (12) 

 

Here C  is an integration constant.   is  

    

( ) ( )tt   cossin +=                                                                            (13) 

 

where   and   are constants. First,   and its derivative are substituted in (9). Then, by some 

mathematical manipulations, one derives 

 

( ) ( ) ( ) ( ) 0cossin =++−+− tt   
                                                                          

(14) 
. 
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Equation (14) is satisfied when the expressions in brackets before ( )tsin  and ( )tcos  are equal to zero 

 

0=−+−  ,                                                                           (15) 

 

0=+  . 
                                                                           

(16) 

 

Equations (15) and (16) are solved with respect to   and  . The result is 

 

22 




+
= , 

22 




+
−= .                                                                                                   

(17) 

 

The initial condition used to determine the integration constant, C , is written as 

 

0)0( = . 
                                                                           

(18) 

 

Thus, C  is found as 

 

−=C . 
                                                                           

(19) 

 

In this way, the solution of (9) takes the form 

 

( ) ( ) ( )ttet t  

 cossin ++−= −
. 

                                                                           

(20) 

 

By combining of (6) and (20), one derives 

 

( )  ( ) ( ) ttet t  

 sincos −+= −
. 

                                                                           

(21) 

 

By using (1), (3) and (8), one obtains 

 

( ) ( )tEt HH  sin0= . 
                                                                           

(22) 

 

Combination of (21), (22) and (4) yields the following dependence for the linear viscoelastic model under 

consideration (Figure 1): 

 

( )  ( ) ( ) ttet t   sincos −+= −

( )tEH  sin0+ .           
                                                     (23) 

 

Dependence (23) is used for describing the behaviour of the beam structure displayed in Figure 2. The 

structure under consideration is clamped. The sizes of the structure are b , h  and l . There is a lengthwise 

crack in the structure. The crack length is a . The crack arms thicknesses are 1h  and 2h .     

   

The lower arm of the crack is subjected to bending. The angle of rotation,  , is sinusoidal function of time 

 

( )t sin0=                                                                            (24) 
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where 0  is the amplitude. The positive direction of   is displayed in Figure 2.  

 

The properties of the material change along the beam thickness.  

 

 
Figure 2. Inhomogeneous beam with lengthwise crack 

 

Change of  , DE  and HE  along the thickness of the beam is 

 




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f

f

RS
R z

h

h




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+

−
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(25) 
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(26) 
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EE
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


+

−
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(27) 

 

where  

 

22
1

h
z

h
− . 

                                                                           

(28) 

 

In formulae (25) – (28), 1z  is the beam vertical centric axis. Formulae (25) – (28) indicate that values of 

, DE  and HE  change from R , DRE  and HRE  to S , DSE  and HSE . The quantities, f  ,  Df  and Hf , 

in (25) – (28) control the distribution of  , DE  and HE , respectively.  

 

As already mentioned, this paper aims to derive a solution of SERR for beam in Figure 2. The compliance 

method is applied. Therefore, the SERR, G , is written as 

da

dC

b

M
G

2

2

=  
                                                                           

(29) 

 

where C  and M are the beam compliance and the moment at the free end. The compliance is  

 

M
C


= .                                                                           (30) 
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The moments is  

 

22

2

2

1

1

dzzbM

h

h


−

=                                                                             

(31) 

 

where 2z  is the lower crack arm centric axis.  

 

In order to proceed further, stress,  , is presented as a function of 2z . First, the variation of strains is 

studied. Application of Bernoulli’s hypothesis yields  

 

)( 22 nLR zz −=                                                                             (32) 

 

where  

 

22

1
2

1 h
z

h
− .                                                                           (33) 

 

In formulae (32) and (33), LR  is the curvature, nz2  is the neutral axis coordinate. The hypothesis of 

Bernoulli is applicable because beam length to thickness ratio is high.   

 

By combining of (11), (16), (17), (23), (24) and (32), one drives the following expression for the stress: 

 

( )
( )

 ( ) ( )  ( )




+−+


−

= − tEtte
t

zz
t H

tnLR 








 sinsincos

)sin(

22  
                          

(34) 

 

where  

 

22 




+
−= ,                                                                            

(35) 

 

22

2






+
= . 

                                                                           

(36) 

 

Determination of LR  and nz2  is the next step. One of the important peculiarities of the current analysis is 

that   changes periodically its sign (this follows from formula (24)). According to (24), at  

    

( )  mtm −1 , ...,7,5,3,1=m                                                                                            (37) 

 

the sign of   is positive. At  

 

 )1( + mtm , ...,7,5,3,1=m                                                                              (38) 

 

the angle   has a negative sign.  
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When the sign of   is positive, the upper crack arm is not loaded since the lower crack arm is rotated 

anticlockwise and bending moment can not be transmitted to the upper crack arm. However, when the sign 

of   is negative, two crack arms are in contact. Therefore, both crack arms are loaded (their curvature is 

the same).   

 

First, the curvature and the neutral axis coordinate are found for case when   is positive. For this purpose, 

fact that the axial forces are zero is used to write two equations 

 

02

2

2

1

1

=
−

dzb

h

h

 ,                                                                            

(39) 

 

03

2

2

=
−

dzb UN

h

h

                                                                             

(40) 

 

where UN
 
is the stress in portion, la  0 . The quantities, LR , 2z  and nz2 , are replaced with UN , 

3z  and nz3  in (34) to obtain UN . Here, UN , 3z  and nz3  are the curvature, centric axis and the coordinate 

of the neutral axis.   

 

The equilibrium of moments is expressed as 

 

  =







+−

−

22
1

2

2

22

1

1

dzz
hh

b

h

h

 33

2

2

dzzb UN

h

h


−

.                                                                                                (41) 

 
  is found by the integrals of Maxwell-Mohr 

 

( )ala UNLR −+=  .                                                                           (42) 

 

Equations (39) – (42) are solved for LR , nz2 , UN  and nz3  by the MatLab.   

 

For case of negative angle,  , the following six equations are compiled: 

 

02

2

2

1

1

=
−

dzb

h

h

 ,                                                                            

(43) 

 

03

2

2

=
−

dzb UN

h

h

 ,                                                                           (44) 
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04

2

2

2

2

=
−

dzb UR

h

h

                                                                            (45) 

 

where UR  is the stress. The quantities, LR , 2z  and nz2 , are replaced with UR , 4z  and nz4  in (34) to 

obtain UR  ( UR , 4z  and nz4  are the curvature, centric axis and the coordinate of the neutral axis, 

respectively).  

 

The bending moments are in equilibrium 

 

+







+−

−

22
1

2

2

22

1

1

dzz
hh

b

h

h



44
1

2

2

22

2

2

dzz
hh

b UR

h

h









++−

−

 33

2

2

dzzb UN

h

h


−

= .        

                                           (46) 

 

The two crack arms have the same curvature  

 

URLR  = .                                                                           (47) 

 

After substituting of stresses in (43) – (46), these equations are solved with (42) and (46) for LR , nz2 , 

UN , nz3 , UR  and nz4 . 

 

By substituting of (30), (31) and (42) in (29), the SERR is found as 

 

22

2

2

1

1
2

dzzG

h

h

UNLR 



−

−
= .                                                                            

(48) 

 

The lengthwise crack problem displayed in Figure 2 is treated also by the J-integral [27] for check-up of 

(48).  Contour,  , is used for integration (Figure 2). It is found that 

 

URUNLR
JJJJ  ++=  

                                                                           

(49) 

 

where 
LR

J  , 
UN

J   and 
UR

J   are the values in parts, LR , UN  and UR , of the integration contour, 

respectively (Figure 2).  

 

Expression for 
LR

J   is written as 

 

LR

LR

LRLRLRLR
ds

x

v
p

x

u
puJ yxLR 



  



















+




−=


cos0  

                                                                  

(50) 

 

where LRu0  is  
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
2

1
0 =LRu .                                                                           (51) 

 

Substitution of (32) and (34) in (51) yields 

 

 ( ) 
 ( ) ( )  ( )





+−+


−

= − tEEtte
t

zz
u H

tnLR
LR 








 sinsincos
)sin(2

2

22
0

. 

           

(52) 

 

Other components of (50) are found as 

 

1cos −=LR
 , 

                                                                           

(53) 

 

−=
LR

xp ,                                                                            

(54) 

                                                                                                          

0=
LR

yp ,                                                                            

(55) 

                                                                                                                                 

2dzds
LR
= , 

                                                                           

(56) 

                                                                                                                           

=




x

u
.                                                                           (57) 

                                                                                                                              

It should be noted that ]2/;2/[ 112 hhz − .   

 

In part, UN , of the contour it is found that 

 

UN

UN

UNUNUNUN
ds

x

v
p

x

u
puJ yxUN 



  



















+




−=


cos0  (58) 

 

where UNu0  is found by (52) (formula (52) is modified by replacing of LR , 2z  and nz2  with UN , 3z  and 

nz3 ). The rest of the components of (58) are written as 

 

1cos =UN
 ,                                                                           (59) 

 

UNx
UN

p =


,                                                                           (60) 

                                                                                                  

0=
UN

yp ,                                                                            

(61) 

                                                                                                                           

3dzds
UN
= , 

                                                                           

(62) 
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UN
x

u
=




                                                                           (63) 

 

where the strain, UN , is found by replacing of LR , 2z  and nz2  with UN , 3z  and nz3  in formula (32). 

Besides, here 3z  changes in the interval ]2/;2/[ hh − . 

 

In part, UR , we have 

                

UR

UR

URURURUR
ds

x

v
p

x

u
puJ yxUR 



  



















+




−=


cos0  

                                                                 

(64) 

 

where 

 

1cos −=UR
 , 

                                                                           

(65) 

 

URx
UR

p −=


,                                                                            

(66) 

                                                                                                       

0=
UR

yp ,                                                                            

(67) 

                                                                                                                           

4dzds
UR
= , 

                                                                           

(68) 

                                                                                                                

UR
x

u
=




.                                                                            

(69) 

    

Here, LR , 2z  and nz2  are replaced with UR , 4z  and nz4  in formula (32) to determine the strain, UR . 

The coordinate, 4z , changes in the interval ]2/;2/[ 22 hh− . 

 

The integrals (50), (58) and (64) are solved by MatLab. The J-integral yielded by (49) are matches of SERR 

found by (48) which is verification of (48).     

                    

3. PARAMETRIC ANALYSIS 

 

Parametric analysis is developed here by calculating of the SERR with help of (48).  
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Figure 3. Dependence of the SERR on RS  /  ratio (curve 1 – at 0 = , curve 2 – at 0 −= ) 

 

 

The findings of the parametric analysis throw light upon the influence of various factors on the SERR for 

the lengthwise crack in the viscoelastic structure under sinusoidal strains for 015.0=b m, 010.0=h  m, 

350.0=l  m, 05.0=  s-1, 03.00 =  rad and 8.0=== fff HD .   

 

 
Figure 4. Dependence of the SERR on DRDS EE /  ratio (curve 1 – at 2.0/1 =hh ,  curve 2 – at 

5.0/1 =hh ,  curve 3 – at 7.0/1 =hh ) 

 

First, influence of sign of angle of rotation,  , on the SERR is studied. For this purpose, the SERR is 

obtained at 0 =  and at 0 −= .  

 



387  Victor RIZOV / GU J Sci, 37(1): 376-391 (2024) 

 
 

 
Figure 5. Dependence of the SERR on hh /1  ratio at 0  (curve 1 – for inhomogeneous beam, curve 2 

– for homogeneous beam) 

 

The influence of the gradual change of   along the thickness is studied too. The results obtained are 

displayed in Figure 3 (the SERR is expressed as ( )bEGG DRN /= ). SERR at 0 =  is higher than that at 

0 −=  (Figure 3). This is due to the fact that at 0  the moment loads only lower crack arm, while at 

0  bending moment works on both crack arms. Increase of RS  /  ratio generates decrease of SERR 

(Figure 3).  

 

The variation of the SERR with DRDS EE /  and hh /1  ratios is also investigated (the first ratio characterizes 

the change of DE ). Dependence between the SERR and DRDS EE /  ratio is displayed in Figure 4 for three 

hh /1  ratios.  

 

 
Figure 6. Dependence of the SERR on  

HRHS EE /  ratio (curve 1 – at 5.0=Hf , curve 2 – at 7.0=Hf , curve 3 – at 9.0=Hf ) 

 

From Figure 4, it can be found that growth of DRDS EE /  ratio generates decrease of the SERR. The SERR 

decreases when hh /1  ratio inceases.  
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Figure 7. Dependence of the SERR on  

DSHS EE /  ratio (curve 1 – at 6.0=Df , curve 2 – at 8.0=Df , curve 3 – at 0.1=Df ) 

 

This finding is reasonable since the results displayed in Figure 4 are obtained at 0 . Growth of hh /1  

ratio induces augmentation of the stiffness which is reason for decrease of the SERR.     

  

SERR is evaluated also at 0 . The dependence of the SERR on hh /1  ratio in this case is displayed in 

Figure 5. It can be found from Figure 5 that the SERR has maximum when hh /1  
is near 0.5. Variation of 

SERR with hh /1  ratio is evaluated also assuming that the beam under consideration is homogeneous. The 

dependence of the SERR on hh /1  ratio for homogeneous beam is shown also in Figure 5. In homogeneous 

beam, the SERR has maximum at 5.0/1 =hh
 
(Figure 5).     

 

 
Figure 8. Dependence of the SERR on  

parameter f  (curve 1 – at 01.00 =  rad, curve 2 – at 02.00 =  rad, curve 3 – at 03.00 =  rad) 

 

Influence of change of HE  is analyzed. For this purpose, SERR is found at various HRHS EE /  ratios. Figure 

6 depicts the variation of the SERR with HRHS EE /  ratio at three values of Hf . From Figure 6, one learns 
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that the SERR reduces with the increase of HRHS EE /  ratio. It can be seen also that SERR grows with rise 

of the parameter Hf  (Figure 6). 

 

Figure 7 illustrates the change of SERR with rise of DSHS EE /  ratio at three values of the parameter, Df . 

It can be noticed that SERR decreases with rise of DSHS EE / . Rise of parameter, Df , induces increase of 

SERR (Figure 7).      

 

Variation of SERR with growth of f  is depicted in Figure 8 for three amplitudes, 0 , of the angle of 

rotation. Growth of f  induces rise of SERR (Figure 8). Curves in Figure 8 show that SERR increases with 

growth of 0 .  

 

4. RESULTS  

 

Lengthwise fracture of a linear viscoelastic inhomogeneous beam structure subjected to strain varying with 

time according to sinusoidal law is analyzed. A viscoelastic model with a dashpot and two springs is 

adopted for treating time-dependent behaviour of the structure. The connection between stress, strain and 

time of the model is derived and applied when analyzing SERR for the lengthwise crack. The lower crack 

arm is under bending so that its free end rotates according to sinusoidal law. One important peculiarity of 

the present crack problem is the fact that at positive angle of rotation the upper crack arm is stress free. At 

negative angle of rotation, however, both crack arms are loaded since the moment acts upon both crack 

arms. The compliance method is exercised to solve SERR problem for positive and negative angle of 

rotation. The integral J is applied for verification of SERR. A parametric analysis of SERR is carried-out. 

It is found that at negative angle of rotation SERR is lower than that at positive angle (this can be explained 

with the fact that at negative angle of rotation, the bending moment loads both crack arms). The influence 

of the continuous change of modules of elasticity and the coefficient of viscosity is explored. SERR 

diminishes with rising of RS  / , DRDS EE / , HRHS EE /  and DSHS EE /  ratios. The growth of parameters, 

Hf , Df  and f ,  induces rise of SERR. Analysis reveals that at 0  SERR diminishes with growth of 

hh /1  ratio. However, at 0  SERR has maximum when hh /1  
is near 0.5. SERR grows with rising of 

the amplitude of the angle of rotation.  
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