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Abstract. In this paper, directed strongly regular graphs (DSRGs) are con-
structed by using semidirect products. The orbit condition in [3] has been

weakened and this gives rise to the construction of DSRGs. Moreover, a dif-

ferent construction is given for DSRG by using semidihedral groups.

1. Introduction

Directed strongly regular graphs have attracted the attention of many mathe-
maticians and many studies have been done on them. It was first discussed by
Duval as the directed form of strongly regular graphs [2]. Duval also presented
several construction methods in his work. The main problem today is to con-
struct unknown ones by their parameters. For this purpose, many mathematical
structures have been used. Some of these are designs [ [5], [11]], coherent algebras
[ [5], [7], [10]], finite geometries [ [4], [5], [6]], matrices [ [2], [4], [6], [8]] and dihedral
groups [10]. Some non-existence results are given by Jorgensen [9]. Duval [3] con-
structed directed strongly regular graphs by using semidirect products with an orbit
condition. We change this condition with a weaker condition and give a construc-
tion of the directed strongly regular graphs. We also provide give a construction by
using semidihedral groups. Our construction methods using semidirect product and
semidihedral groups are new, however they do not give new parameters for small
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examples. Also, they are simple to use for finding larger parameters. Uniqueness
and enumeration studies can be found in [1].

This paper is designed as follows. In Section 2, necessary background information
on the graph is given and the notations we will use are introduced, in Section 3
the semidirect construction of DSRG of Cayley graphs are given, and finally, in
Section 4, DSRG is constructed from semidihedral groups which is an example of
semidirect products.

2. Preliminaries

A directed graph Γ = (V,E) consists of a vertex set V and an edge set E, where
an edge is an ordered pair of distinct vertices of Γ. Writing (x, y) ∈ E means that
there is a directed edge from x to y and that is shown by x → y. Throughout the
paper, the edges of the form (y, y) for some y ∈ V , i.e., loops, are not allowed.
However, we allow bidirected edge, that is having edges x → y and y → x for
the vertices x and y, simultaneously. The indegree (outdegree) of a vertex y in a
directed graph Γ is the number of vertices x such that x → y (y → x), respectively.
A graph Γ is called k-regular if every vertex in Γ has indegree and outdegree k. A
path of length l from x to y is a sequence of l + 1 distinct vertices starting with x
and ending with y such that consecutive vertices are adjacent. A directed graph Γ
is called directed strongly regular with parameters (n, k, t, λ, µ) if it is k-regular and
satisfies the following condition on the number of paths of length 2. The number
of directed paths of length 2 between two vertices, say from x to y, of the graph
Γ is λ if there is an edge from x to y, µ if there is not and t if x = y. Let G be a
group and S ⊆ G be a subset of G without the identity element. Directed Cayley
graph Cay(G,S) is a directed graph whose vertex set is G and for any two vertices
x, y, there is a directed edge from x to y if xy−1 ∈ S.

Example 1. LetG be a symmetric group of order six with elements {e, a, a2, b, ab, a2b}
and the subset S ⊆ G be the set {a2, a2b}. Then the directed graph Cay(G,S)
is shown as in Figure 1. The Cayley table of the elements of symmetric group of
order 6 is shown as in Table 1.

a2b

b ab

e

a2 a

Figure 1. Cayley graph of symmetric group of order 6
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∗ e a a2 b ab a2b
e e a a2 b ab a2b
a a a2 e ab a2b b
a2 a2 e a a2b b ab
b b a2b ab e a2 a
ab ab b a2b a e a2

a2b a2b ab b a2 a e

Table 1. The Cayley table of the symmetric group of order 6

When studying directed strongly regular graphs adjacency matrix and group
ring are advantageous tools. Let G be a finite group then the group ring Z[G] is a
ring with identity element e and defined as the set of all formal sums of elements
of G. The addition and multiplication are given by∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and ∑
g∈G

agg

(∑
r∈G

brr

)
=
∑

g,r∈G

agbr(g + r)

Let G be a group and Z[G] = {
∑

g∈G agg|ag ∈ Z}. If S ⊂ G, the group

ring element S will then be defined using the abuse of notation as S =
∑

s∈S s.

Furthermore, the group ring elements S(−1) and G will be defined as S(−1) :=∑
s∈S s−1 and G :=

∑
g∈G g.

Let S be a subset of a group G. In [2] they showed that Cay(G,S) corresponds
to a DSRG with parameters (n, k, t, λ, µ) if and only if |S| = k, |G| = n and it
satisfies the following group ring equation:

S2 = te+ λS + µ(G− e− S).

Let Γ be a directed graph with n vertices, then the adjacency matrix M of Γ is
an n×n matrix with entries aij where aij = 1 if vi → vj . Otherwise aij = 0. Since
we disallow loops, the diagonal entries of M are all 0. Let I and J denote the n×n
identity matrix and the all-one matrix, respectively. Then Γ is a directed strongly
regular graph if and only if

i) MJ = JM = kJ
ii) M2 = tI + λM + µ(J − I −M).

3. Semidirect Construction of Cayley DSRG

In this section, we give some definitions and lemmas related to the semidirect
product of two groups. We will also proceed in a similar way to that of Duval and
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Dmitri [3] by modifying the orbit setup they used. They proved that for a finite
group A of order m and the cyclic group B of order q if some β ∈ Aut(A) has the
q-orbit condition, that is, each orbit of β contains only q elements, then the graph
Cay(A⋉θ B,A′ ×B) is a DSRG with parameters

(mq,m− 1, (m− 1)/q, ((m− 1)/q)− 1, (m− 1)/q))

where θ : B → Aut(A) by θ(br) = βr and A′ is the set of representatives of the
nontrivial orbits of β.

Definition 1. (see [3]) Let A and B be two groups and θ : B → Aut(A) be an action
ofB on A. Then the semidirect product A⋉θB for the set {(a, b) : a ∈ A and b ∈ B}
is defined as follows:

(a, b)(a′b′) = (a[θb(a
′)], bb′).

For groups A and B, A ⋉θ B forms a group of order |A||B| with the identity
element (eA, eB) and inverse (a, b)−1 = (θb−1(a−1), b−1).

Let A and B be the additive groups of finite fields Fp2 and F2 respectively, where
p is a prime number. The Frobenius automorphism is defined as follows:

β : Fp2 → Fp2

β(x) = xp

We will use the following notation in the rest of the paper: P is the set of
elements of Fp, R is the set of representatives of orbits of β and Rp is the set as
{xp : x ∈ R}.

The orbits of the action β on Fp2 consists of p orbits of size one and p2−p
2 orbits

of size two.
Let A × B be the direct product of the sets A and B and define the operation

⋉ as the product of two elements as follows:

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2), if b1 = 0,

(a1 + ap2, b2 + 1), if b1 = 1.

Lemma 1. (G,⋉) forms a group of order 2p2 where G = A×B.

Proof. Let us start the proof by showing that G is closed under the operation ⋉.
For any (a1, b1), (a2, b2) ∈ G,

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2) ∈ G, if b1 = 0,

(a1 + ap2, b2 + 1) ∈ G, if b1 = 1.

Hence, G is closed under ⋉. It is easy to see that (0, 0) is the identity element of
the group. Indeed for any element (a, b) the following is true,

(a, b)⋉ (0, 0) = (0, 0)⋉ (a, b) = (a, b).
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Next, the inverse of any element (a, b) ∈ G is given by

(a, b)−1 =

{
(−a,−b), if b1 = 0,

(−ap,−b), if b1 = 1.

Finally, we will show the associative property. For (a1, b1), (a2, b2), (a3, b3) ∈ G we
have the following:

((a1, b1)⋉ (a2, b2))⋉ (a3, b3) =


(a1 + a2 + a3, b3), if b1 = 0, b2 = 0,

(a1 + a2 + ap3, b3 + 1), if b1 = 0, b2 = 1,

(a1 + ap2 + ap3, b3 + 1), if b1 = 1, b2 = 0,

(a1 + ap2 + a3, b3), if b1 = 1, b2 = 1.

= (a1, b1)⋉ ((a2, b2)⋉ (a3, b3))

and we are done. □

We say that a group automorphism β has the q-orbit condition if each of its
orbits contains either q elements or one element (including the trivial orbit that
contains only identity element). We change (weakened) the q-orbit condition that
is defined in [3]. Before giving our main theorem, we need the following lemma.

Lemma 2. The following equations hold in the group ring Z[G].

(a) (P × {1})2 = |P |(P × {0})
(b) (R×B)(P × {1}) = |P |(R×B)

(c) (P × {1})(R×B) = |P |(Rp ×B)

(d) (R×B)2 = p2−3p
2 (R×B) + p2−p

2 (Rp ×B) + p2−p
2 (P ×B)

Proof. We will only prove (b). We know that P is the set of elements of the obvious
orbits of β which are in Fp and R is the set of representatives of orbits of β. We
also know that B = F2. Then we have the following:

(R×B)(P × {1}) = ((R× {0}) + (R× {1}))(P × {1})
= (R× {0})(P × {1}) + (R× {1})(P × {1})
= ({(σ + γ, 1) : σ ∈ R and γ ∈ P})
+ ({(σ + γp, 1) : σ ∈ R and γ ∈ P})
= |P |(R× {0}) + |P |(R× {1})
= |P |(R×B).

The proof of (a), (c) and (d) are similar. □

Theorem 1. Let A = Fp2 and B = F2 be two additive finite fields where p is
an odd prime. If some β ∈ Aut(A) has the q-orbit condition (for instance, Frobe-
nius automorphism), then we may construct a directed strongly regular graph with
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parameters

(n = 2p2, k = p2, t = (p2 + p)/2, λ = (p2 − p)/2, µ = (p2 + p)/2)

as follows: Let us define θ : B → Aut(A) with θ0 = Id and θ1 = β(x) = xp for the
additive group B = F2. Let R be the set representatives of orbits with two elements
and P be the set of orbits with one element (only base field elements). Note that
R∩−R = ∅ where −R = {−r : r ∈ R}. Then, for the set S = (R×B)∪ (P ×{1})
the Cayley graph

Cay(A×θ B,S)

is a DSRG with parameters above.

Proof. Let the set S be (R × B) ∪ (P × {1}). Then |S| = k = 2|R| + |P | =
2 · [(p2 − p)/2] + p = p2. Our goal is to show that the graph Cay(G,S) is a DSRG

with parameters (n, k, t, λ, µ). So, we need to show that the summation S =
∑
s∈S

s

is valid in the following equation in Z[G],

S2 = te+ λS + µ(G− e− S).

To do that it will be enough to show that S satisfies the equation

S2 + |P |S = µG.

By Lemma 1 and Lemma 2 we get,

S2 + |P |S = ((R×B) ∪ (P × {1}))2 + |P |((R×B) ∪ (P × {1}))
= (R×B)×θ (R×B) + (P × {1})×θ (P × {1}) + (R×B)×θ (P × {1})+
(P × {1})×θ (R×B) + |P |(R×B) + |P |(P × {1})

= ((p2 − 3p)/2)(R×B) + ((p2 − p)/2)(Rp ×B) + ((p2 − p)/2)(P ×B)+

p(P × {0}) + p(R×B) + p(Rp ×B) + p(R×B) + p(P × {1})

= pG+ ((p2 − p)/2)G

= ((p2 + p)/2)G = µG

as required. □

Example 2. Let p = 3, A = Fp2 , B = F2. Consider the Frobenius automorphism

β : Fp2 → Fp2

β(x) = xp.

For G = A×B, (G,⋉) forms a group of order 2p2. The product of (a1, b1) and
(a2, b2) is given by

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2), if b1 = 0,

(a1 + ap2, b2 + 1), if b1 = 1.

Similarly, the inverse of (a, b) is given by
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(a, b)−1 =

{
(−a,−b), if b = 0,

((−a)p,−b), if b = 1.

Thus the orbits of β are {0}, {a, 2a+ 1}, {a+ 1, 2a+ 2}, {2}, {a+ 2, 2a}, {1}.
From Theorem 1, multiplying one-element orbits by {1} and two-element orbits

by the set B, we construct the set S = {(a, 0), (a, 1), (a + 1, 0), (a + 1, 1), (a +
2, 0), (a + 2, 1), (0, 1), (1, 1), (2, 1)}. Then the Cayley graph Cay(A × B,S) is a
directed strongly regular graph with parameters (18, 9, 6, 3, 6).

4. Semidihedral Construction of Cayley DSRG

In this section, we will construct directed strongly regular graphs from semidi-
hedral groups by using Cayley graphs. The method of producing DSRG’s using
semidihedral groups in this section is different from the semidirect method given
in Section 3. The choice of our generator set S here is independent of the q-orbit
condition. A semidihedral group SD(m) is also an example of the semidirect prod-
uct of cyclic group C2 with the dihedral group. But in this construction C2 acts on

C2m−1 by x ↣ x2m−2−1 instead of x ↣ x−1. Before we give the main theorem, we
need the following lemma.

Lemma 3. Let G = SD(m) = ⟨a, x|a2m−1

= x2 = e, xax = a2
m−2−1⟩ be the

semidihedral group of order m ≥ 4. Let P = P1 ∪ P2 where Pi = {ai+4k : k =
0, 1, ..., 2m−3 − 1}. Then

xP = P ′x where P ′ = P2 ∪ P3.

Proof. Let P = P1 ∪ P2. By multiplying both sides of this equality by x, we get

xP = xP1 ∪ xP2

= {xa1+4k : k = 0, 1, ..., 2m−3 − 1} ∪ {xa2+4k : k = 0, 1, ..., 2m−3 − 1}

= {a(1+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}

∪ {a(2+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}.

(1)

Since the power of a in P1 and P2 is 1 mod 4, 2 mod 4 respectively and m ≥ 4, if
we multiply the powers of a by 2m−2 − 1 we will have

1 + 4k ≡ 1( mod 4)

(1 + 4k) · (2m−2 − 1) ≡ 2m−2 − 1( mod 4)

≡ −1( mod 4)

≡ 3( mod 4)

(2)

and
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2 + 4k ≡ 2( mod 4)

(2 + 4k) · (2m−2 − 1) ≡ 2m−1 − 2( mod 4)

≡ −2( mod 4)

≡ 2( mod 4).

(3)

Therefore, using Equations (2) and (3) in Equation (1), we will have the following

{a(1+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1} ∪ {a(2+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}

= {a3+4kx : k = 0, 1, ..., 2m−3 − 1} ∪ {a2+4kx : k = 0, 1, ..., 2m−3 − 1}
= P3x ∪ P2x = (P2 ∪ P3)x = P ′x.

This completes the proof. □

Note that we also have the equations xP1 = P3x (P1x = xP3) and xP2 = P2x.

Theorem 2. Let G = SD(m) = ⟨a, x|a2m−1

= x2 = e, xax = a2
m−2−1⟩ be the

semidihedral group of order m ≥ 4. Let P = P1 ∪ P2 where Pi = {ai+4k : k =
0, 1, ..., 2m−3 − 1}. Then Cay(G,P ∪ xP ) is a DSRG with parameters

(n = 2m, k = 2m−1, t = 3.2m−3, λ = 2m−3, µ = 3.2m−3).

Proof. Let S = P ∪ xP . Then the parameter k = |S| = 2|P | = 2 · 2m−2 = 2m−1.
Our goal is to show that Cay(G,S) is a DSRG with parameters (n, k, t, λ, µ). Thus

the formal sum S =
∑
s∈S

s should satisfy the equation

S2 = te+ λS + µ(G− e− S)

in the group ring Z[G]. Therefore, we need to show that the equation

S2 + 2m−2S = 3 · 2m−3G

holds. So,

S2 + 2m−2S = (P + xP )2 + 2m−2(P + xP )

= P 2 + P · xP + xP · P + xP · xP + 2m−2(P + xP )

= P 2 + xP ′ · P + xP · P + P ′ · P + 2m−2(P + xP )

(4)

where P ′ = P2 ∪ P3 by Lemma 3.
In order to complete the proof let us compute PiPi and PjPj . Since P0 is a

subgroup of order 2m−3 and P1 = aP0, P2 = a2P0 and P3 = a3P0 are its cosets, we
have

PiPi = a2iP0P0 = |P0|P2i

PiPj = ai+jP0P0 = |P0|Pi+j .
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It follows that

P 2 = P1P1 + P1P2 + P2P1 + P2P2

= |P0|P2 + |P0|P3 + |P0|P3 + |P0|P4

= |P0|P2 + 2 · |P0|P3 + |P0|P0,

and

P ′P = P2P1 + P2P2 + P3P1 + P3P2

= |P0|P3 + |P0|P0 + |P0|P0 + |P0|P1

= |P0|P3 + 2 · |P0|P0 + |P0|P1.

Now it only remains to write them in Equation (4) :

S2 + 2m−2S = (P + xP )2 + 2m−2(P + xP )

= P 2 + PxP + xPP + xPxP + 2m−2(P + xP )

= P 2 + xP ′P + xPP + P ′P + 2m−2(P + xP )

= P 2 + P ′P + (2 · |P0|)P + x(P 2 + P ′P + (2 · |P0|)P )

= |P0|P2 + 2 · |P0|P3 + |P0|P0 + |P0|P3 + 2 · |P0|P0 + |P0|P1

+ 2 · |P0|P1 + 2 · |P0|P2 + x(|P0|P2 + 2 · |P0|P3 + |P0|P0 + |P0|P3

+ 2 · |P0|P0 + |P0|P1 + 2 · |P0|P1 + 2 · |P0|P2)

= 3 · |P0|(P0 + P1 + P2 + P3 + xP0 + xP1 + xP2 + xP3)

= 3 · (2m−3) ·G.

This completes the proof. □

Example 3. Let G = SD(4) be the semidihedral group of order 4 for m = 4 with el-
ements {e, a, a2, a3, a4, a5, a6, a7, x, xa, xa2, xa3, xa4, xa5, xa6, xa7}. Construct the
subset S according to Theorem 2 as {P ∪ xP} where P = {a, a2, a5, a6}. Then
Cay(G,S) is a DSRG with parameters (16, 8, 6, 2, 6).

Remark 1. The directed strongly regular graph constructed in the Example 3 has
already been presented in [2] by Duval. The author constructed the DSRG with
parameters (16, 8, 2, 6, 2) from a DSRG with parameters (8, 4, 1, 3, 1) known to exist.
This construction is specified as T10 in [1].
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