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Abstract 

In this paper, we explain how dual quaternion theory can be extended to dual 

quaternions with generalized complex number    components. More 

specifically, we algebraically examine this new type dual quaternion and give several 

matrix representations both as a dual quaternion and as a .  

 

 

 
1. Introduction 

 

A real quaternion, as an extension of complex number 

in four dimensions, is defined as  

 

0 1 1 2 2 3 3a a a a ,q e e e      

 

where 
0 1 2 3a ,a ,a ,a  are real components and 

1 2 3, ,e e e  

are non-real quaternionic units with the following 

multiplication schema [1-3]: 

 
2 2 2

1 2 3

1 2 2 1 3

2 3 3 2 1

3 1 1 3 2

1,  

,  

,  

.

e e e

e e e e e

e e e e e

e e e e e

 

  

  







 

  

 

The set of real quaternions, which is isomorphic to 

Euclidean 4-space, forms a non-commutative and an 

associative algebra under addition and multiplication. 

The real quaternions have many applications such as 

describing rotations in robotics and computer 

animation with rotation axis and angle. 

A dual quaternion, as an extension of dual 

number in four dimensions, is defined by the same 
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form with different multiplication conditions for 

quaternionic units as [4-10]: 

 
2 2 2         0,  

0.



     

 i j k

ij ji jk kj ki ik
 (1) 

 

The set of dual quaternions , which is isomorphic 

to Galilean 4-space, forms a commutative division 

algebra under addition and multiplication [7]. 

Furthermore, using the dual quaternions, one can 

express the Galilean transformation in one 

quaternionic equation. 

From a different viewpoint, the set of 

generalized complex numbers ( ), the general 

bidimensional hypercomplex system, is denoted by 

,q p  and defined by the ring [11-16]: 

 
2

1 2

2

1 2        

: , ,[ ]
,

, , ,    

z x x I I I IX

x xX X

      
  

    

q p

p qq p
  

 

where I  is the generalized complex unit. It is 

isomorphic (as ring) to the following types 

considering the sign of 
2 4  q p : for 0   

hyperbolic system, for 0   elliptic system and for 
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0   parabolic system. The canonical forms of 

these systems are given by, respectively, 

 hyperbolic (perplex, split complex, double) 

numbers 0,1  [17-20], 

 complex (ordinary) numbers 0, 1  [20, 21], 

 dual numbers 0,0  [20, 22, 23]. 

Specially, dual numbers have been widely used for 

the search of closed form solutions in the fields of 

displacement analysis, kinematic synthesis, and 

dynamic analysis of spatial mechanisms. 

In ,q p , the value 

2 2

1 2 1 2 1 2 1 2( )( )z zz x x I x x I x x x x      p q   

is referred to as the characteristic determinant of z . 

Considering this characteristic value, z  is called 

timelike for 0z  , spacelike for 0z   and null 

for 0z   [12].  

Number systems play a special role in defining 

different types of quaternions. Combining 

fundamental properties of numbers and quaternions 

enables to determine new features. Considering the 

numbers mentioned above, the quaternions with 

different number components have been studied by 

several authors in many points of view [24-30]. One 

can see the combination of the dual numbers and the 

real quaternions in the studies [27, 28, 30]. Moreover, 

as an application, the representational method based 

on quaternions with dual number coefficients related 

to electromagnetism can be seen in [31, 32].  

In this paper, we are interested in the combination 

of dual quaternions and . In Section 2, we 

extend definitions and some universal known results 

of dual quaternions to dual quaternions with  

components. Finally, we provide a complete 

classification in conclusion. 

 

2. Dual Quaternions with  Components 

 

This original section discusses an algebraic behavior 

of dual quaternions with components. Also it 

proceeds with the examination of several matrix 

representations. 

 

Definition 1. The dual quaternion with  

components is of the form: 

0 1 2 3 ,q a a a a   i j k   

 

where the dual quaternion units satisfy equations in 

(1). The set of these quaternions is denoted by .  

Here, I  commutes with the three dual 

quaternion units. One can see that, the usual dual 

operator distinct from the dual quaternion units for 

0, 0 q p . 

Throughout the paper, 

0 1 2 3q a a a a   i j k , 
0 1 2 3p b b b b   i j k  

and 0 1 2 3r c c c c    i j k  are taken. 

We firstly define the basic algebraic 

operations on dual quaternions with  

components. For any q , 
0qS a  is the scalar 

part and 
1 2 3qV a a a  i j k  is the vector part. 

Equality is as follows: ,  .p q p qp q S S V V     

The addition of q  and p  is defined as: 

 

   

   

0 0 1 1

2 2 3 3          

        

        .

p q p q

p q p q

q p a b a b

a b a b

S S V V

S V 

    

   

   

 

i

j k
  

The quaternion 0 1 2 3 q qq a a a a S V     i j k  is 

called the conjugate of q . Furthermore, for , ,c q p  

the scalar multiplication of c  and q  is defined as: 

 

0 1 2 3

.   q q

cq ca ca ca ca

cS cV

   

 

i j k
  

 

The multiplication of q  and p  is defined as: 

 

 

   

0 0 0 1 1 0

0 2 2 0 0 3 3 0

 

       

    

 .   

q p q p p q

q p a b a b a b

a b a b a b a b

S S S V S V

pq

  

   

  



i

j k
 (2) 

 

Additionally, 
2

0qN qq qq a    is called the norm 

of q . Hence, the quaternion 
1( )

q

q
q

N

   is called the 

inverse of q  for non-null qN  that is 0
qN  . As it 

is seen many properties of dual quaternions with 

 components are familiar with the usual dual 

quaternions.  
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Standard elementary conjugate properties establish 

the following proposition. 

 

Proposition 1. For any ,q p  and 
1 2,c c  , 

the followings hold:  

i) q q , 

ii) 1 2 1 2c p c q c p c q   , 

iii) q p pq q p  , 

iv) 
1

2

1c q qN c N , 

v) 
q p q p p qN N N N N  . 

 

Proof: Considering the conjugate, properties i) and ii) 

are quickly obvious.  

 

iii) By using equation (2), we have:  

 

 

   

0 0 0 1 1 0

0 2 2 0 0 3 3 0       .

qp a b a b a b

a b a b a b a b

  

   

i

j k
  

 

So, it is verified that q p pq q p  . 

 iv) By having property ii) and the norm, we have:

  
1

2

1 1 1c q qN c q c q c N  . 

 v) From property iii), we get: 

   .q p q p p qN q p q p q p pq N N N N    

 

Proposition 2.  is a 4 -dimensional module over 

,q p  and an 8 -dimensional vector space over  

with bases  1, , ,i j k  and  1, , , , , , ,I I I Ii i j j k k , 

respectively.  

 

Definition 2. For any ,q p , the scalar product 

is given by: 

 

 

,

0 0   , , q p pqq p q p S S a b S

 

  

q p
  

 

and the vector product is defined by: 

 

    , .q qp p q p
q p q p S V S V V

 

  
  

 

More specially, we examine some identities for the 

scalar product. 

 

Proposition 3. For any ,q p  and r , the 

followings hold: 

i) , , , ,qr pr rq rp rq pr qr rp           , 

            , ,rN q p    

ii) , , ,rq p q rp q rp        . 

 

Proof: Considering the scalar product and the norm, 

the following proofs can be conducted:  

i)      2

0 0 0 0 0 0 0,qr pr a c b c c a b     

            , ,rN q p    

ii)    0 0 0 0 0 0, , .qr p a c b a b c q pr       

 

We are now ready to prove the results based on matrix 

approach. 

 

Theorem 1. Every element q  of  can be 

represented by a quaternionic matrix: 

 

0 3 1 2

1 2 0 3

.q

a a a a

a a a a

  
  

  

k i j

i j k
E  (3) 

 

Hence 2 ( ) .  

 

Proof: For q , :  , qq E  is a linear 

map, where 

 

0 3 1 2

2

1 2 0 3

: ( ):  q q

a a a a

a a a a

    
    

    

k i j

i j k
E E   

is a subset of 2 ( ) . So, one can realize the 

correspondence between  and  by the map . 

So it is no surprised that 2 2  representation of q  is 

qE . The proof is completed. 

 

Corollary 1. For all q , ( )q  can also be 

written as follows: 

 

0 2 1 2 3( ) ,q a I a a a   I J K   

 

where ( ) ,  ( ) ,  ( )  i j kI J K  satisfy 

equations in (1). 
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Theorem 2. For ,q p  and  , then the 

followings hold: 

i) 
q pq p  E E , 

ii) 
q p q p  E E E , 

iii)  q q E E , 

iv) 
qp q pE E E . 

Proof: iv) For ,q p , using equations (2) and (3), 

we can write: 

 
     

     
0 0 0 3 3 0 0 1 1 0 0 2 2 0

0 1 1 0 0 2 2 0 0 0 0 3 3 0

qp

a b a b a b a b a b a b a b

a b a b a b a b a b a b a b

     
  

     

k i j

i j k
E

 
 

Moreover, we obtain: 

 

     

     

0 3 1 2 0 3 1 2

1 2 0 3 1 2 0 3

0 0 0 3 3 0 0 1 1 0 0 2 2 0

0 1 1 0 0 2 2 0 0 0 0 3 3 0

.

q p

a a a a b b

a a a a b b

a b a b a b a b a b a b a b

a b a b a b a b a b a b a b

b b

b b

      
    

      

     
  

     

k i j k i j

i j k i j k

k i j

i j k

E E  

 

 

It is clear that 
qp q pE E E . The other properties can 

be proved similarly. 

Theorem 3. Every element q  of  can be 

represented by the following matrix: 

 

0

1 0

2 0

3 0

0 0 0

0 0
.

0 0

0 0

q

a

a a

a a

a a

 
 
 
 
 
 

 (4) 

 

So,  is subset of 4 ,( )q p . Moreover, for 

,q p  and  ,  

i) p qp q   , 

ii) p q p q   , 

iii) ( )p p  , 

iv) pq p q q p  , 

v) p p
    where diag(1, 1, 1, 1)     , 

and 
2

 det( )p pN . 

Proof: iv) For ,q p , using equations (2) and (4), 

we obtain: 

 

0 0

0 1 1 0 0 0

0 2 2 0 0 0

0 3 3 0 0 0

0 0 0

0 0
.

0 0

0 0

qp

a

a b a b a

a b a b

b

b

b

b

a

a b a b a

 
 


 
 
 

 

  

 

Also, we have: 

 

0 0

1 0 1 0

2 0 2 0

3 0 3 0

0 0

0 1 1 0 0 0

0 2 2 0 0 0

0 3 3 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0
       

0 0

0 0

       .

q p

p q

a

a a

a a

a a

a

a b a b a

a b a b a

a b a

b

b b

b b

b b

b

b

b

b

ba

   
   
   
   
   
   

 
 


 
 
 

 



 

 

 

It is obvious that qp p q q p  . 

 

v) Considering equation (4) and 

diag(1, 1, 1, 1)     , we get: 

 

0

1 0

2 0

3 0

0

1 0

2 0

3 0

0 0 00 0 0 0 0 0

0 00 0 0 0

1 1

1 1

1 1

1 1

0 0
,

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 0 0

0 0
        .

0 0

0 0

p

b

b b

b b

b b

b

b b

b b

b b

 

    
    
    
    
    

    

 
 
 
 
 
 

 

 

 







 

 

 

One can see that the final matrix is the matrix 
p
, so 

we can write p p
   . 

The proofs of the other properties are straightforward 

by considering 4 4  real matrix representation of the 

dual quaternions. 

 

Definition 3. The column matrix form of p  with 

respect to {1, , , }i j k  is  0 1 2 3 .
T

p b b b b   

 

Corollary 2. Using the above definition, the 

multiplication of q  and p  is also calculated as: 

 qqp p pq  .  
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Corollary 3. For q ,  

0 4 1 2 3 ,q a I a a a    K   

where 

 

0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
, , .

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0



     
     
        
     
     
     

K
 

 

The following theorem indicates how to calculate the 

formula for matrix representation of the inverse of 

q . 

Theorem 4. Let q  and 
1q
 be the inverse of .q  

Then, 1

1

det( )
qq

q

   for non-null  det q  

that is 
 det

0
q

 .  

Theorem 5. According to  1, , , , , , ,I I I Ii i j j k k , the 

real matrix representation of 

0 1 2 3q a a a a   i j k  is: 

 
01 02

02 01 02

11 12 01 02

12 11 12 02 01 02

21 22 01 02

22 21 22 02 01 02

31 32 01 02

32 31 32 02 01 02

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

q

x x

x x x

x x x x

x x x x x x

x x x x

x x x x x x

x x x x

x x x x x x

 
 


 
 
 

  
 
 

  
 
 

   

p

q

p p

q q

p p

q q

p p

q q

 

(5) 

 

where 1 2 ,i i ia x x I   q p , 0 3i  . Moreover, 

for ,q p  and  ,  

i) p qp q   , 

ii) p q p q   , 

iii) ( )p p  , 

iv) qp q p . 

Proof: Let us define the linear map qf  from  to 

subset of 
8( )  such that  qf p qp  for every 

p . By taking 1 2 ,i i ia x x I   q p , 0 3i  , 

we have the following equations:  

 

   

   

 

 

 

01 02 11 12 21

22 31 32

02 01 02 12 11 12 22

21 22 31 3232

01 02

02 01 02

01 02

1

,

( )

,

,

( ) ,

,

q

q

q

q

q

q

f q x x I x x I x

x I x x I

f I qI x x x I x x x I x

x x I x x x I

f q x x I

f I qI x x x I

f q x x I

f

     

  

       

    

  

   

  

i i j

j k k

i i j

j k k

i i i i

i i i i

j j j j

p q p q p

q p q

p q

 

 

 

02 01 02

01 02

02 01 02

( ) ,

,

( ) .

q

q

I qI x x x I

f q x x I

f I qI x x x I

   

  

   

j j j j

k k k k

k k k k

p q

p q

 

 

 

 

Hence, by concerning the standard basis 

 1, , , , , , ,I I I Ii i j j k k , we have 8 8  real matrix 

representation of q  is calculated as in equation 

(5). The proof of the properties can be conducted by 

considering the above linear map. Specially, for 

property iv), by taking  

1 2 1 2 ,,  i i i i i ia x x I b y y I     q p
, 0 3i    

for ,q p  and using equations (2) and (5), the 

multiplication of q  and p  gives the matrix qp  

quickly.  

With an alternative thought, 

0 1 2 3q a a a a   i j k , 1 2 ,i i ia x x I   q p , can 

be written as 
0 1q q q I   in  where 

1 0 1 2 3j j j j jq x x x x     i j k  for 0 3i  , 

1 2j  . So,  is a 2 -dimensional module over 

 with base  1, I . This consideration provides a 

reformulation of the previous results. 

 

Theorem 6. Let 0 1 0 1,q q q I p p p I      

and  . Every element of  is written by a 

2 2  dual quaternion matrix: 

 

0 1

1 0 1

.q

q q

q q q

 
  

 

p

q
  

It means that  is subset of 
2( ) . So, we have: 

i) p qp q   , 

ii) p q p q   , 

iii) ( )p p  , 

iv) pq p q , 
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and 2 2

0 0 1 1( )q q q q q  q pdet , where det  

corresponds the determinant of the quaternion 

matrix2. Moreover, 
0 2 1 ,q q I q  I  where 

0
.

1

 
  
 

p

q
I  (It is worth noting that there exists 

different ways to take I , for instance: 
1

0

 
  
 

q

p
I , see 

in [34]). 

 

Definition 4. The column matrix form of p  with 

respect to  1, I  is  0 1

T
p p p . 

 

Corollary 4. By using above definition, we obtain 

. qq p p pq    

 

Definition 5. The matrix 

 

0

0 1 8 1

1

( ) 
T

T T
q

q q q
q



 
     

 
  

 is called as the vector form of q , where 

 

1 0 1 2 3j i j j jq x x x x     i j k   

and  1 0 1 2 3 0 1 2 3, , ,
T

T

j j j j j j j j jq x x x x x x x x
    

are vectors (matrices) for 1 2j  . 

 

4. Conclusion 

 

Quaternions ([1-3]) have a deep mathematical 

meaning with a long history dating back and are used 

in physics to clarify the formulation of physical laws. 

A milestone moment in the use of quaternions in 

theoretical physic is the creation of special relativity, 

which unifies space and time to form a 4-dimensional 

space-time. By replacing real quaternions with 

complex ones offers a valuable tool in creating 

classical physical laws. Complex quaternions having 

several properties allow the desirable theorems of 

modern algebra to be applied. Furthermore, an 

important extension of real quaternions are the 

hyperbolic quaternions and the dual quaternions. 

Using the different types of quaternions are the way 

to description of the classical and quantum fields and 

reasonable to express space-time transformations. In 

terms of the hyperbolic quaternion, the general 

Lorentz space-time transformation can be discussed. 

With similar thought, the dual quaternions can be 

expressed for discussing the Galilean transformation. 

In terms of the dual quaternions this transformation 

with underlying algebraic features enables an 

efficient form [7-9].  

With the leading of the above discussions, 

considering  as components of dual 

quaternions is the main motivation of this study. For 

this purpose, we construct dual quaternions with 

 coefficients for real ,p q . Moreover, we 

examine the basic structures and algebraic properties 

by writing them in two forms: a  and a 

quaternion. Additionally, we established 2 2 , 4 4  

and 8 8  matrix representations. 

With this approach, we can easily write the dual 

quaternions with elliptic, parabolic and hyperbolic 

number components considering  0, 0     and 

0  , respectively, where 
2 4  q p.  Bearing in 

mind the special values p  and q , we have several 

types of dual quaternions with  components. 

For 0,  1  q p  dual quaternions with complex 

number components, for 0 q p  dual quaternions 

with dual number components and for 1 0, q p  

dual quaternions with hyperbolic number components 

are obtained.  
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2 
  

   
  

a b
det da cb

c d
, [35]. 
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