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Abstract 

In this work, a finite element formulation for a size dependent frame system is presented. Size dependency is 

discussed via the modified couple stress theory. The nodal displacement and rotation analyses of a frame system 

with total of three elements, including two columns and one beam element connecting these two columns, are 

considered. The classical stiffness and size dependent stiffness matrices of frame system are derived. Then, 

solution procedure for this problem is explained. Lastly, a numerical application is realized and effect of 

material length scale parameter on nodal displacements and rotations is discussed. To present the numerical 

application, it is assumed that the elements of the nanoframe are composed of silicon carbide nanotubes. 

Keywords: Modified couple stress theory, Frame system, Static, Finite element method 

1. Introduction 

Nanotechnology covers the manufacture and understanding of the nanoscale materials 

/elements / systems. Nanotechnology controls materials and devices at atomic and molecular 

levels, enabling them to be arranged or reconstructed. The properties of enormously small 

materials, which are much better than expected, have attracted great interest. Thus, studies on 

the discovery of new nanomaterials and the understanding of the properties of discovered 

nanomaterials have begun to increase. Especially, carbon nanotubes [1] have attracted much 

attention and many studies have been carried out on the usage areas and synthesis methods of 

such nanomaterials. These studies have accelerated and the synthesis of various nanomaterials 

and nanostructures has begun. Recently, it has been seen that studies [2-4] on more 

complicated nanostructures (nanoframes) have been presented. In these studies, various 

properties such as the architecture, oxygen reaction reduction activity, the exciton decay time, 

and catalytic performance of various nanoframe structures were discussed. 

Studies have revealed that nanoscale materials are affected by some parameters and 

manipulations that do not affect conventional materials. In nanomaterials, parameters such as 

the changed length, the number of atoms that constitute them etc., can vary the behavior of 
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these material. This is called the size effect. The size effect is important for nanomaterials. 

Because in order to design correctly applications of nano-electromechanical systems/micro-

electromechanical systems (NEMS/MEMS), it is important to know the behavior of the 

materials that constitute them. Continuum mechanics theories based on the size effect have an 

important place among the practical methods that contribute to the revealing of these 

behaviors. Some of these size dependent theories are: nonlocal elasticity theory, modified 

couple stress theory, modified strain gradient theory, doublet mechanics theory, nonlocal 

strain gradient theory, surface elasticity theory. 

Structures such as rods, beams, plates, and frames have recently been modeled at nano and 

micro scales and their various analyzes like static, vibration and buckling have been carried 

out based on the mentioned size dependent theories. Navier’s method [5-11], Fourier sine 

solution [12-17], finite element method [18-29], separation of variable procedure [30, 31], 

generalized differential quadrature method [32-36], Ritz method have been frequently used by 

scholars to present the mechanical responses of various small scale structures such as 

nanobeam, nanoframe, nanotruss, nanorod, nanoplate, cracked microbeam with functionally 

graded material, cracked nanobeam, functionally graded nanobeam, porous nanotube etc. The 

above-mentioned solution methods and others have been also utilized for macro-dimensional 

porous plate [37-39], porous beam [40, 41], beam [42], reinforced plate [43, 44], functionally 

graded and laminated beam [45-50], shell [51], functionally graded and laminated plate [52], 

functionally graded shell [53], reinforced beam [54], frame [55] structures. 

In this study, the analyzes are carried out using the finite element method. The finite element 

method has attracted attention with its practical solution and applicability to a wide variety of 

problems. The finite element method, which is used for the analysis of macro-scale elements 

and structures, has recently been used frequently for the analysis of nano- and micro-scale 

elements and structures after the size dependent elasticity theories. As can be understood from 

the above-mentioned papers, structures such as beams, plates, rods, and frames have been 

modeled at nano and micro scales and their theoretical analyzes have been carried out. When 

we look at the literature, it is understood that there are very few studies presenting the size 

effect analyzes of frame systems. To the best of the authors knowledge, this work for the first 

time, discusses the effect of material length scale parameter on the nodal displacement and 

rotation of a nano-sized frame in the context of modified couple stress theory. In this study, a 

size-dependent finite element formulation based on the modified couple stress theory that 

calculates the nodal displacement and rotation values of a nanoscale frame system is 

presented. 

 
Fig.1. A nano-sized frame system 
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2. Modified Couple Stress Theory 

Modified couple stress theory (MCST) is one of the higher-order elasticity theories used to 

perform size-based analyzes of nano- and micro-scale structures. For this theory proposed by 

Yang et al. [56], the strain energy U is expressed as follows:  

 

 

( )
1

2
ij ij ij ij

V

U m dV  = + (1) 

 

 

In the strain energy equation, ij , ij ijm  and ij represent the the classical stress tensor, strain 

tensor, the symmetric couple stress tensor and symmetric rotation gradient tensor, 

respectively. Also, V denotes the volume occupied by body. After some mathematical 

procedures, the strain energy can be written as follows. 
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In which, L, I, A denote the length, moment of inertiea and cross-sectional areas, respectively. 

While E represents the Young’s modulus, G denotes the shear modulus. u and w represent 

axial and transverse displacement fields, respectively. Lastly, l specifies the material length 
scale parameter. Material length scale parameter is a small size parameter. Thanks to this 

parameter, the analysis can be realised based on the size effect. Neglecting this parameter in 

the equations reduces the problem to classical theory and the problem becomes independent 

of the small size effect. 

3. Finite Element Formulation Based on MCST for a Nanoframe System 

 

The finite element solution, which allows us to find nodal displacements and rotations, is 

expressed as follows [57]:   

 

     F K d= (3) 

In the above equation, {F}, [K] and { d } specify the global nodal force vector, stiffness 

matrix and global nodal displacement vector, respectively. Interpolation functions are used to 

derived the stiffness matrix of the elements that constitute the frame system. These 

interpolation functions for the axial and transverse displacements are as follows [20, 22, 57]: 
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Ψu is defined as interpolation functions for axial displacement. In addition to the axial 

displacement, interpolation functions for transverse displacement should be defined. The 

shape functions of transverse displacement indicated by Ψw are given as follows [22, 57] 
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Here, 
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In the above equations, Le represent the length of a finite element. Stiffness matrices are 

written via the obtained strain energy expression and interpolation functions given previous 

equations: 
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By assembling the Ku and Kw matrices given above, the stiffness matrix of a nanoframe 
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element is obtained as follows: 

 

 

2 2 2 2

3 3 2 2 3 3 2 2

2 2 2 2

2 2 2 2

2 2

3 3 2 2 3

0 0 0 0

0 12 12 6 6 0 12 12 6 6

0 6 6 4 4 0 6 6 2 2

0 0 0 0

0 12 12 6 6 0 12 12

e e

e e e e e e e e

e e e e e e e e

e e

e e e e e

EA EA

L L

EI GAl EI GAl EI GAl EI GAl

L L L L L L L L

EI GAl EI GAl EI GAl EI GAl

L L L L L L L L
K

EA EA

L L

EI GAl EI GAl EI

L L L L L

−

+ + − − +

+ + − − +

=

−

− − − − +
2 2

3 2 2

2 2 2 2

2 2 2 2

6 6

0 6 6 2 2 0 6 6 4 4

e e e

e e e e e e e e

GAl EI GAl

L L L

EI GAl EI GAl EI GAl EI GAl

L L L L L L L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 
 + + − − +
 
 

 

(10) 

 

The above matrix includes both bending and axial effects. Buckling, vibration and bending 

analysis of nanobeams via matrices that include these both effects were presented by Akbaş 

[20] using modified couple stress theory. This matrix, which can be used for the solution of a 

straight nanobeam, is used for the elements of the nanoframe in this study. As it is known, 

frame systems are structures formed by connecting more than one element to each other at 

different angles. In order to realize the solutions of these structures, we should first write them 

on the same axis set, taking into account the orientations of all the elements. For this, 

transformation matrix (T) is used [22, 57]: 
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(11) 

 

C and S define cosine and sine, respectively. C and S are the angle between the local axis of 

the element and the global axis. To obtain the global stiffness matrix for a nanoframe element, 

we need to utilize the following equation [22, 55, 57]: 

 

  

 T

mcstK T KT=     (12) 

 

The stiffness matrix of a single element of the frame system obtained the following form 

when the transformation matrix and equation (12) are used: 
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The elements of  Kmcst matrix are given as follows: 
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As can be understood, the matrix given in equation (13) is the stiffness matrix of a nanoframe 

element based on the modified couple stress theory. In this size-dependent stiffness matrix, 

besides the material length scale parameter l, there are C and S expressions. If we neglect the 

material length scale parameter in the stiffness matrix based on the modified couple stress 

theory, the stiffness matrix based on the classical elasticity theory is obtained. The stiffness 

matrix of a classical frame element is as follows [57] 

 

 

 

(29) 

 

4. Application Procedure 

A finite element solution of nodal displacement and rotation analysis based on modified 

couple stress theory of a nanoscale frame structure is shown. As can be understood from the 

previous formulations, the size effect takes place in the stiffness matrix. In the solution based 

on the modified couple stress theory, only the stiffness matrix is affected by the material 

length scale parameter, which gives the size effect. To perform the solution of a nanoframe 

system like in Figure 1, first the stiffness matrix of each element is obtained. Then these 

stiffness matrices are assembled. A global nodal force vector and a global nodal displacement 

vector are written.  
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(30) 

In the above equation, d and   indicate the nodal displacements and rotations, respectively. In 

the global nodal force vector, those expressed by f and M are the applied nodal force and 

moment, respectively. The numbers (1,2,3,4) given as subscript indicate the node number. As 

a final process, the boundary conditions are applied to the required nodes and the results are 

obtained. 

5. Numerical Result and Discussion 

In this section of the study, a numerical application is realized. For this purpose, it is assumed 

that the elements of the nanoframe given in figure 1 are composed of silicon carbide 

nanotubes. The Young’s modulus and Poisson’s ratio of silicon carbide nanotube are as 

follows: E=0.45 TPa, ν=0.27 [58, 59]. The shear modulus of silicon carbide nanotube is 

calculated by the following relation: 

 

( )2 1

E
G


=

+
                                      (31) 

The geometric properties of the beam and columns that build up the nanoframe are equal to 

each other. The length of the nanoframe elements is L=10 nm, while their diameter is d=1 

nm. Lastly, the nodal force and nodal moment are: f2x=1 nN, M3=10 nNnm.  

Numerical results are given in normalized form to show the effect of material length scale 

parameter. Normalized displacements and rotations are expressed as the ratio of the results 

obtained with the modified couple stress theory to the results obtained with the classical 

theory of elasticity (CL). The material length scale parameter values are changed from 0 nm 

to 0.5 nm in 0.1 increments. It should be reminded once again that if material length scale 

parameter set to zero, the solution gives the results of classical elasticity theory. Figure 2 

shows the x-direction normalized displacements of node 2 and node 3, while figure 3 shows 

those in the y-direction. As can be seen figure 2, as the material length scale parameter value 

increases, there is a decrease in the normalized displacement values. This means that higher 
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displacements occur when the size effect is not taken into account. In other words, lower 

displacements occur for the x-direction when the size effect is considered. In Figure 3, the 

effect of the material length scale parameter on displacement in the y-direction is shown. 

When the normalized displacement values are examined, it is understood that the effect of the 

material length scale parameter on the displacements in the y-direction is much less. Figure 4 

is plotted to examine the effect of the small scale parameter on nodal rotations. It is 

understood from this figure that the modified couple stress theory reduces the rotation values. 

As the material length scale parameter increases, the rotation values decrease. 

 
(a) 

 
(b) 

 

Fig.2. The x-direction normalized displacements a) node 2 b) node 3 

 
(a) 

 
(b) 

 

Fig.3. The y-direction normalized displacements a) node 2 b) node 3 
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Fig.4. The normalized rotations a) node 2 b) node 3 

6. Conclusions 

In this work, a size-dependent finite element formulation of nanoframe is presented in the 

context of the modified couple stress theory. It is important to carry out theoretical analyzes 

that can reflect correct and actual behaviors of nanoscale structures. Theoretical analyzes have 

several advantages in terms of both time and cost. When literature is reviewed, it can be seen 

that the majority of the analyses are on one-dimensional nanoscale elements. This work 

presents a finite element solution that gives nodal displacements and rotations of a two-

dimensional nanoscale frame. Modified couple stress theory, which is one of the elasticity 

theories that can theoretically present small-scale effects, is the subject of this study. The 

importance of the material length scale parameter is demonstrated in many scientific articles. 

When the results of this study are examined, it is understood that the size effect based on the 

material length scale parameter is important for bending of nanoframe system. Knowing how 

the material length scale parameter is included in the calculations for the solution of a frame 

system is important for engineering and device applications of such structures via obtaining 

numerical result. 
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