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Abstract: In this study, multiplicative conformable fractional differential equations are presented. Wronskian concept, linear 

dependence-independence concepts are defined on multiplicative conformable fractional calculus and some theorems and 

results are given among them. Finally, some examples are solved by giving some methods for finding general solutions of 

multiplicative conformable fractional differential equations. 
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Çarpımsal Uyumlu Kesirli Diferansiyel Denklemler 
 

Öz: Bu çalışmada, çarpımsal uyumlu kesirli diferansiyel denklemler sunulmuştur. Çarpımsal uyumlu kesirli analiz üzerinde 

Wronskian kavramı, lineer bağımlılık-bağımsızlık kavramları tanımlanarak bunlar arasında bazı teoremler ve sonuçlar 

verilmiştir.  Son olarak, çarpımsal uyumlu kesirli diferansiyel denklemlerin genel çözümlerinin bulunması üzerine bazı 

metotlar verilerek bazı örnekler çözülmüştür. 

 

Anahtar kelimeler: Uyumlu kesirli türev, çarpımsal uyumlu kesirli türev, non-Newtonian analiz, parametrelerin değişimi. 
 

1. Introduction 

 

In 1970's, non-Newtonian calculus with infinite sub-branches was firstly presented as an alternative to usual 

calculus in [1,2]. The sub-branches such as geometric, anageometric, bigeometric, quadratic and harmonic 

calculus, etc. can be given as examples. The geometric calculus, which is one of these, is also defined as 

multiplicative calculus by some authors [3-9]. In this calculus, changes of arguments and values of a function are 

measured by differences and ratios, respectively. On the other hand, they are measured by differences in the 

classical case.  
Many events such as the levels of sound signals, the acidities of chemicals and the magnitudes of 

earthquakes change exponentially. For this reason, examining these problems in nature using multiplicative 

calculus offers great convenience and benefits. In the study of these physical properties, it would be more 

accurate to prefer the multiplicative differential equations. In numerous fields as biology, chaos theory, 

demography, earthquakes, engineering, economics, business and medicine [5,10-15], this calculus yields better 

outcomes than the classical case. 

Fractional calculus, which is frequently encountered with various applications [16-20] in different fields of 

engineering and science, is defined as a generalization of classical calculus. We prefer the conformable fractional 

(CF) calculus in the present study. Because the other fractional derivatives used in the literature fail to satisfy 

some basic properties. Thus, it can be found basic properties and main results of CF calculus in [21,22]. Some 

applications of fractional derivatives are given in [23-27]. 

Multiplicative fractional calculus theory is a combination of both fractional calculus theory and 

multiplicative calculus theory. We refer to the paper [28] that encourages us and from which the main concepts 

of the multiplicative fractional calculus are set. Here, it has been defined conformable multiplicative fractional 

derivative and multiplicative fractional integral and has been studied some of their properties.  

In [29-30], the constructs and methods on CF calculus guided us in the preparation of this study.  

 

2. Preliminaries 

 

In this section, some basic definitions and properties of CF calculus, the multiplicative calculus and the 

multiplicative CF calculus theories will be given. 
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Definition 2.1. [21,22]  Consider the function 𝑓: [𝑎,∞) → ℝ. Then, CF derivative and CF integral of 𝑓 order 

𝛼 ∈ (0,1] are defined by: 

𝑇𝛼
𝑎𝑓(𝑥) ≔ lim

ℎ→0

𝑓(𝑥 + ℎ(𝑥 − 𝑎)1−𝛼) − 𝑓(𝑥)

ℎ
, 

 

𝐼𝛼
𝑎𝑓(𝑥) ≔ ∫𝑓(𝑡)𝑑𝛼(𝑡, 𝑎) = ∫(𝑡 − 𝑎)

𝛼−1𝑓(𝑡)𝑑𝑡,

𝑥

𝑎

𝑥

𝑎

           for 𝑥 > 0,  

respectively. Here, the last integral to the right of this equality is the usual Riemann integral. Moreover, when 

𝑎 = 0, the CF derivative be written 𝑇𝛼 and the CF integral be written 𝐼𝛼  and 𝑑𝛼(𝑡, 𝑎) = 𝑑𝛼𝑡. In addition, if 𝑓 is 

usual differentiable, then 𝑇𝛼𝑓(𝑥) = 𝑥
1−𝛼𝑓′(𝑥). 

 

Definition 2.2. [28] Consider the function 𝑓:ℝ → ℝ+.  Then, the forward multiplicative and the backward 

multiplicative derivative of 𝑓 are defined by: 

𝑑∗

𝑑𝑥∗
𝑓(𝑥) = 𝑓∗(𝑥) ≔ lim

ℎ→0
(
𝑓(𝑥 + ℎ)

𝑓(𝑥)
)

1
ℎ

, 

𝑑∗
𝑑𝑥∗

𝑓(𝑥) = 𝑓∗(𝑥) ≔ lim
ℎ→0

(
𝑓(𝑥)

𝑓(𝑥 − ℎ)
)

1
ℎ

, 

respectively. It can easily be shown that 

𝑓∗(𝑛)(𝑥) = 𝑓∗
(𝑛)(𝑥) = exp (

𝑑𝑛

𝑑𝑥𝑛
ln 𝑓(𝑥)). 

 

Definition 2.3. [28] Consider the function 𝑓: [𝑎, 𝑏] → ℝ+. Then, the forward or the backward multiplicative 

integrals of 𝑓(𝑥) are defined by: 

∫𝑓(𝑥)𝑑𝑥 = ∫𝑓(𝑥)𝑑𝑥 = exp(∫ 𝑙𝑛 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

)

𝑏

𝑎

𝑏

𝑎

. 

 

Definition 2.4. [28] Consider the function 𝑓: [𝑎, 𝑏] → ℝ+. Then, the multiplicative CF derivative and the 

multiplicative CF integral of  𝑓 order 𝛼𝜖(0,1] are defined by: 

 ∗𝑇𝛼
𝑎𝑓(𝑥) ≔ lim

ℎ→0
(
𝑓(𝑥 + ℎ(𝑥 − 𝑎)1−𝛼)

𝑓(𝑥)
)

1
ℎ

. 

( ∗𝐼𝛼
𝑎𝑓)(𝑥) ≔ ∫𝑓(𝑡)𝑑𝛼∗ (𝑡,𝑎) = exp {∫ ln𝑓(𝑡)𝑑𝛼(𝑡, 𝑎)

𝑥

𝑎

}

𝑥

𝑎

 

                     = ∫𝑓(𝑡)𝑑𝑡
(𝑡−𝑎)𝛼−1 = exp {∫(𝑡 − 𝑎)𝛼−1ln𝑓(𝑡)𝑑𝑡

𝑥

𝑎

} ,                         for 𝑥 > 0  

𝑥

𝑎

 

respectively. Hence, the last integral to the right of this equality is the usual Riemann integral.  

When 𝑎 = 0, the multiplicative CF derivative be written ∗𝑇𝛼
  and the multiplicative CF integral be written ∗𝐼𝛼 , 

and 𝑑𝛼
∗ (𝑡, 𝑎) = 𝑑𝛼

∗ 𝑡. 
 

Now, let 𝛼𝜖(0,1] and 𝑛 ∈ ℤ+. The sequential multiplicative CF derivatives of order 𝑛 is defined by  

 ∗(𝑛)𝑇𝛼
 𝑓(𝑥) =  ∗𝑇𝛼

  ∗𝑇𝛼
 …  ∗𝑇𝛼

 ⏟        
𝑛−𝑡𝑖𝑚𝑒𝑠

𝑓(𝑥). 

 

Proposition 2.1. [28]  Consider the function 𝑓: [0, 𝑏] → ℝ+and 𝛼𝜖(0,1]. Then,  

   𝒊)  ∗𝑇𝛼
 𝑓(𝑥) = exp{𝑇𝛼

 ln𝑓(𝑥)} = exp {
𝑇𝛼
 𝑓(𝑥)

𝑓(𝑥)
}, 

𝒊𝒊) ( ∗𝐼𝛼
 𝑓)(𝑥) = exp{𝐼𝛼

 ln𝑓(𝑥)}. 
 

 

Proposition 2.2.[28]  Consider the function 𝑓: [0, 𝑏] → ℝ+ and 𝛼𝜖(0,1]. Then, 

  𝒊) ( ∗𝑇𝛼
  ∗𝐼𝛼

 𝑓)(𝑥) = 𝑓(𝑥),    for f  is continuous, 
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𝒊𝒊) ( ∗𝐼𝛼
  ∗𝑇𝛼

 𝑓)(𝑥) =
𝑓(𝑥)

𝑓(𝑎)
. 

 

 

Theorem 2.1. [31] Let 𝑓, 𝑔 ∶ [0, 𝑏] → ℝ+ be multiplicative CF differentiable of order 𝛼𝜖(0,1] and ℎ be CF 

differentiable 𝛼𝜖(0,1] at 𝑥. Then, 

𝒊) 𝜏(𝑐𝑓)(𝑥) = 𝜏𝑓(𝑥), 
𝒊𝒊) 𝜏(𝑓𝑔)(𝑥) = 𝜏𝑓(𝑥)𝜏𝑔(𝑥), 

𝒊𝒊𝒊) 𝜏 (
𝑓

𝑔
) (𝑥) =

𝜏𝑓(𝑥)

𝜏𝑔(𝑥)
, 

𝒊𝒗) 𝜏(𝑓ℎ)(𝑥) = {𝜏𝑓(𝑥)}ℎ(𝑥)𝑓(𝑥)𝑇𝛼ℎ(𝑥), 

𝒗) 𝜏(𝑓 ∘ ℎ )(𝑥) = {(𝜏𝑓)(ℎ(𝑥))}
𝑇𝛼ℎ(𝑥)ℎ(𝑥)

𝛼−1

, 

𝒗𝒊) 𝜏(𝑓 + 𝑔)(𝑥) = [𝜏𝑓(𝑥)]
𝑓(𝑥)

𝑓(𝑥)+𝑔(𝑥)[𝜏𝑔(𝑥)]
𝑔(𝑥)

𝑓(𝑥)+𝑔(𝑥), 

where 𝑐 is a positive constant and 𝜏𝑦 =  ∗𝑇𝛼
 𝑦. 

 

Theorem 2.2. [31] Let 𝑓, 𝑔 ∶ [0, 𝑏] → ℝ+ be multiplicative CF integrable of order 𝛼𝜖(0,1] at 𝑥. Then, 

𝒊) ∫[𝑓(𝑥)]𝑑𝛼∗ 𝑥
𝑘 = [∫𝑓(𝑥)𝑑𝛼∗ 𝑥

𝑏

0

]

𝑘

,

𝑏

0

 

𝒊𝒊) ∫[𝑓(𝑥)𝑔(𝑥)]𝑑𝛼∗ 𝑥

𝑏

0

= ∫𝑓(𝑥)𝑑𝛼∗ 𝑥

𝑏

0

∫𝑔(𝑥)𝑑𝛼∗ 𝑥

𝑏

0

, 

𝒊𝒊𝒊) ∫ [
𝑓(𝑥)

𝑔(𝑥)
]
𝑑𝛼
∗ 𝑥

=
∫ 𝑓(𝑥)𝑑𝛼∗ 𝑥
𝑏

0

∫ 𝑔(𝑥)𝑑𝛼∗ 𝑥
𝑏

0

,

𝑏

0

 

𝒊𝒗) ∫ 𝑓(𝑥)𝑑𝛼∗ 𝑥

𝑏

0

= ∫𝑓(𝑥)𝑑𝛼∗ 𝑥∫𝑓(𝑥)𝑑𝛼∗ 𝑥

𝑏

𝑐

𝑐

0

, 

𝒗) ∫[𝜏𝑓(𝑥)]𝑑𝛼∗ 𝑥
𝑔(𝑥)

=
𝑓(𝑏)𝑔(𝑏)

𝑓(0)𝑔(0)
{∫𝑓(𝑥)𝑑𝛼∗ 𝑥

𝑇𝛼𝑔(𝑥)

𝑏

0

}

−1

,

𝑏

0

 

where 𝑘 ∈ ℝ and 𝑐 ∈ [0, 𝑏] is a positive constant. The last formula is called 𝛼−∗integration by parts. 

 

3. Multiplicative Conformable Fractional Differential Equations 

 

 It is aimed to apply conformable fractional differential equations to multiplicative calculus with a method 

similar to the application of classical differential equations to multiplicative calculus such as in [10]. 

 

Definition 3.1. The multiplicative differential equation 

(𝜏𝑛𝑦)𝑎0(𝑥)(𝜏𝑛−1𝑦)𝑎1(𝑥)⋯(𝜏𝑦)𝑎𝑛−1(𝑥)𝑦𝑎𝑛(𝑥) = 𝑏(𝑥) 
(3.1) 

is defined as multiplicative CF differential equation of  𝑛 order, where 𝑏(𝑥) is a positive valued function. Here,  

𝜏𝑦 =  ∗𝑇𝛼
 𝑦,     𝜏2𝑦 =  ∗(2)𝑇𝛼

 𝑦 =  ∗𝑇𝛼
  ∗𝑇𝛼

 𝑦,   …   𝜏𝑛𝑦 =  ∗(𝑛)𝑇𝛼
 𝑦 =  ∗𝑇𝛼

  ∗𝑇𝛼
 …  ∗𝑇𝛼

 ⏟        
𝑛−𝑡𝑖𝑚𝑒𝑠

𝑦. 

If the exponents 𝑎0(𝑥) ≠ 0,  𝑎𝑘(𝑥), 𝑘 = 1, 𝑛̅̅ ̅̅̅ are constants, Eq.(3.1) is called linear multiplicative CF 

differential equation with constant exponents; otherwise linear multiplicative CF differential equation with 

variable exponents. Moreover, if  𝑏(𝑥) = 1, Eq.(3.1) is called homogeneous multiplicative CF differential 

equation, that is 

(𝜏𝑛𝑦)𝑎0(𝑥)(𝜏𝑛−1𝑦)𝑎1(𝑥)⋯(𝜏𝑦)𝑎𝑛−1(𝑥)𝑦𝑎𝑛(𝑥) = 1, 
(3.2) 

otherwise nonhomogeneous multiplicative CF differential equation. 
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Theorem 3.1. Let 𝑦ℎ(𝑥) be the general solution of Eq.(3.2) and 𝑦𝑝(𝑥) be any particular solution of Eq.(3.1). 

Then,  𝑦ℎ(𝑥)𝑦𝑝(𝑥) is a general solution of Eq.(3.1). 

Proof. Let 𝑦(𝑥) be a solution of Eq.(3.1).  Since 𝑦𝑝(𝑥) be any solution of Eq.(3.1), it must be shown that 
𝑦(𝑥)

𝑦𝑝(𝑥)
 is 

also the solution of Eq.(3.2) to complete the proof. Indeed, considering the properties on theorem 2.1 of the 

multiplicative CF derivative, we obtain  

 

(𝜏𝑛 (
𝑦

𝑦𝑝
))

𝑎0(𝑥)

(𝜏𝑛−1 (
𝑦

𝑦𝑝
))

𝑎1(𝑥)

⋯(𝜏 (
𝑦

𝑦𝑝
))

𝑎𝑛−1(𝑥)

𝑦𝑎𝑛(𝑥) = 

=
(𝜏𝑛𝑦)𝑎0(𝑥)(𝜏𝑛−1𝑦)𝑎1(𝑥)⋯(𝜏𝑦)𝑎𝑛−1(𝑥)𝑦𝑎𝑛(𝑥)

(𝜏𝑛𝑦𝑝)
𝑎0(𝑥)

(𝜏𝑛−1𝑦𝑝)
𝑎1(𝑥)

⋯(𝜏𝑦𝑝)
𝑎𝑛−1(𝑥)

𝑦𝑝
𝑎𝑛(𝑥)

=
𝑏(𝑥)

𝑏(𝑥)
= 1. 

 

 

Hereby, 𝑦ℎ(𝑥) being the general solution of Eq.(3.2) causes 
𝑦(𝑥)

𝑦𝑝(𝑥)
  to be the general solution of Eq.(3.2) too.  

Consequently, we reach 𝑦(𝑥) = 𝑦ℎ(𝑥)𝑦𝑝(𝑥). □ 

 

Theorem 3.2. Let the functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑚(𝑥) be any solutions of Eq.(3.2) on an interval 𝐼. Then, the 

function 𝑦(𝑥) = 𝑦1
𝑐1(𝑥)𝑦2

𝑐2(𝑥)…𝑦𝑚
𝑐𝑚(𝑥)  is also a solution of Eq.(3.2) for any real constants 𝑐𝑘 , 𝑘 = 1,𝑚̅̅ ̅̅ ̅̅ . 

Proof. The theorem is easily proved if the properties on theorem 2.1 of the multiplicative CF derivative, we 

obtain are taken into account.□ 

 

Definition 3.2. Consider the positive functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) on an interval 𝐼. If  𝑐𝑘 , 𝑘 = 1, 𝑛̅̅ ̅̅̅  are 

scalars, then the multiplicative linear combination of the functions  𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) is 

𝑦1
𝑐1(𝑥) 𝑦2

𝑐2(𝑥)… 𝑦𝑛
𝑐𝑛(𝑥). 

 

 

Definition 3.3. Consider the positive functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) on an interval 𝐼. If a sequence of the 

functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) is said to be multiplicative linearly independent if it is not multiplicative 

linearly dependent, that is, if the equation 

 

𝑦1
𝑐1(𝑥) 𝑦2

𝑐2(𝑥)… 𝑦𝑛
𝑐𝑛(𝑥) = 1,    ∀𝑥 ∈ 𝐼 (3.3) 

can only be satisfied by 𝑐𝑘 = 0, 𝑘 = 1, 𝑛̅̅ ̅̅̅. 
 

Definition 3.4. Consider the positive functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) which are (𝑛 − 1) −times multiplicative 

CF differentiable on an interval 𝐼.  The determinant 

𝑊 
∗

𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥) = |

𝑦1 𝑦2 ⋯ 𝑦𝑛
𝜏𝑦1 𝜏𝑦2 ⋯ 𝜏𝑦𝑛
⋮ ⋮ ⋱ ⋯

𝜏𝑛−1𝑦1 𝜏𝑛−1𝑦2 ⋯ 𝜏𝑛−1𝑦𝑛

|

∗

 
 

is called multiplicative CF Wronskian (𝛼 −∗Wronskianı) of the functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥), where |∙|∗ is 
multiplicative determinant and the abbreviation 𝑊∗ 𝛼(𝑥) will be used instead of 𝑊∗ 𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥)  [32]. For 

example, when 𝑛 = 2,  

𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥) = |
𝑦1 𝑦2
𝜏𝑦1 𝜏𝑦2

|
∗

=
𝑦1
ln 𝜏𝑦2

𝑦2
ln 𝜏𝑦1

 
(3.4) 

 

Theorem 3.3.( 𝜶 −∗Abel Formula) Consider the continuous functions 𝑎𝑘(𝑥), 𝑘 = 0, 𝑛̅̅ ̅̅̅  and 𝑎0(𝑥) ≠ 0 on an 

interval 𝐼. If the positive functions 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) are multiplicative linearly independent solutions of 

Eq.(3.2) on an interval 𝐼, then the formula 
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𝑊 
∗

𝛼(𝑥) = { 𝑊 
∗

𝛼(𝑥0)}
𝐼𝛼
𝑥0
 
∗ (𝑒

−
𝑎1(𝑥)
𝑎0(𝑥))

 

 

holds for ∀𝑥 ∈ 𝐼, where 𝐼𝛼
𝑥0

 
∗ (∙)  will symbolize the multiplicative CF integral from definition 2.4.. 

 

Proof. For the sake of clarity, the proof in the case 𝑛 = 2 will be given instead of the proof of the general case. 

Let 𝑦1 and 𝑦2  be the continuous functions on an interval 𝐼 and be multiplicative linearly independent solutions 

of Eq.(3.2) for ∀𝑥 ∈ 𝐼. Then, we can write the following 

 

(𝜏2𝑦1) = (𝜏𝑦1)
−
𝑎1(𝑥)
𝑎0(𝑥)𝑦1

−
𝑎2(𝑥)
𝑎0(𝑥)             and                  (𝜏2𝑦2) = (𝜏𝑦2)

−
𝑎1(𝑥)
𝑎0(𝑥)𝑦2

−
𝑎2(𝑥)
𝑎0(𝑥). 

(3.5) 

 

On the other hand, taking the multiplicative CF derivative of both sides of (3.4) with respect to 𝑥 when 𝑛 = 2, 

we obtain   

 

𝜏( 𝑊 
∗

𝛼(𝑦1, 𝑦2)) = 𝜏 (
{𝜏𝑦2}

ln 𝑦1

{𝜏𝑦1}
ln 𝑦2

) =
{𝜏2𝑦2}

ln 𝑦1

{𝜏2𝑦1}
ln 𝑦2

. 
(3.6) 

 

 Substituting Eqs. (3.5) into (3.6) yields to  

 

𝜏( 𝑊 
∗

𝛼(𝑦1, 𝑦2)){ 𝑊 
∗

𝛼(𝑦1, 𝑦2)}
𝑎1(𝑥)
𝑎0(𝑥) = 1. 

 

(3.7) 

If the algebraic operations on the multiplicative calculus are taken into account in Eq.(3.7), this equation is 

written in the following form:  

𝜏(ln∗𝑊𝛼(𝑦1 , 𝑦2)) = 𝑒
−
𝑎1(𝑥)
𝑎0(𝑥). 

 

Taking the multiplicative CF integral of both sides of the last equality with respect to 𝑥, the proof is completed.□ 

 

Corollary 3.1. Consider the continuous functions 𝑎𝑘(𝑥), 𝑘 = 0, 𝑛̅̅ ̅̅̅  and 𝑎0(𝑥) ≠ 0 on an interval 𝐼. If the 

positive function 𝑦1, 𝑦2, … , 𝑦𝑛 are the solutions of Eq.(3.2) on an interval 𝐼, then for ∀𝑥 ∈ 𝐼 either 

𝑊 
∗

𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥) = 1 or  𝑊∗ 𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥) ≠ 1 is provided. 

Proof. From the 𝛼 −∗Abel formula, for ∀𝑥 ∈ 𝐼, 𝐼𝛼
𝑥0

 
∗ (𝑒

−
𝑎1(𝑥)

𝑎0(𝑥)) ≠ 0 dir. If 𝑊 
∗

𝛼(𝑥0) = 1 is provided at a point 

𝑥0 ∈ 𝐼, then 𝑊 
∗

𝛼(𝑥) = 1 is provided for  ∀𝑥 ∈ 𝐼; if  𝑊 
∗

𝛼(𝑥0) ≠ 1 is provided at a point 𝑥0 ∈ 𝐼, then 𝑊∗ 𝛼(𝑥) ≠
1 is provided for  ∀𝑥 ∈ 𝐼. This completes the proof. □ 

 

Theorem 3.4. Let the positive function 𝑦1, 𝑦2, … , 𝑦𝑛 be the solutions of Eq.(3.2) on an interval 𝐼. The functions 

𝑦1, 𝑦2, … , 𝑦𝑛 are multiplicative linearly dependent solutions of Eq.(3.2) on an interval 𝐼 if and only if 

𝑊 
∗

𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥) = 1. 

Proof. For the sake of clarity, the proof in the case 𝑛 = 2 will be given instead of the proof of the general case. 

Suppose that the functions 𝑦1 and 𝑦2 are multiplicative linearly dependent solutions of Eq.(3.2) on an interval 𝐼. 
Then, there is a constant 𝐶 such that 𝑦2(𝑥) = 𝑦1

𝐶(𝑥). From the properties of multiplicative CF derivative, we get 

𝜏𝑦2(𝑥) = {𝜏𝑦1(𝑥)}
𝐶. If the constant 𝐶 is eliminated in this last equalities, the equality 

 

{𝜏𝑦2(𝑥)}
ln 𝑦1(𝑥){𝜏𝑦1(𝑥)}

− ln 𝑦2(𝑥) = 1 (3.8) 

is obtained, that is,  𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥) = 1. 

On the other hand, Let 𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥) = 1, that is, let the equality (3.8) be provided. If  𝑦1(𝑥) = 1 on an 

interval 𝐼, then the function 𝑦2 becomes multiplicative linearly dependent on 𝑦1. Now, let's assume 𝑦1(𝑥) ≠ 1 on 

a subinterval of the interval 𝐼. Then, taking the power {ln 𝑦1(𝑥)}
−2 of both sides of the equality (3.8) gives 
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𝜏(ln{𝑦2(𝑥)}
{ln 𝑦1(𝑥)}

−1
) = 1. From here and the properties of multiplicative CF derivative, we get 

ln{𝑦2(𝑥)}
{ln𝑦1(𝑥)}

−1
= 𝐶 or 𝑦2(𝑥) = 𝑦1

𝐶(𝑥). This completes the proof. □ 

 

Theorem 3.5. Let the functions 𝑦1 , 𝑦2, … , 𝑦𝑛 be multiplicative linearly independent solutions of Eq.(3.2) on an 

interval 𝐼. Then, a 𝑦(𝑥) solution of Eq.(3.2) in the same interval, that is, the general solution, is in the form 

below: 

𝑦(𝑥) = 𝑦1
𝑐1(𝑥) 𝑦2

𝑐2(𝑥)…𝑦𝑛
𝑐𝑛(𝑥). 

(3.9) 

Proof. Let the functions 𝑦(𝑥) be a solution of Eq.(3.2) on an interval 𝐼. Since the functions 

𝑦1
𝑐1(𝑥) 𝑦2

𝑐2(𝑥)… 𝑦𝑛
𝑐𝑛(𝑥) ve 𝑦(𝑥) are solutions of Eq.(3.2) on an interval 𝐼, at some 𝑥0 of the interval, the 

arbitrary constants 𝑐𝑘, 𝑘 = 1, 𝑛̅̅ ̅̅̅ must to be found such that the following system is provided: 

𝑦1
𝑐1(𝑥0) 𝑦2

𝑐2(𝑥0) …𝑦𝑛
𝑐𝑛(𝑥0) = 𝑦(𝑥0 ),

𝜏𝑦1
𝑐1(𝑥0) 𝜏𝑦2

𝑐2(𝑥0)… 𝜏𝑦𝑛
𝑐𝑛(𝑥0) = 𝜏𝑦(𝑥0 ),

⋮
𝜏𝑛−1𝑦1

𝑐1(𝑥0) 𝜏
𝑛−1𝑦2

𝑐2(𝑥0) … 𝜏
𝑛−1𝑦𝑛

𝑐𝑛(𝑥0) = 𝜏
𝑛−1𝑦(𝑥0 ).

 
 

In order for this system to be solvable according to the arbitrary constants, the coefficients matrix of this system 

must be 𝑊∗ 𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥0) ≠ 1. Consequently, from theorem 3.3, it is obtained that 

𝑊∗ 𝛼(𝑦1, 𝑦2 , … , 𝑦𝑛)(𝑥) ≠ 1 for ∀𝑥 ∈ 𝐼. This completes the proof. □ 

  

4. Some Methods for General Solution of Multiplicative CF Differential Equations 

 

In this section, for the sake of clarity, some methods for finding the general solution of the homogeneous 

multiplicative CF differential equation (3.2) for 𝑛 = 2 will be given. When  𝑛 = 2, let's rearrange Eq.(3.2) as 

follows: 

(𝜏2𝑦)(𝜏𝑦)𝑝(𝑥)𝑦𝑞(𝑥) = 1, 
(4.1) 

where 𝑝(𝑥) =
𝑎1(𝑥)

𝑎0(𝑥)
, 𝑞(𝑥) =

𝑎2(𝑥)

𝑎0(𝑥)
 and 𝑎0(𝑥) ≠ 0 

 

4.1. The Solution of Type 𝒚𝟐(𝒙) = {𝒚𝟏(𝒙)}
𝐥𝐧 𝒖(𝒙)  

For brevity's sake, let's use these abbreviations 𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥) and 𝑢 = 𝑢(𝑥). Suppose that the 

function 𝑦1 ≠ 1 which known and 𝑦2 = 𝑦1
ln 𝑢 functions are solutions of Eq.(4.1), where 𝑢(𝑥) is an unknown 

positive function. Thus, the following system is obtained: 

𝜏𝑦2 = {𝜏𝑦1}
ln 𝑢𝑦1

𝑇𝛼(ln 𝑢) 
 

𝜏2𝑦2 = {𝜏
2𝑦1}

ln 𝑢{𝜏𝑦1}
2𝑇𝛼(ln 𝑢)𝑦1

𝑇 
(2)

𝛼(ln 𝑢). 
 

After these equalities are written in Eq.(4.1), considering that 𝑦1(𝑥) is a solution to Eq.(4.1), we get  

{{𝜏𝑦1}
2𝑦1

𝑝(𝑥)
}
𝑇𝛼(ln 𝑢)

𝑦1
𝑇 

(2)
𝛼(ln 𝑢) = 1 

 

or 

𝑇 
(2)

𝛼(ln 𝑢)

𝑇𝛼(ln 𝑢)
= −2

𝑇𝛼(ln 𝑦1)

ln 𝑦1
− 𝑝(𝑥). 

 

CF integrating both sides of last equality, we get 

𝑇𝛼(ln 𝑢) = ln
−2 𝑦1 𝑒

−𝐼𝛼𝑝(𝑥)          ⇒          𝑢 = 𝑒𝐼𝛼(ln
−2 𝑦1𝑒

−𝐼𝛼𝑝(𝑥)), 
(4.2) 

or 

𝜏𝑢 = 𝑒ln
−2 𝑦1 𝐼∗ 𝛼𝑒

−𝑝(𝑥)
                   ⇒         𝑢 = 𝐼 

∗
𝛼 (𝑒

ln−2 𝑦1 𝐼 
∗
𝛼𝑒
−𝑝(𝑥)

), 
(4.3) 

where  𝐼𝛼 ∙  is CF integral from definition 2.1 and 𝐼 
∗
𝛼 ∙ is multiplicative CF integral from definition 2.4. 

Consequently, the general solution of Eq.(4.1) is as follows 
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𝑦(𝑥) = 𝑦1
𝑐1(𝑥){𝑦1(𝑥)}

𝑐2ln 𝑢(𝑥), 
(4.4) 

where 𝑢(𝑥) is defined by (4.2) or (4.3). 

 

Example 4.1. Consider the following multiplicative CF equation for which 𝑦1(𝑥) = 𝑒
𝑥  has a known solution: 

(𝜏2𝑦)(𝜏𝑦)
1

2√𝑥𝑦−
1

𝑥 = 1, 
(4.5) 

where 𝜏𝑦 = 𝑇 
∗

1

2

𝑦 and 𝜏2𝑦 = 𝑇 
∗

1

2

𝑇 
∗

1

2

𝑦. 

Then considering the formula (4.2), we have 𝑢(𝑥) = 𝑒−
𝑥−2

2 . Consequently, from (4.4), the general solution of 

Eq.(4.5) is as follows: 

𝑦(𝑥) = 𝑒𝑐1𝑥+𝑐2𝑥
−1
. 

 

 

4.2. The Solution When the Coefficients are Constant 

In Eq.(4.1), let  𝑝(𝑥) and 𝑞(𝑥) be constants. So let's look for the solutions of  Eq.(4.1) in type 𝑦(𝑥) =

𝑒𝑒
𝑘(
1
𝛼𝑥
𝛼)

. If the first and second multiplicative CF derivatives of this function are taken, it is obtained as follows, 

respectively: 

𝜏𝑦(𝑥) = 𝑒𝑘𝑒
𝑘(
1
𝛼𝑥
𝛼)

  and  𝜏2𝑦(𝑥) = 𝑒𝑘
2𝑒
𝑘(
1
𝛼𝑥
𝛼)

. 
 

If these derivatives are substituted in (4.1), we have 

𝑒(𝑘
2+𝑝𝑘+𝑞)𝑒

𝑘(
1
𝛼𝑥
𝛼)

= 1, 
 

or 

𝑘2 + 𝑝𝑘 + 𝑞 = 0. 
(4.6) 

The following three cases exist for the roots 𝑘1 and 𝑘2 of Eq.(4.6). 

i) If 𝑘1 ≠ 𝑘2 ∈ ℝ, the general solution of Eq.(4.1) is as follows 

𝑦(𝑥) = 𝑒𝑐1𝑒
𝑘1(

1
𝛼𝑥
𝛼)
+𝑐2𝑒

𝑘2(
1
𝛼𝑥
𝛼)

         or          𝑦(𝑥) = 𝑎𝑒
𝑘1(

1
𝛼𝑥
𝛼)

𝑏𝑒
𝑘2(

1
𝛼𝑥
𝛼)

               ( 𝑎 = 𝑒𝑐1 ,    𝑏 = 𝑒𝑐2). 
(4.7) 

ii) If 𝑘1 = 𝑘2 ∈ ℝ, the general solution of Eq.(4.1) is as follows 

𝑦(𝑥) = 𝑒
(𝑐1+𝑐2(

1

𝛼
𝑥𝛼))𝑒

𝑘1(
1
𝛼𝑥
𝛼)

           or          𝑦(𝑥) = 𝑎𝑒
𝑘1(

1
𝛼𝑥
𝛼)

𝑏(
1

𝛼
𝑥𝛼)𝑒

𝑘1(
1
𝛼𝑥
𝛼)

       ( 𝑎 = 𝑒𝑐1 ,    𝑏 = 𝑒𝑐2). 
(4.8) 

 

iii) If 𝑘1 = 𝜎 − 𝑖𝜏, 𝑘2 = 𝜎 + 𝑖𝜏 the general solution of Eq.(4.1) is as follows 

𝑦(𝑥) = 𝑒𝑒
𝜎(
1
𝛼𝑥
𝛼)
(𝑐1 cos 𝜏(

1
𝛼
𝑥𝛼)+𝑐2 sin 𝜏(

1
𝛼
𝑥𝛼)). 

(4.9) 

 

Example 4.2. Consider the following multiplicative CF equation 

(𝜏2𝑦)(𝜏𝑦)𝑦−3 = 1. 
(4.10) 

Then, from (4.7), the general solution of Eq.(4.10) is as follows: 

𝑦(𝑥) = 𝑒𝑐1𝑒
(
1
𝛼𝑥
𝛼)
+𝑐2𝑒

−2(
1
𝛼𝑥
𝛼)

         or          𝑦(𝑥) = 𝑎𝑒
(
1
𝛼𝑥
𝛼)

𝑏𝑒
−2(

1
𝛼𝑥
𝛼)

               ( 𝑎 = 𝑒𝑐1 ,    𝑏 = 𝑒𝑐2). 
 

 

Example 4.3. Consider the following multiplicative CF equation 

(𝜏2𝑦)(𝜏𝑦)−2𝑦2 = 1. 
(4.11) 

Then, from (4.9), the general solution of Eq.(4.11) is as follows: 

𝑦(𝑥) = 𝑒𝑒
(
1
𝛼𝑥
𝛼)
(𝑐1 cos 2(

1
𝛼
𝑥𝛼)+𝑐2 sin 2(

1
𝛼
𝑥𝛼)). 

 

 

4.3. Variation of Parameters 
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Suppose that 𝑦1 = 𝑦1(𝑥) and 𝑦2 = 𝑦2(𝑥) be two multiplicative linearly independent solutions for Eq.(4.1). 

The aim is to find the particular solution 𝑦𝑝 = 𝑦𝑝(𝑥) for  

(𝜏2𝑦)(𝜏𝑦)𝑝(𝑥)𝑦𝑞(𝑥) = 𝑏(𝑥). 
(4.12) 

 

Let  

 𝑦𝑝 = 𝑦1
𝑐1  𝑦2

𝑐2 , (4.13) 

where the functions 𝑐1 = 𝑐1(𝑥) and 𝑐2 = 𝑐2(𝑥) are two unknown functions.  

By taking the multiplicative CF derivative of Eq.(4.13) with respect to 𝑥, we get 

𝜏𝑦𝑝 = (𝜏𝑦1)
𝑐1𝑦1

𝑇𝛼𝑐1(𝜏𝑦2)
𝑐2𝑦2

𝑇𝛼𝑐2 . 
(4.14) 

If the equality 

𝑦1
𝑇𝛼𝑐1𝑦2

𝑇𝛼𝑐2 = 1 
(4.15) 

is assumed in Eq.(4.14), we get  

𝜏𝑦𝑝 = (𝜏𝑦1)
𝑐1(𝜏𝑦2)

𝑐2 . (4.16) 

Later, taking the multiplicative CF derivative of Eq.(4.16) with respect to 𝑥, we obtain 

𝜏2𝑦𝑝 = (𝜏
2𝑦1)

𝑐1(𝜏𝑦1)
𝑇𝛼𝑐1(𝜏2𝑦2)

𝑐2(𝜏𝑦2)
𝑇𝛼𝑐2 . (4.17) 

Considering that the functions 𝑦1 and 𝑦2 are the solution of Eq.(4.1), substituting Eqs.(4.13), (4.14), and (4.17) 

into (4.12) yields to 

(𝜏𝑦1)
𝑇𝛼𝑐1(𝜏𝑦2)

𝑇𝛼𝑐2 = 𝑏(𝑥). 
(4.18) 

Now, solving the system of the Eqs.(4.15) and (4.18), we get 

𝑇𝛼𝑐1 =
− ln 𝑏(𝑥) ln 𝑦2(𝑥)

ln( 𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥))
              and                  𝑇𝛼𝑐2 =

ln 𝑏(𝑥) ln 𝑦1(𝑥)

ln( 𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥))
,  

or 

𝑐1 = 𝐼𝛼 (
− ln 𝑏(𝑥) ln 𝑦2(𝑥)

ln( 𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥))
)               and                  𝑐2 = 𝐼𝛼 (

ln𝑏(𝑥) ln 𝑦1(𝑥)

ln( 𝑊 
∗

𝛼(𝑦1, 𝑦2)(𝑥))
).  

Consequently, the particular solution is as follows: 

𝑦𝑝 = 𝑦1

𝐼𝛼(
− ln 𝑏(𝑥) ln 𝑦2(𝑥)

ln( 𝑊 
∗
𝛼(𝑦1,𝑦2)(𝑥))

)

 𝑦2

𝐼𝛼(
ln 𝑏(𝑥) ln 𝑦1(𝑥)

ln( 𝑊 
∗
𝛼(𝑦1,𝑦2)(𝑥))

)

. 
(4.19) 

 

Corollary 4.1. Let the functions 𝑦1, 𝑦2, … , 𝑦𝑛 be multiplicative linearly independent solutions of Eq.(3.2) on an 

interval 𝐼. If the above method is applied for these functions, it can be easily shown that 

𝑐𝑛 = 𝐼𝛼 (
ln( 𝑊 𝑛

∗
𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥))

ln( 𝑊 
∗

𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥))
),  

where 𝑊 𝑛
∗

𝛼(𝑦1, 𝑦2, … , 𝑦𝑛)(𝑥) is the determinant obtained by replacing the nth column on 𝑊 
∗

𝛼(𝑦1 , 𝑦2, … , 𝑦𝑛)(𝑥)  
by the column [0 0 ⋯0 ln 𝑏(𝑥)]1×𝑛. Consequently, the particular solution is as follows: 

𝑦𝑝 =∏𝑦
𝑘

𝐼𝛼(
ln( 𝑊 𝑘

∗
𝛼(𝑦1,𝑦2,…,𝑦𝑛)(𝑥))

ln( 𝑊 
∗
𝛼(𝑦1,𝑦2,…,𝑦𝑛)(𝑥))

)𝑛

𝑘=1

. 
 

 

Example 4.4. Consider the following multiplicative CF equation 

(𝜏2𝑦)(𝜏𝑦)6𝑦9 = 𝑒𝑒
−6√𝑥

, 
(4.20) 

where 𝜏𝑦 = 𝑇 
∗

1

2

𝑦 and 𝜏2𝑦 = 𝑇 
∗

1

2

𝑇 
∗

1

2

𝑦. 

Then, from (4.8), the homogeneous solution of Eq.(4.20) is as follows: 

𝑦ℎ(𝑥) = 𝑒
(𝑐1+𝑐2(2√𝑥))𝑒

−6√𝑥

. 
 

Namely, 𝑦1(𝑥) = 𝑒
𝑒−6√𝑥 and 𝑦2(𝑥) = 𝑒

2√𝑥𝑒−6√𝑥 . Therefore,  
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𝑐1 = 𝐼𝛼(−2√𝑥) = −2𝑥              and                  𝑐2 = 𝐼𝛼(1) = 2√𝑥 
 

holds and from (4.19),  

𝑦𝑝 = (𝑒
𝑒−6√𝑥)

−2𝑥

(𝑒2√𝑥𝑒
−6√𝑥

)
2√𝑥

= 𝑒2𝑥𝑒
−6√𝑥

. 
(4.21) 

is a particular solution of Eq.(4.21). Consequently, from Theorem 3.1 with (4.21) , the general solution of 

Eq.(4.20) is as follows: 

𝑦(𝑥) = 𝑦ℎ(𝑥)𝑦𝑝(𝑥) = 𝑒
(𝑐1+𝑐2(2√𝑥))𝑒

−6√𝑥

𝑒2𝑥𝑒
−6√𝑥

= 𝑒(𝑐1+𝑐2(2√𝑥))𝑒
−6√𝑥+2𝑥𝑒−6√𝑥

. 
 

 

5. Conclusion  

 

In multiplicative conformable fractional calculus which brings together multiplicative calculus and 

conformable fractional calculus, the concept of differential equations is presented. The basic definitions, 

properties, and results of this concept are given. Some solution methods of this equation are explained. A few 

examples have been solved for clarity. 
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