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Abstract: In this study, multiplicative conformable fractional differential equations are presented. Wronskian concept, linear
dependence-independence concepts are defined on multiplicative conformable fractional calculus and some theorems and
results are given among them. Finally, some examples are solved by giving some methods for finding general solutions of
multiplicative conformable fractional differential equations.
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Carpimsal Uyumlu Kesirli Diferansiyel Denklemler

Oz: Bu ¢alismada, ¢arpimsal uyumlu kesirli diferansiyel denklemler sunulmustur. Carpimsal uyumlu kesirli analiz {izerinde
Wronskian kavrami, lineer bagimlilik-bagimsizlik kavramlari tanimlanarak bunlar arasinda bazi teoremler ve sonuglar
verilmistir. Son olarak, carpimsal uyumlu kesirli diferansiyel denklemlerin genel ¢oziimlerinin bulunmasi iizerine bazi
metotlar verilerek bazi 6rnekler ¢oziilmiistiir.

Anahtar kelimeler: Uyumlu kesirli tiirev, ¢arpimsal uyumlu kesirli tiirev, non-Newtonian analiz, parametrelerin degisimi.
1. Introduction

In 1970's, non-Newtonian calculus with infinite sub-branches was firstly presented as an alternative to usual
calculus in [1,2]. The sub-branches such as geometric, anageometric, bigeometric, quadratic and harmonic
calculus, etc. can be given as examples. The geometric calculus, which is one of these, is also defined as
multiplicative calculus by some authors [3-9]. In this calculus, changes of arguments and values of a function are
measured by differences and ratios, respectively. On the other hand, they are measured by differences in the
classical case.

Many events such as the levels of sound signals, the acidities of chemicals and the magnitudes of
earthquakes change exponentially. For this reason, examining these problems in nature using multiplicative
calculus offers great convenience and benefits. In the study of these physical properties, it would be more
accurate to prefer the multiplicative differential equations. In numerous fields as biology, chaos theory,
demography, earthquakes, engineering, economics, business and medicine [5,10-15], this calculus yields better
outcomes than the classical case.

Fractional calculus, which is frequently encountered with various applications [16-20] in different fields of
engineering and science, is defined as a generalization of classical calculus. We prefer the conformable fractional
(CF) calculus in the present study. Because the other fractional derivatives used in the literature fail to satisfy
some basic properties. Thus, it can be found basic properties and main results of CF calculus in [21,22]. Some
applications of fractional derivatives are given in [23-27].

Multiplicative fractional calculus theory is a combination of both fractional calculus theory and
multiplicative calculus theory. We refer to the paper [28] that encourages us and from which the main concepts
of the multiplicative fractional calculus are set. Here, it has been defined conformable multiplicative fractional
derivative and multiplicative fractional integral and has been studied some of their properties.

In [29-30], the constructs and methods on CF calculus guided us in the preparation of this study.

2. Preliminaries

In this section, some basic definitions and properties of CF calculus, the multiplicative calculus and the
multiplicative CF calculus theories will be given.
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Multiplicative Conformable Fractional Differential Equations

Definition 2.1. [21,22] Consider the function f:[a, o) — R. Then, CF derivative and CF integral of f order
a € (0,1] are defined by:

+h(x —a)'™%) —
refo = i OG0T 16

18 (x) = f F(O)dy(t,a) = f - f@Ddt,  forx>0,

a a
respectively. Here, the last integral to the right of this equality is the usual Riemann integral. Moreover, when
a = 0, the CF derivative be written T, and the CF integral be written I, and d,(t,a) = d,t. In addition, if f is
usual differentiable, then T, f (x) = x17%f’(x).

Definition 2.2. [28] Consider the function f:R — R*. Then, the forward multiplicative and the backward
multiplicative derivative of f are defined by:
1

dr o (feRNR
dx*f(x) =/ = }ll—r;r(l)( f(x) ) ’
d. i (LG
B0 = £ = lim ()

respectively. It can easily be shown that

dn
@) = £700 = exp (T In ).

Definition 2.3. [28] Consider the function f:[a,b] — R*. Then, the forward or the backward multiplicative

integrals of f(x) are defined by:
b b b

Jf(x)dx =ff(x)dx=exp Jlnf(x) dx |.

a

Definition 2.4. [28] Consider the function f:[a,b] - R*. Then, the multiplicative CF derivative and the
multiplicative CF integral of f order ae(0,1] are defined by:
1

flx+ h(x— a)l‘“))ﬁ
fx) '

(CIgHx) = ff(t)d;;(t,a) = exp{

T f(x) = lim (

X

[wr@au a)]

a
X

= ff(t)gt_a)w_1 = exp {f(t - a)“'llnf(t)dt}, forx >0

a
respectively. Hence, the last integral to the right of this equality is the usual Riemann integral.
When a = 0, the multiplicative CF derivative be written *T,, and the multiplicative CF integral be written *I,
and d,(t,a) = dt.

Now, let ae(0,1] and n € Z*. The sequential multiplicative CF derivatives of order n is defined by
*(n)Taf(x) = Ty Ty .. "To f(X).

Proposition 2.1. [28] Consider the function f: [0, b] » R*and ae(0,1]. Then,
= * — — Taf(x)
") af(x) - eXp{Talnf(x)} - exp{ f(x) }'
i) ("Iof)(x) = exp{l,Inf (x)}.

Proposition 2.2.[28] Consider the function f:[0,b] - R* and ae(0,1]. Then,
) (T, "I, f)(x) = f(x), forf iscontinuous,
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f&)
f@

Theorem 2.1. [31] Let f, g : [0,b] » R* be multiplicative CF differentiable of order ae(0,1] and h be CF
differentiable ae(0,1] at x. Then,
D) t(cf)(x) = 7f (0),
ii) T(f?) () =1f f(?))fg (x),
T (X
i) T( )( )= 19(x)
iv) T(fM)(x) = {tf ()} Df (x)Ta" ),

Tah(X)h(x)*™

v) o(f o h)(x) = {(ef)(h(x ))} )

g
vi) t(f + g)(x) = [Tf(x)]f("“g(")[Tg(x)]f("”g(")
where c is a positive constant and Ty = *T,y.

i) ("o "Tof)(x) =

Theorem 2.2.[31] Letf, g : [0 b] —» R* be multiplicative CF integrable of order a¢(0,1] at x. Then,

i) f FQL,, = l [ Faes]

it) f (g0 = f Fa fb Feor

0

O
w ), - oo

iv) f F(a = f Fa j F s

-1

)9 () o
v) f [ 1S = ;Eoigm) f feome@t

where keRandce[0,b]isa posmve constant. The last formula is called a—*integration by parts.
3. Multiplicative Conformable Fractional Differential Equations

It is aimed to apply conformable fractional differential equations to multiplicative calculus with a method
similar to the application of classical differential equations to multiplicative calculus such as in [10].

Definition 3.1. The multiplicative differential equation

(ty) %) (gn=1y)a () .. (py)an-1()yan(®) = p(x) 3.1

is defined as multiplicative CF differential equation of n order, where b(x) is a positive valued function. Here,
Ty = "Tpy, T'y= *(Z)Tay =Ty ' Tey, .. Ty = *(n)Tay =Ty Ty .. Ty y.

n—times

If the exponents a,(x) # 0, ax(x), k =1,n are constants, Eq.(3.1) is called linear multiplicative CF
differential equation with constant exponents; otherwise linear multiplicative CF differential equation with
variable exponents. Moreover, if b(x) =1, Eq.(3.1) is called homogeneous multiplicative CF differential
equation, that is

(Tny)ao(x) (Tn—ly)th(x) (Ty)an_l(x)yan(x) =1,

otherwise nonhomogeneous multiplicative CF differential equation.

(3.2)
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Theorem 3.1. Let y,(x) be the general solution of Eq.(3.2) and y,(x) be any particular solution of Eq.(3.1).
Then, y,(x)y,(x) is a general solution of Eq.(3.1).

y() .
Yp(x) 1S
also the solution of Eq.(3.2) to complete the proof. Indeed, considering the properties on theorem 2.1 of the
multiplicative CF derivative, we obtain

(G (GG -

_ (Tny)ao(x)(‘[n—ly)a1(x) (Ty)an_l(x)yan(x) _ b(x) B
= a (x) _ a;(x) - @) = =
(‘rnyp) 0 (Tn 1yp) 1 "'(Typ) 1 ypan(x) b(x)

Proof. Let y(x) be a solution of Eq.(3.1). Since y,(x) be any solution of Eq.(3.1), it must be shown that

a;(x)

y(x)) to be the general solution of Eq.(3.2) too.

Hereby, y, (x) being the general solution of Eq.(3.2) causes pogroes
P

Consequently, we reach y(x) = y, (x)y,(x). 0

Theorem 3.2. Let the functions y; (x), y,(x), ..., ¥, (x) be any solutions of Eq.(3.2) on an interval I. Then, the
function y(x) = y,1(x)y,y2(x) ... y,™(x) is also a solution of Eq.(3.2) for any real constants ¢, k = 1, m.

Proof. The theorem is easily proved if the properties on theorem 2.1 of the multiplicative CF derivative, we
obtain are taken into account.o

Definition 3.2. Consider the positive functions y, (x), y,(x),...,¥,(x) on an interval I. If ¢, k=1,n are
scalars, then the multiplicative linear combination of the functions y; (x), y,(x), ..., y,(x) is

G0 57 () ey ().

Definition 3.3. Consider the positive functions y; (x), y,(x), ..., ¥,(x) on an interval I. If a sequence of the
functions y; (x), y,(x),...,y,(x) is said to be multiplicative linearly independent if it is not multiplicative
linearly dependent, that is, if the equation

V) 9,2 () eyt () =1, Vx €l (3.3)
can only be satisfied by ¢, = 0, k = 1,n.

Definition 3.4. Consider the positive functions y, (x), y,(x), ..., y,(x) which are (n — 1) —times multiplicative
CF differentiable on an interval I. The determinant

1 V2 Yn |
N Ty ‘L'y cee ‘L’y
Wo 1, Y2, s y) ) = | 1 S
.L.n—ly1 .L.n—lyz .L.n—lyn

is called multiplicative CF Wronskian (a —*Wronskiani) of the functions y; (x), y,(x), ..., y,,(x), where |-|* is
multiplicative determinant and the abbreviation *WW, (x) will be used instead of “W,(y, v,, ..., ¥n)(x) [32]. For

example, when n = 2,
Inty,

Yi Y2 |* _h (3.4)

V1 TV yzln ™1

W, 72) () = |

Theorem 3.3.( @ —*Abel Formula) Consider the continuous functions a,(x), k = 0,n and ay(x) # 0 on an
interval I. If the positive functions y, (x), y,(x), ..., v,(x) are multiplicative linearly independent solutions of
Eq.(3.2) on an interval I, then the formula
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< _a1(x)>
*1;‘0 e ag(x)
*Wa(x) = {*Wa(xo)}
holds for Vx € I, where *I,°(-) will symbolize the multiplicative CF integral from definition 2.4..
Proof. For the sake of clarity, the proof in the case n = 2 will be given instead of the proof of the general case.

Let y; and y, be the continuous functions on an interval I and be multiplicative linearly independent solutions
of Eq.(3.2) for Vx € I. Then, we can write the following

a0 2 L) 2 (3.5)
(2%y;) = (y;) @@y, @& and (t2y,) = (ty,) Gy, 0,

On the other hand, taking the multiplicative CF derivative of both sides of (3.4) with respect to x when n = 2,
we obtain

{ryz}‘“yl) _ Py (3.6)
™)~ g

T(*Wa(ypyz)) = T(

Substituting Egs. (3.5) into (3.6) yields to

as (x)

T(*Wa(yl'yz)){*Wa(yl'yz)}m =1 (37)

If the algebraic operations on the multiplicative calculus are taken into account in Eq.(3.7), this equation is
written in the following form:

as (x)

(I W, (1, ¥,)) = e @,
Taking the multiplicative CF integral of both sides of the last equality with respect to x, the proof is completed.o

Corollary 3.1. Consider the continuous functions a,(x), k =0,n and a,(x) # 0 on an interval I. If the
positive function y,,y,,..,y, are the solutions of Eq.(3.2) on an interval I, then for vx €1 either
WY1, Yo, s V) () = Lor "Wo(¥1, Yo, -, Yn)(x) # 1 is provided.

_a1()
Proof. From the a —*Abel formula, for Vx € I, *I,;° (e aom) # 0 dir. If *W,(x,) = 1 is provided at a point
Xy € I, then “W,(x) = 1 is provided for vx € I; if "W, (x,) # 1 is provided at a point x, € I, then "W, (x) #
1 is provided for vx € I. This completes the proof. o

Theorem 3.4. Let the positive function y,, y,, ..., v, be the solutions of Eq.(3.2) on an interval I. The functions
Y1,¥2, -, Y, are multiplicative linearly dependent solutions of EQ.(3.2) on an interval I if and only if

*Wa(yllyZl ---,J’n)(x) =1

Proof. For the sake of clarity, the proof in the case n = 2 will be given instead of the proof of the general case.
Suppose that the functions y, and y, are multiplicative linearly dependent solutions of Eq.(3.2) on an interval I.
Then, there is a constant C such that y, (x) = y£ (x). From the properties of multiplicative CF derivative, we get
7y, (x) = {ty, (x)}¢. If the constant C is eliminated in this last equalities, the equality

{ty, ()1 O zy, ()} 1720 =1 (3.8)

is obtained, that is, *W,(y,y,)(x) = 1.

On the other hand, Let *W,(y,,y,)(x) = 1, that is, let the equality (3.8) be provided. If y,(x) =1 on an
interval I, then the function y, becomes multiplicative linearly dependent on y;. Now, let's assume y, (x) # 1 on
a subinterval of the interval I. Then, taking the power {Iny; (x)}~2 of both sides of the equality (3.8) gives
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t(Infy, ()} ¥ 0™) = 1. From here and the properties of multiplicative CF derivative, we get
In{y, () }Iny16N™" = ¢ or y, (x) = y£ (x). This completes the proof. o

Theorem 3.5. Let the functions y,, y,, ..., y,, be multiplicative linearly independent solutions of Eq.(3.2) on an
interval I. Then, a y(x) solution of Eq.(3.2) in the same interval, that is, the general solution, is in the form
below:

y(x) = ¥ (%) Y52 (%) . Y™ (x). (3.9)

Proof. Let the functions y(x) be a solution of Eq.(3.2) on an interval I. Since the functions
Y1) ¥, 2(x) .yt (x) ve y(x) are solutions of Eq.(3.2) on an interval I, at some x, of the interval, the
arbitrary constants c,, k = 1,n must to be found such that the following system is provided:

Vi1 (%0) ¥52(%0) . Y (x0) = y(x0 ),
Ty (0) TV, 2 (%) - Ty (%) = TY (X0 ),

Ty (0) TV, () - T () = T Y (g )

In order for this system to be solvable according to the arbitrary constants, the coefficients matrix of this system
must be W,(y. Vi .., ¥n)(x) # 1. Consequently, from theorem 3.3, it is obtained that
Wo(V1, V2, -, ¥u)(x) # 1 for Vx € I. This completes the proof. o

4. Some Methods for General Solution of Multiplicative CF Differential Equations

In this section, for the sake of clarity, some methods for finding the general solution of the homogeneous
multiplicative CF differential equation (3.2) for n = 2 will be given. When n = 2, let's rearrange Eq.(3.2) as
follows:

(%) (ty)P@ya®) = 1,
ay (x) (x) —

ag(x)’

(4.1)

(x)
)

where p(x) = and ay(x) # 0

az
ao
4.1. The Solution of Type y, (x) = {y;(x)}'"*®

For brevity's sake, let's use these abbreviations y; = y;(x), y, = y,(x) and u = u(x). Suppose that the
function y, # 1 which known and y, = yl"* functions are solutions of Eq.(4.1), where u(x) is an unknown
positive function. Thus, the following system is obtained:

Te(Inw)

Ty, = {ty, ™y,

@710
T2y2 — {szl}lnu{.[yl}ZTa(lnu)yl a(nu).

After these equalities are written in Eq.(4.1), considering that y; (x) is a solution to Eq.(4.1), we get

Te(Inu) (2)
{tryy2yp @}y e = g

or
AT, (Inw) T,(Iny,)
=- —p().

T,(Inu) Iny,
CF integrating both sides of last equality, we get
T,(Inw) = In"2 y, e~laP@ N U= e,a(ln—zyle—lap(x))’ 4.2)
or
1 = Y1 e P® 5 w= Y (), (4.3)

where [, - is CF integral from definition 2.1 and *I,, - is multiplicative CF integral from definition 2.4.
Consequently, the general solution of Eq.(4.1) is as follows
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y(x) = ¥ (), (x) e, (4.4)

where u(x) is defined by (4.2) or (4.3).

Example 4.1. Consider the following multiplicative CF equation for which y, (x) = e* has a known solution;

L1 (4.5)
@) (y)zry = =1,
where Ty = *T1y and 2y = *T1*T1y.

2 2 2
x—2

Then considering the formula (4.2), we have u(x) = ez . Consequently, from (4.4), the general solution of
Eq.(4.5) is as follows:

y(x) = eC1x+sz_1_

4.2. The Solution When the Coefficients are Constant
In Eq.(4.1), let p(x) and q(x) be constants. So let's look for the solutions of Eq.(4.1) in type y(x) =

k(L
e® G ). If the first and second multiplicative CF derivatives of this function are taken, it is obtained as follows,
respectively:

1la 1.«
Ty(x) = ke @) ng ?y(x) = k2@
If these derivatives are substituted in (4.1), we have

1
e (k2+pk+q)ek(axa) —

’

or
k? + pk +q = 0.

The following three cases exist for the roots k, and k, of Eq.(4.6).
i) If k; # k, € R, the general solution of Eq.(4.1) is as follows

kl(%xa)+czek2(%xa) kl(éxa)bekz(éxa) (a =g, ph= eCz). (47)

(4.6)

y(x) = e? or y(x) = a®

ii) If k;, = k, € R, the general solution of Eq.(4.1) is as follows

<C1+C2(§xa)>ek1(%xa) 1(%)(“) (%x“)ekl(%xu) (48)

yx)=e or y(x) = a" b (a=e“, b=e%2),

iii) If k;, = 0 —it, k, = o + it the general solution of Eq.(4.1) is as follows

a(éx“) (C1 cos T(éx“)+c2 sin r(éx“)).

(4.9)
y(x) = e°

Example 4.2. Consider the following multiplicative CF equation

(@) ay)y ™ = 1 (4.10)
Then, from (4.7), the general solution of Eq.(4.10) is as follows:

1.a (L 1« _o(Lya
(Ex )+c29 Z(LZX ) (Otx )be Z(Dtx ) (a — ecl’ b — ecz).

y(x) = e? or y(x) = a*

Example 4.3. Consider the following multiplicative CF equation
@)@y ?y* =1
Then, from (4.9), the general solution of Eq.(4.11) is as follows:

(%xa) (01 cos 2(%x“)+c2 sin Z(éx“))

(4.11)

y(x) = e

4.3. Variation of Parameters
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Suppose that y, = y,(x) and y, = y,(x) be two multiplicative linearly independent solutions for Eq.(4.1).
The aim is to find the particular solution y,, = y, (x) for

(@) @)PPy 1 = b, (412
Let
Yo =V Vst (4.13)
where the functions ¢; = ¢;(x) and ¢, = ¢,(x) are two unknown functions.
By taking the multiplicative CF derivative of Eq.(4.13) with respect to x, we get

« @ 4.14
Wy = (@y) 1y " (2y2) 2y, . (4.14)
If the equality
leaclszaCZ =1 (415)
is assumed in Eq.(4.14), we get
™yp = (Ty1) 1 (Ty2) 2. (4.16)
Later, taking the multiplicative CF derivative of Eq.(4.16) with respect to x, we obtain

(4.17)

T2y, = (t2y) 1 (ty) a1 (T2y,) 2 (y,) ez,

Considering that the functions y; and y, are the solution of Eq.(4.1), substituting Eqgs.(4.13), (4.14), and (4.17)
into (4.12) yields to

(2y) et (xy,) "o = b(x). (4.18)
Now, solving the system of the Egs.(4.15) and (4.18), we get
—Inb(x) Iny,(x) Inb(x) Iny,; (x)
Wl = and Tyc, = ,
("W, (y1,2)(x)) In(*We (y1,2) (x))
or
(—lnb(x)lnyz(x)> < Inb(x) Iny; (x) )
¢ =1, and c; =1, .
("W, (y1, ¥2) () In("We (y1, ¥2) (%))
Consequently, the particular solution is as follows:
—Inb(x)1Iny,(x) In b(x) In y4 (x)
Ia(ln(*Wa(YLYZ)(X))) Ia<1n(*Wa(J/1.J/2)(x))) (4.19)

Yo =N 2 .

Corollary 4.1. Let the functions y,, y,, ..., y,, be multiplicative linearly independent solutions of Eq.(3.2) on an
interval 1. If the above method is applied for these functions, it can be easily shown that

ch =1, (ln( ;;Wa(ylﬁ Va2, ---;yn)(X)))’

ln(*Wa (}’1, Y2, e 'yn)(x))
where ;W, (y1, ¥, ..., Vo) (x) is the determinant obtained by replacing the nth column on *W,(y4, ¥2, ..., ¥n) (X)
by the column [0 0 --- 0 In b(x)],x,. Consequently, the particular solution is as follows:

L (ln(Ewa(yl,yz,...,ynxx)))

A n(Wa1y2,-yn)(x))
yp = Hyk
k=1

Example 4.4. Consider the following multiplicative CF equation
—6VE 4.20
(@) )y = e, (420
where Ty = *T1y and T2y = *T1*T1y.
2 2 2
Then, from (4.8), the homogeneous solution of Eq.(4.20) is as follows:

Ju(2) = elerteso®)eoT

Namely, y; (x) = ™% and y,(x) = 27" Therefore,
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¢ = Ip(—2vVx) = —2x and ¢, =1,(1) = 2vx
holds and from (4.19),
Yy = (ee‘G‘/E w2 eZ\/Ee‘G‘/E wx _ 2xe~6V% (4.21)

=e .
is a particular solution of Eq.(4.21). Consequently, from Theorem 3.1 with (4.21) , the general solution of
Eq.(4.20) is as follows:

V() = )y () = (e @VD)e ™ gaxemo  plertea(2im))emFraxee

5. Conclusion

In multiplicative conformable fractional calculus which brings together multiplicative calculus and
conformable fractional calculus, the concept of differential equations is presented. The basic definitions,
properties, and results of this concept are given. Some solution methods of this equation are explained. A few
examples have been solved for clarity.
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