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Abstract

In this article, we determine the best proximity point results for the Geraghty proximal contraction type
mappings in a more general space called the bv(s)-metric space, and prove the existence of the best proximity
point for such mappings which satisfy the RJ-property. We also derive some consequences as a justi�cation
for the validity of the main result. The results presented here extend, generalize, and integrate many previous
results in the literature.
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1. Introduction

Banach in [7] proposed the important principle which plays a vital role in the advancement of �xed point
theory. In this work, he asserted that any contraction self-mapping de�ned on a complete metric space has
only one �xed point. Later, this principle has been generalized and extended in many aspects. Generalization
or an extension of the Banach contraction principle is to change the contraction conditions or change the
display space. Fifty years later, in 1973, Geraghty [17] became popular by generalizing Banach's result by
modifying the contraction constant and replacing it with a function of certain de�ned properties. Also,
Geraghty contraction has been extended and generalized in di�erent aspects in [10, 14, 18, 21]. All of the
above assertions are valid only for self-mapping.

In 1969, one of the most important generalization of Banach [7] contraction principle is presented by Fan
[15] which is known as best approximation theorem.

Theorem 1.1. [15] Let A be a nonempty compact convex subset of a normed linear space X and T : A → X
be a continuous function. Then there exists x ∈ A such that ||x− Tx|| = d(Tx,A) = inf{||Tx− a|| : a ∈ A}.
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In recent studies, this fact has attracted the attention of several authors to deal with non self-mapping.
If N ≠ ∅ and R ≠ ∅ are subsets of the metric space (M, δ) and S : N → R is a mapping, then
δ(p, Sp) ≥ δ(N ,R) for all p ∈ N . In the map S : N → R, if there is no solution for the equation
Sp = p, then the aim here is to �nd an element p ∈ N which is an approximate solution that minimizes the
error δ(p, Sp), possibly δ(p, Sp) = δ(N ,R). In case δ(p, Sp) = δ(N ,R), we call p is the best proximity point
of S, where δ(N ,R) = inf{δ(p, q) : p ∈ N , q ∈ R}. In recent years, the idea of the best proximity point is
the area of attention for many authors in [1, 2, 3, 8, 9, 26]. Geraghty contraction has also been extended to
the case of non self-mapping.

In this article, we look at a more general space and prove the best proximity point result for Geraghty
proximal contraction type.

2. Preliminaries

In this this study, R+ and Z+ represent all sets of non-negative real numbers and all sets of positive
integers respectively.

Consider the following notations and de�nitions. Let (M, δ) be the metric space and let N ≠ ∅ and
R ≠ ∅ are subsets of M.

N0 := {p ∈ N : δ(p, q) = δ(N ,R) for some q ∈ R},

R0 := {q ∈ R : δ(p, q) = δ(N ,R) for some p ∈ N}.

De�nition 2.1. [25]The mapping S : M → M is said to be α-admissible,

if α(p, q) ≥ 1, then α(Sp, Sq) ≥ 1,

provided that α : M×M → R is a function, where p and q are any points in M.

De�nition 2.2. [22] The mapping S : M → M is called a triangular α-admissible, if for all p, q, r ∈ M we
have

(i) S is α-admissible.

(ii) α(p, q) ≥ 1 and α(q, r) ≥ 1 =⇒ α(p, r) ≥ 1, provided that α : M×M → R is a function.

De�nition 2.3. [20] Given that N ̸= ∅ and R ≠ ∅ are subsets of the metric space (M, δ). Given α :
N ×N → R+ is a function. The mapping S : N → R is said to be α−proximal admissible

if


α(p, q) ≥ 1
δ(u, Sp) = δ(N ,R)
δ(v, Sq) = δ(N ,R),

then α(u, v) ≥ 1,

for all p, q, u, v ∈ N .

De�nition 2.4. [23] Given that N ≠ ∅ and R ̸= ∅ are subsets of the metric space (M, δ) and α : N ×
N → R+ be a function. A mapping S : N → R is called a triangular α-proximal admissible if for all
p, q, z, p1, p2, u1, u2 ∈ N ,

(S1)


α(p1, p2) ≥ 1
δ(u1, Sp1) = δ(N ,R)
δ(u2, Sp2) = δ(N ,R)

=⇒ α(u1, u2) ≥ 1,

(S2)

{
α(p, z) ≥ 1,
α(z, q) ≥ 1

=⇒ α(p, q) ≥ 1.
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In 2016, Hamzehnejadi and Lashkaripour de�ned RJ-property.

De�nition 2.5. [19] Given that N ̸= ∅ and R ≠ ∅ are subsets of the metric space (M, δ) and S : N → R
be a mapping. For any sequence {pn} ⊆ N , S is said to have the RJ-property,

if lim
n→∞

δ(pn+1, Spn) = δ(N ,R) and lim
n→∞

pn = p, then p ∈ N0.

De�nition 2.6. [11] Let ∅ ≠ M be a set and s ≥ 1 is a real number. Suppose that for all p, q, r ∈ M the
mapping δ : M×M → R+ satis�es the following conditions:

(δ1) δ(p, q) ≥ 0.

(δ2) δ(p, q) = 0 ⇐⇒ p = q.

(δ3) δ(p, q) = δ(q, p).

(δ4) δ(p, r) ≤ s[δ(p, q) + δ(q, r)] (b-triangular inequality).

If δ satis�es conditions (δ1)-(δ4), then δ is known as b- metric on M. The couple (M, δ) is named as b-metric
space.

After the introduction of the b-metric spaces, the generalized versions were introduced. These include
extended b-metric spaces, rectangular b-metric spaces, bv(s)-metric spaces, and more.

De�nition 2.7. [16] Let ∅ ̸= M is a set and s ≥ 1 be a �xed real number. Let δ : M × M → R+ be a
mapping such that

(δ1) δ(p, q) = δ(q, p) = 0 ⇐⇒ p = q,

(δ2) δ(p, q) = δ(q, p),

(δ3) δ(p, q) ≤ s[δ(p, r) + δ(r, t) + δ(t, q)] (b-rectangular inequality),

for every p, q ∈ M and distinct points r, t ∈ M, each is di�erent from p and q. In this case, δ is called a
b-rectangular metric, and the pair (M, δ) is called a b-rectangular metric space.

In this paper, Fs represents the class of all functions {β : [0,∞) → [0,
1

s
), s ≥ 1 and lim

n→∞
supβ(hn) =

1

s
=⇒ lim

n→∞
hn = 0}.

In the year 2017, Mitrovic and Radenovic [24] introduced a more general version of b-metric space called
bv(s)-metric space.

De�nition 2.8. [24] Let ∅ ̸= M is a set. Let δ : M × M → R+ be a mapping and v ∈ Z+, s ≥ 1 be a
constant such that

(δ1) δ(p, q) = δ(q, p) = 0 if and only if p = q,

(δ2) δ(p, q) = δ(q, p),

(δ3) δ(p, q) ≤ s[δ(p, u1) + δ(u1, u2) + ...+ δ(uv, q)] (bv(s)-metric inequality),

for all p, q ∈ M and all distinct points u1, u2, ..., uv ∈ M, each is di�erent from p and q, then we call (M, δ)
is the bv(s)-metric space.
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Example 2.9. Given that M = {(0, 1
n) : n ∈ {2, 3, 4, 5, ...}},

We de�ne δ : M×M → R+ by

δ
(
(0, 1

h), (0,
1
t )
)
=



0 if h = t,
18λ if h = 2, t = 3, or if h = 3, t = 2,
λ if h ∈ {2, 3, 4}, t ∈ {5} or

if h ∈ {5}, t ∈ {2, 3, 4},
3λ if h ∈ {2, 3, 4, 5}, t ∈ {6} or

if h ∈ {6}, t ∈ {2, 3, 4, 5},
2λ if h ∈ {2, 3, 4, 5, 6}, t ∈ {7} or

if h ∈ {7}, t ∈ {2, 3, 4, 5, 6},
3
2λ if h ∈ {2, 3, 4, 5, 6, 7}, t ∈ {8} or

if h ∈ {8}, t ∈ {2, 3, 4, 5, 6, 7},
4λ if h or t /∈ {2, 3, 4, 5, 6, 7, 8}},

where λ ∈ (0,∞) is a constant.
Now,

δ((0,
1

2
), (0,

1

3
)) = 18λ ≤ 2[λ+ 3λ+ 2λ+

3

2
λ+

3

2
λ]

= 2[δ((0,
1

2
), (0,

1

5
)) + δ((0,

1

5
), (0,

1

6
)) + δ((0,

1

6
), (0,

1

7
))

+ δ((0,
1

7
), (0,

1

8
)) + δ((0,

1

8
), (0,

1

3
))].

Therefore, (M, δ) is a b4(2)-metric space.

De�nition 2.10. [24] Let the couple (M, δ) be the bv(s)-metric space, (pk) the sequence of M, and p ∈ M.
Then

(i) the sequence (pk) converges to p in (M, δ) if for any γ > 0 there is N0 = N0(γ) ∈ Z+ such that
δ(pk, p) ≤ γ for all k ≥ N0 and this fact is expressed as lim

k→∞
pk = p,

(ii) the sequence (pk) is Cauchy if for any γ > 0 there is N0 = N0(γ) ∈ Z+ such that δ(pk, pl) ≤ γ for all
k, l > N0,

(iii) (M, δ) is called complete bv(s)-metric space if any sequence {pn} of M converges to a point p ∈ M as
n → ∞.

Some of the recent �xed point results in bv(s) can be found on [4, 5, 6, 12, 13] and references cited in
these papers.
In line with the de�nitions of the α-proximal admissible, the triangular α-proximal admissible and the RJ-
property in metric spaces, it is possible to de�ne the same in bv(s)-metric spaces.

De�nition 2.11. Given that N ̸= ∅ and R ≠ ∅ are subsets of the bv(s) -metric space (M, δ) and S : N → R
be a mapping. For any sequence {pn} ⊆ N , we call S has the RJ-property

if lim
n→∞

δ(pn+1, Spn) = δ(N ,R) and lim
n→∞

pn = p, then p ∈ N0.

Example 2.12. Given that M = {(0, 1
n) : n ∈ {2, 3, 4, 5, ...}} ∪ {(0, 0)},

N = {(0, 1
n
) : n ∈ {2, 4, 6, 8, ...}} ∪ {(0, 0)} = N0 and

R = {(0, 1
m
) : m ∈ {3, 5, 7, ...}} = R0.
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We de�ne δ : M×M → R+ by

δ
(
(0, h), (0, t)

)
=



0 if h = t ,
24 if h = 1

2 , t =
1
3 , or if h = 1

3 , t =
1
2 ,

4 if h ∈ {1
2 ,

1
3 ,

1
4}, t ∈ {1

5} or
if h ∈ {1

5}, t ∈ {1
2 ,

1
3 ,

1
4},

3 if h ∈ {1
2 ,

1
3 ,

1
4 ,

1
5}, t ∈ {1

6} or
if h ∈ {1

6}, t ∈ {1
2 ,

1
3 ,

1
4 ,

1
5},

5
2 if h ∈ {1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6}, t ∈ {1

7} or
if h ∈ {1

7}, t ∈ {1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6},

3
2 if h or t /∈ { 1

n}, where n = 2, 3, 4, 5, 6, 7.
Now,

δ((0,
1

2
), (0,

1

3
)) = 24 ≤ 2[4 + 3 +

5

2
+

5

2
]

= 2[δ((0,
1

2
), (0,

1

5
)) + δ((0,

1

5
), (0,

1

6
)) + δ((0,

1

6
), (0,

1

7
))

+ δ((0,
1

7
), (0,

1

3
))].

Therefore, (M, δ) is a b3(2)-metric space.
De�ne S : N → R by S(0, 0) = (0, 13) and S(0, 1

2n) = (0, 1
2n+1) for all n ≥ 1.

Let pn = {(0, 1
2n)} ⊆ N for all n ≥ 1.

lim
n→∞

δ
(
(0, pn+1), (0, Spn)

)
= lim

n→∞
δ
(
(0,

1

2n+ 2
), (0,

1

2n+ 1
)
)
=

3

2
= δ(N ,R).

and lim
n→∞

(0, 1
2n) = (0, 0) ∈ N0. Therefore, S has RJ-property.

In this study, we establish the notion of Geraghty proximal contraction type and prove the existence
of best proximity point for mappings which satisfy the RJ-property in bv(s) -metric spaces.

3. Main Results

Theorem 3.1. Let N ̸= ∅ and R ≠ ∅ be subsets of a bv(s)- metric space(M, δ) with a constant s ≥ 1 and
α : N ×N → R+ be a function. Let S : N → R is a mapping that has the RJ-property. Suppose we have
β ∈ Fs such that the following conditions hold for all p, q, u, v ∈ N .

(i)
δ(u, Sp) = δ(N ,R)
δ(v, Sq) = δ(N ,R)

}
=⇒ α(p, q)δ(u, v) ≤ β

(
L(p, q, u, v)

)
L(p, q, u, v), (1)

where L(p, q, u, v) = max {δ(p, q), δ(p, u), δ(q, v)},

(ii) S(N0) is a subset of R0 and S is a triangular α−proximal admissible,

(iii) if {pn} is a sequence of N such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ N as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k,

(iv) there are points p0, p1 ∈ N such that δ(p1, Sp0) = δ(N ,R) and α(p0, p1) ≥ 1.
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Then there exists a best proximity point for S.

Proof. According to assumption (iv), there are points p0, p1 ∈ N such that

δ(p1, Sp0) = δ(N ,R) and α(p0, p1) ≥ 1. (2)

Since Sp0 ∈ R, by the de�nition of N0 and from (2), we have p1 ∈ N0. Since S(N0) ⊆ R0, we have Sp1 ∈ R0.
Hence by de�nition of R0, there exists an element p2 ∈ N such that

δ(p2, Sp1) = δ(N ,R). (3)

By triangular α-proximal admissibility of S, we obtain α(p1, p2) ≥ 1. Continuing this process, we have that

δ(pn+1, Spn) = δ(N ,R) and α(pn, pn+1) ≥ 1 (4)

for all n ∈ Z+ ∪ {0}.
Therefore, for all n ∈ Z+, we have

α(pn−1, pn) ≥ 1

δ(pn, Spn−1) = δ(N ,R)

δ(pn+1, Spn) = δ(N ,R).

(5)

According to (1), we have

δ(pn, pn+1) ≤ α(pn−1, pn)δ(pn, pn+1)

≤ β
(
L(pn−1, pn, pn, pn+1)

)
L(pn−1, pn, pn, pn+1) (6)

<
1

s
L(pn−1, pn, pn, pn+1),

where

L(pn−1, pn, pn, pn+1) = max{δ(pn−1, pn), δ(pn−1, pn), δ(pn, pn+1)}
= max{δ(pn−1, pn), δ(pn, pn+1)}. (7)

Suppose pn0−1 = pn0 for some n0 ∈ Z+. If possible, assume that pn0 ̸= pn0+1.
According to (6) and (7), it follows that

δ(pn0 , pn0+1) ≤ α(pn0−1, pn0)δ(pn0 , pn0+1)

≤ β
(
L(pn0−1, pn0 , pn0 , pn0+1)

)
L(pn0−1, pn0 , pn0 , pn0+1), (8)

<
1

s
L(pn0−1, pn0 , pn0 , pn0+1),

where

L(pn0−1, pn0 , pn0 , pn0+1) = max{δ(pn0−1, pn0), δ(pn0−1, pn0), δ(pn0 , pn0+1)}
= δ(pn0 , pn0+1). (9)

From (8) and (9), we get
δ(pn0 , pn0+1) < δ(pn0 , pn0+1).

This is a contradiction. Therefore, pn0 = pn0+1.
Hence pn0−1 = pn0 = pn0+1 and so from (4), it follows that

δ(pn0 , Spn0) = δ(pn0+1, Spn0) = δ(N,R).
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That is, pn0 is the best proximity point in the vicinity of S, which is the desired result.
Therefore, assume that pn−1 ̸= pn for all n ∈ Z+.

If max{δ(pn−1, pn), δ(pn, pn+1)} = δ(pn, pn+1) in (7), then according to (6) and since β ∈ Fs, we get a
contradiction.
Therefore, max{δ(pn−1, pn), δ(pn, pn+1)} = δ(pn−1, pn). So, By (6) and (7), we have

δ(pn, pn+1) <
1

s
δ(pn−1, pn)) ≤ δ(pn−1, pn).

Thus

δ(pn, pn+1) ≤ δ(pn−1, pn) for all n ∈ Z+.

Therefore,we can infer that {δ(pn, pn+1)} is a non-increasing sequence of non-negative real numbers. So,
there is l ≥ 0 such that

lim
n→∞

δ(pn, pn+1) = t. (10)

If possible, suppose that t > 0. Therefor, if the upper limit is taken as n → ∞ in(6), it becomes as follows:

t ≤ lim
n→∞

supβ(δ(pn−1, pn))t ≤
1

s
t. (11)

Hence it is clear that

1

s
≤ 1 ≤ lim

n→∞
supβ(δ(pn−1, pn)) ≤

1

s
. (12)

Since β ∈ Fs from (12), we get

lim
n→∞

supβ(δ(pn−1, pn)) =
1

s
=⇒ 0 = lim

n→∞
δ(pn−1, pn) = t. (13)

This is a contradiction. Hence t = 0
In the next step, we will show that {pn} is a bv(s)-Cauchy sequence.
Now, assuming the opposite, {pn} is not a bv(s)-Cauchy sequence. That is, lim

n,m→∞
δ(pn, pm) ̸= 0. Then there

is γ > 0 and sub sequences {mk} and {nk} of {pn} for which mk > nk + v, nk > k,

δ(pnk
, pmk

) ≥ γ (14)

and

δ(pnk+v−1, pmk−1) < γ. (15)

According to (14) and bv(s) -metric inequality, we obtain

γ ≤ δ(pnk
, pmk

) ≤ s[δ(pnk
, pnk+1) + δ(pnk+1, pnk+2) + ...

+ δ(pnk+v−1, pnk+v) + δ(pnk+v, pmk
)]. (16)

Taking the upper limit as k → ∞ in (16), we get

γ

s
≤ lim

k→∞
sup δ(pnk+v, pmk

). (17)

By triangular α-proximal admissibility of S, we show that

α(pnk+v−1, pmk−1) ≥ 1 for mk > nk + v, nk ≥ k. (18)
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By triangular α-proximal admissibility of S and if

α(pnk
, pnk+1) ≥ 1, α(pnk

, pnk+2) ≥ 1,

we have α(pnk
, pnk+2) ≥ 1. Hence by extending this process, (18) follows. That is,

α(pnk+v−1, pmk−1) ≥ 1 (19)

α(pmk−2, pmk−1) ≥ 1 =⇒ α(pnk+v−1, pmk−1) ≥ 1.

Now,

α(pnk+v−1, pmk−1) ≥ 1

δ(pnk+v, Spnk+v−1) = δ(N ,R) (20)

δ(pmk
, Spmk−1) = δ(N ,R).

Hence according to (1), we have

δ(pnk+v, pmk
) ≤ α(pnk+v−1, pmk−1)δ(pnk+v, pmk

)

≤ β
(
L(pnk+v−1, pmk−1, pnk+v, pmk

)
)

L(pnk+v−1, pmk−1, pnk+v, pmk
)

<
1

s
L(pnk+v−1, pmk−1, pnk+v, pmk

), (21)

where

L(pnk+v−1, pmk−1, pnk+v, pmk
) = max{δ(pnk+v−1, pmk−1), δ(pnk+v−1, pnk+v),

δ(pmk−1, pmk
)}.

Thus,

lim
k→∞

supL(pnk+v−1, pmk−1, pnk+v, pmk
) = lim

k→∞
supmax{δ(pnk+v−1, pmk−1),

δ(pnk+v−1, pnk+v), δ(pmk−1, pmk
)} ≤ γ. (22)

Now, taking the upper limit as k → ∞ in (21), and using (17) and (22), we obtain

γ

s
≤ lim

k→∞
supβ(L(pnk+v−1, pmk−1, pnk+v, pmk

))γ ≤ 1

s
γ, (23)

This implies that

1

s
≤ lim

k→∞
supβ(L(pnk+v−1, pmk−1, pnk+v, pmk

)) ≤ 1

s
, (24)

Since β ∈ Fs from (24), we get

lim
k→∞

L(pnk+v−1, pmk−1, pnk+v, pmk
) = 0. (25)

Therefore, {δ(pnk+v−1, pmk−1)} converges to 0 as k → ∞.
Now, by using (14) and bv(s) -metric inequality, we obtain

γ ≤ δ(pnk
, pmk

) ≤ s[δ(pnk
, pnk+1) + δ(pnk+1, pnk+2) + ...

+ δ(pnk+v−1, pmk−1) + δ(pmk−1, pmk
)]. (26)
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Taking the limit as k → ∞ in (26), we get

lim
k→∞

δ(pnk
, pmk

) = 0. (27)

This is a contradiction. Hence {pn} is Cauchy.
From completeness of M, there is a point p∗ ∈ M such that pn → p∗ as n → ∞.
Also, since S has the RJ-property, we obtain p∗ ∈ N0. Since S(p0) ⊆ R0, we have S(p∗) ∈ R0. Therefore,
there ia a point q ∈ N such that
δ(q, Sp∗) = δ(N ,R). We now prove that p∗ = q. Suppose p∗ ≠ q.

δ(pnk+1, q) ≤ s[δ(pnk+1, pnk+2) + ...+ δ(pnk+v−1, pnk+v) + δ(pnk+v, q)]. (28)

Letting n → ∞ in (28), we have
1

s
δ(p∗, q) ≤ δ(p∗, q).

According to hypothesis (iii), there is a sub-sequence {pnk
} of {pn} such that α(pnk

, p∗) ≥ 1 for all k.
Since

α(pnk
, p∗) ≥ 1

δ(pnk+1, Spnk
) = δ(N ,R)

δ(q, Sp∗) = δ(N ,R). (29)

From (1), it follows that

δ(pnk+1, q) ≤ α(pnk
, p∗)δ(pnk+1, q)

≤ β
(
L(pnk

, p∗, pnk+1, q))
)
L(pnk

, p∗, pnk+1, q)

<
1

s
L(pnk

, p∗, pnk+1, q), (30)

where L(pnk
, p∗, pnk+1, q) = max{δ(pnk

, p∗), δ(pnk
, pnk+1), δ(p∗, q)}.

Hence

lim
k→∞

L(pnk
, p∗, pnk+1, q) = lim

k→∞
{max{δ(pnk

, p∗), δ(pnk
, pnk+1), δ(p∗, q)}}

= δ(p∗, q).

On letting k → ∞ on both sides of (30), we obtain

1

s
≤ 1 =

δ(p∗, q)
δ(p∗, q)

≤ lim
k→∞

supβ(L(pnk
, p∗, pnk+1, q)) ≤

1

s
.

Therefore, lim
k→∞

supβ(L(pnk
, p∗, pnk+1, q)) =

1

s
. That implies, by property of β,

δ(p∗, q) = lim
k→∞

L(pnk
, p∗, pnk+1, q) = 0.

Hence, δ(p∗, q)) = 0, that is, p∗ = q, which contradicts the fact that p∗ ≠ q. Therefore, p∗ = q. Hence p∗ is
the best proximity point of S.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, let us consider a condition (C): for all u,w ∈
PS(N ), where PS(N ) indicates the set of all best proximity points of S, α(u,w) ≥ 1.
Then there is only one best proximity point for S.
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Proof. According to the proof of Theorem 3.1, the best proximity point exists. Here we show that this best
proximity point is one and only one. Assume the opposite. That is, consider two di�erent points u and w in
such a way

δ(u, Su) = δ(N ,R)

δ(w, Sw) = δ(N ,R).

Hence, according to condition (C), α(u,w)} ≥ 1.
Since

α(u,w) ≥ 1

δ(u, Su) = δ(N ,R)

δ(w, Sw) = δ(N ,R). (31)

According to (1), it follows that

δ(u,w) ≤ α(u,w)δ(u,w)

≤ β
(
L(u,w, u, w))

)
L(u,w, u, w) <

1

s
L(u,w, u, w)

=
1

s
max{δ(u,w), δ(u, u), δ(w,w)} =

1

s
δ(u,w).

This is a contradiction. Therefore, u = w.

Corollary 3.3. Let N ≠ ∅ and R ̸= ∅ be subsets of a bv(s)- metric space(M, δ) with a constant s ≥ 1 and
α : N ×N → R+ be a function. Let S : N → R is a mapping that has the RJ-property. Suppose that there

exists λ ∈ (0,
1

s
) such that for all p, q, u, v ∈ N the following conditions hold:

(i)
δ(u, Sp) = δ(N ,R)
δ(v, Sq) = δ(N ,R)

}
=⇒ α(p, q)δ(u, v) ≤ λL(p, q, u, v), (32)

where L(p, q, u, v) = max {δ(p, q), δ(p, u), δ(q, v)};

(ii) S(N0) is a subset of R0 and S is a triangular α−proximal admissible;

(iii) if {pn} is a sequence of N such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ N as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k;

(iv) there are points p0 and p1 in N such that δ(p1, Sp0) = δ(N ,R) and α(p0, p1) ≥ 1;

(v) for all u,w ∈ PS(N ), where PS(N ) indicates the set of all best proximity points of S, α(u,w) ≥ 1.

Then there is only one best proximity point for S.

Corollary 3.4. Let N ≠ ∅ and R ̸= ∅ be subsets of a bv(s)- metric space(M, δ) with a constant s ≥ 1 and
α : N ×N → R+ be a function. Let S : N → R is a mapping that has the RJ-property. Suppose that there
exists β ∈ Fs such that for all p, q, u, v ∈ N the following conditions hold:

(i)
δ(u, Sp) = δ(N ,R)
δ(v, Sq) = δ(N ,R)

}
=⇒ α(p, q)δ(u, v) ≤ β(δ(p, q))δ(p, q) (33)
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(ii) S(N0) is a subset of R0 and S is a triangular α−proximal admissible;

(iii) if {pn} is a sequence of N such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ N as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k;

(iv) there are points p0 and p1 in N such that δ(p1, Sp0) = δ(N ,R) and α(p0, p1) ≥ 1;

(v) for all u,w ∈ PS(N ), where PS(N ) indicates the set of all best proximity points of S, α(u,w) ≥ 1.

Then there is only one best proximity point for S.

If M = N = R, we get δ(N ,R) = 0. That is, u = Sp and v = Sq in Theorem 3.1. Thus we have the
following �xed point results.

Corollary 3.5. Let M ≠ ∅ be a set and (M, δ) be a bv(s) metric space with a constant s ≥ 1 and α :
M×M → [0,∞) be a function. Let S : M×M is a self-mapping. Suppose that there exists β ∈ Fs such
that for all p, q ∈ M the following conditions hold:

(i) α(p, q)δ(Sp, Sq) ≤ β
(
L(p, q)

)
L(p, q),

where L(p, q) = max {δ(p, q), δ(p, Sp), δ(q, Sq)};

(ii) S is a triangular α− admissible;

(iii) if {pn} is a sequence of M such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ M as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k;

(iv) there is a point p0 ∈ M such that α(p0, Sp0) ≥ 1;

(v) for all u,w ∈ FS(M), where FS(M) indicates the set of all �xed points of S, α(u,w) ≥ 1.

Then there is only one �xed point for S.

Corollary 3.6. Let M ≠ ∅ be a set and (M, δ) be a bv(s) metric space with a constant s ≥ 1 and α :

M×M → [0,∞) be a function. Let S : M → M is a self- mapping. Suppose that there exists λ ∈ (0,
1

s
)

such that for all p, q ∈ M the following conditions hold:

(i) α(p, q)δ(Sp, Sq) ≤ λL(p, q),

where L(p, q) = max{δ(p, q), δ(p, Sp), δ(q, Sq)};

(ii) S is a triangular α− admissible;

(iii) if {pn} is a sequence for M such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ M as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k;

(iv) there is a point p0 ∈ M such that α(p0, Sp0) ≥ 1;

(v) for all u,w ∈ FS(M), where FS(M) indicates the set of all �xed points of S, α(u,w) ≥ 1.

Then there is only one �xed point for S.

Corollary 3.7. Let M ≠ ∅ be a set and (M, δ) be a bv(s) metric space with a constant s ≥ 1 and α :
M×M → [0,∞) be a function. Let S : M → M is a self-mapping. Suppose that there exists β ∈ Fs such
that for all p, q ∈ M the following conditions hold:

(i) α(p, q)δ(Sp, Sq) ≤ β(δ(p, q)δ(p, q);
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(ii) S is a triangular α− admissible;

(iii) if {pn} is a sequence in M such that α(pn, pn+1) ≥ 1 for all n and pn → p ∈ M as n → ∞, then for
some sub-sequence {pnk

} of {pn}, we have α(pnk
, p) ≥ 1 for all k;

(iv) there is a point p0 ∈ M such that α(p0, Sp0) ≥ 1;

(v) for all u,w ∈ FS(M), where FS(M) indicates the set of all �xed points of S, α(u,w) ≥ 1.

Then there is only one �xed point for S.
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