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Abstract
In this paper, we compare the intrusive proper orthogonal decomposition (POD) with
Galerkin projection and the data-driven dynamic mode decomposition (DMD), for Hes-
ton’s option pricing model. The full order model is obtained by discontinuous Galerkin
discretization in space and backward Euler in time. Numerical results for butterfly spread,
European and digital call options reveal that in general DMD requires more modes than
the POD modes for the same level of accuracy. However, the speed-up factors are much
higher for DMD than POD due to the non-intrusive nature of the DMD.
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1. Introduction
Under Heston framework [11], the volatility is treated as a square root process which

enables us to predict the volatility smirk arising in the option prices. As a result, one
can obtain more accurate prices for European currency options. One of the well-known
techniques to solve option pricing problems is the Monte Carlo integration. Although its
implementation is straightforward, it requires a large number of realizations to achieve
high accuracy. Moreover, one can estimate only one option price for a given underlying
value. Therefore, the simulations can be too costly which leads us to the discretization
methods based on the solution of partial differential equations (PDEs). Option pricing
problems under the Heston model are also represented as diffusion-convection-reaction
PDEs [11, 18]. The diffusion matrix and convective field depend on the volatility. The
diffusion matrix contains cross-diffusion terms as a result of the correlation between the
volatility and the underlying security price. In addition, the initial and boundary data
are discontinuous and less regular for different options. Heston’s PDE is solved in the
literature by finite differences [9,12,26] and by finite elements [29]. Recently Heston’s PDE
has been investigated for various option pricing models applying discontinuous Galerkin
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(dG) method by the authors [15]. The discontinuous Galerkin finite element (dGFEM)
method has several advantages over finite difference and continuous finite element methods
for solving diffusion-convection-reaction equations. Because the dGFEM does not require
continuity across the inter-element boundaries, the number of degrees of freedom is larger
than the continuous FEMs. On the other hand, the dGFEM has a number of desirable
properties like the treatment of the convective term by upwinding, weakly enforcement of
the boundary conditions, and ease of parallelization.

In the last two decades, reduced-order modeling became an important tool for simulating
engineering problems efficiently. Reduced-order models (ROMs) reduce the computational
complexity and time by approximating the full order model (FOM) of the high dimen-
sional discretized PDEs as lower dimensional models. This enables fast simulation based
studies like calibration and hedging [7,22,24] in option pricing. In this paper, we compare
two model order reduction (MOR) methods, the proper orthogonal decomposition (POD)
and dynamic mode decomposition (DMD) for Heston’s option pricing model. The POD
with Galerkin projection is the most known and frequently used reduced-order modeling
method. POD based reduced-order modeling is investigated for pricing European option
and American option wherein different from European option there exist variational in-
equalities [5, 30, 31] to be handled, under Black-Scholes and Heston model [2, 4, 20, 21].
Reduced-order models based on POD are optimal in terms of energy content. The energy
content is important but is not sufficient in general to catch the dynamical behavior. In
this paper, we apply the data-driven reduced-order modeling technique DMD [25, 27] for
option pricing and compare it with the POD with respect to accuracy and speed-up over
the full order models. The DMD is able to extract dynamically relevant flow features from
time-resolved experimental or numerical data by generalizing the global stability modes
and approximating the eigenvalues and eigenfunctions of the Koopman operator [14]. Both
methods use the snapshots of the fully discretized PDEs in time. The POD solves a low
dimensional model by Galerkin projection, whereas DMD is equation-free, the reduced
solution is given in form of Fourier series in time and space. We would like to remark
that due to its computational efficiency, the DMD is used for financial applications like in
high-frequency trading [19] and stock market data analysis [8].

The paper is organized as follows: In the next section, Section 2, we give the FOM of
Heston’s PDE applying dG discretization in space and backward Euler discretization in
time. In Section 3, the reduced-order modeling of Heston’s PDE by POD and DMD is
described. In the last section, Section 4, we present numerical results for the butterfly
spread, European call, and digital options by comparing the POD and DMD reduced
solutions with respect to accuracy and speed-up. The paper ends with some conclusions.

2. Full order model
2.1. Heston model as diffusion-convection-reaction equation

The Heston model can be characterized by a two-dimensional diffusion-convection-
reaction equation with variable coefficients. Let uS(t, vt, St) be the value of a European
option with the underlying price St and volatilty vt and let g(vT , ST ) denote the payoff re-
ceived at maturity T . Then, the option price uS(t, vt, St) under Heston model satisfies the
following linear two-dimensional variable coefficient diffusion-convection-reaction equation
[11]

∂uS

∂t
+ JS

t uS − rduS = 0, (2.1)

with the terminal condition

uS(T, vT , ST ) = g(vT , ST ),
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where vt > 0, St > 0, t ∈ [0, T ], and

JS
t uS = 1

2
S2v

∂2uS

∂S2 + (rd − rf )S ∂uS

∂S
+ ρσSv

∂2uS

∂v∂S
+ 1

2
σ2v

∂2uS

∂v2 + κ(θ − v)∂uS

∂v
.

Here, rd is the domestic interest rate, rf is the foreign interest rate, θ is the long-run
mean level of vt, σ is the volatility of the volatilty and ρ is the correlation coefficient.
Applying the so called log transformation x = log (S/K) and τ = T − t with u(τ, v, x) =
uS(T − τ, v, Kex), PDE (2.1) is converted to the following equation

∂u

∂τ
− Jx

τ u + rdu = 0, (2.2)

where v > 0, x ∈ (−∞, ∞), τ ∈ [0, T ], and

Jx
τ u = 1

2
v

∂2u

∂x2 + (rd − rf − 1
2

v)∂u

∂x
+ ρσv

∂2u

∂v∂x
+ 1

2
σ2v

∂2u

∂v2 + κ(θ − v)∂u

∂v
.

Note that due to the substitution τ = T − t, PDE (2.2) can also be regarded as a forward
equation with the following initial condition

u0 := u(0, v, x) = g(v, Kex).
We consider an open bounded domain Ω with the boundary Γ = ΓD ∪ ΓN , where

on ΓD the Dirichlet and on ΓN the Neumann boundary conditions are prescribed, respec-
tively. Then, the log-transformed PDE given in (2.2) is expressed as a diffusion-convection-
reaction equation

∂u

∂τ
− ∇ · (A∇u) + b · ∇u + rdu = 0 in (0, T ] × Ω, (2.3a)

u(t, z) = uD(t, z) on (0, T ] × ΓD, (2.3b)
A∇u(t, z) · n = uN (t, z) on (0, T ] × ΓN , (2.3c)

u(0, z) = u0(z) in {0} × Ω, (2.3d)

where n is the outward unit normal vector, z = (v, x)T , throughout this paper, denotes
the spatial coordinates. In (2.3), the diffusion matrix and convective field are given by

A = 1
2

v

(
σ2 ρσ
ρσ 1

)
and b = v

(
κ
1
2

)
+
(

−κθ + 1
2σ2

−(rd − rf ) + 1
2ρσ

)
.

Remark 2.1. Although, the transformed PDE (2.2) is defined on the computational
domain (0, ∞) × (−∞, ∞), dGFEM must be performed on a bounded spatial region Ω =
(vmin, vmax, ) × (xmin, xmax) for the numerical simulations, which is known as localization
in option pricing models.

2.2. Variational form of Heston’s model
We introduce the weak formulation of Heston’s model as a parabolic convection-diffusion-

reaction equation (2.3a)-(2.3d). Let L2(Ω) be the space consisting of all square inte-
grable functions on Ω, H1(Ω) denote the Hilbert space of all functions having square
integrable first-order partial derivatives, and H1

0 (Ω) = {w ∈ H1(Ω) : w = 0 on ΓD}.
The weak form of (2.3) is obtained by multiplying with a test function w ∈ H1

0 (Ω) and
integrating by parts over the domain Ω. Then, for a.e. t ∈ (0, T ], we seek a solution
u(t, v, x) ∈ H1

D(Ω) = {w ∈ H1(Ω) : w = uD on ΓD} satisfying

∫
Ω

∂u

∂τ
wdz + a(u, w) =

∫
ΓN

uN wds ∀w ∈ H1
0 (Ω), (2.4a)∫

Ω
u(0, z)wdz =

∫
Ω

u0wdz ∀w ∈ H1
0 (Ω), (2.4b)
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where ds is the arc-length element on the boundary. In (2.4), a(u, w) is the bilinear form
given by

a(u, w) =
∫

Ω
(A∇u · ∇w + b · ∇uw + rduw) dz, ∀w ∈ H1

0 (Ω).

We assume that the matrix A is positive definite for v > 0 and ρ ∈ (−1, 1) which is
usually satisfied.

2.3. Discontinuous Galerkin discretization in space
The symmetric interior penalty Galerkin (SIPG) method is the commonly used dG

method, which enforces boundary conditions weakly [23]. Let the mesh ξh = {K} be a
partition of the domain Ω into a family of shape regular elements (triangles). We set the
mesh-dependent finite-dimensional solution and test function space by

Wh = Wh(ξh) =
{

w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ ξh

}
̸⊂ H1

0 (Ω),

where the functions in Wh are discontinuous along the inter-element boundaries. These
discontinuities lead to the fact that on an interior edge e shared by two neighboring trian-
gles Ki and Kj , there are two different traces from either triangle. Thus, for convenience,
we define the jump and average operators of a function w ∈ Wh on e by

[[w]] := w|KinKi + w|Kj nKj , {{w}} := 1
2

(w|Ki + w|Kj ).

On a boundary edge e ⊂ ∂Ω, we set [[w]] := w|Kn and {{w}} := w|K . In addition, we form
the sets of inflow and outflow edges by

Γ− = {z ∈ ∂Ω : b(v) · n(v, x) < 0} , Γ+ = ∂Ω \ Γ−,

∂K− = {z ∈ ∂K : b(v) · nK(v, x) < 0} , ∂K+ = ∂K \ ∂K−,

where nK denotes the outward unit vector on an element boundary ∂K. Moreover, we
denote by Γ0

h and ΓD
h the sets of interior and Dirichlet boundary edges, respectively, so

that the union set is Γh = Γ0
h ∪ ΓD

h . Then, in space SIPG discretized semi-discrete system
of the PDE (2.3) reads as: for a.e. t ∈ (0, T ], for all wh ∈ Wh, find uh := uh(t, z) ∈ Wh

such that ∫
Ω

∂uh

∂t
whdz + ah(t; uh, wh) = lh(wh), (2.5a)∫

Ω
uh(0, z)whdz =

∫
Ω

u0whdz, (2.5b)

with the (bi)linear forms:

ah(t; uh, wh) =
∑

K∈ξh

∫
K

(A∇uh · ∇wh + b · ∇uhwh + rduhwh) dz

+
∑

e∈Γh

∫
e

(
σe

he
[[uh]] · [[wh]] − {{A∇wh}}[[uh]] − {{A∇uh}}[[wh]]

)
ds

+
∑

K∈ξh

 ∫
∂K−\∂Ω

b · nK(uout
h − uh)whds −

∫
∂K−∩Γ−

b · nKuhwhds

 ,

lh(wh) =
∑

e∈ΓN
h

∫
e

uN whdz +
∑

e∈ΓD
h

∫
e

uD
(

σe

he
wh − A∇wh

)
ds

−
∑

K∈ξh

∫
∂K−∩Γ−

b · nKuDwhds,
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where uout
h denotes the trace of uh on an edge e from outside the triangle K. Here, the

parameter σe is called the penalty parameter, and it should be selected sufficiently large
to ensure the coercivity of the bilinear form [23, Sec. 27.1].

The solution of SIPG semi-discretized Heston model (2.5) is given as

uh(t, z) =
ne∑

m=1

nk∑
j=1

um
j (t)φm

j (z), (2.6)

where φm
j and um

j , j = 1, . . . , nk, m = 1, . . . , ne, are the basis functions spanning the
space Wh and the unknown coefficients, respectively. The number nk denotes the lo-
cal dimension of each dG element with nk = (k + 1)(k + 2)/2 for 2D problems, and
ne is the number of dG elements (triangles). Substituting (2.6) into (2.5) and choos-
ing υ = φk

i , i = 1, . . . , nk, k = 1, . . . , ne, we obtain the following semi-linear system of
ordinary differential equations (ODEs) for the unknown coefficient vector u := u(t) =
(u1

1(t), . . . , u1
nk

(t), . . . , une
1 (t), . . . , une

nk
(t))T ∈ RN

Mut + Au = l, (2.7)
where M is the mass matrix and A is the stiffness matrix, with the entries (M)ij =
(φj , φi)Ω and (A)ij = ah(·; φj , φi), 1 ≤ i, j ≤ N := nk × ne, and l is the linear right-hand
side vector with entries (l)i = lh(φi). For the time discretization, we consider a subdivision
of [0, T ] into J time intervals In = (tn−1, tn] of length ∆t, n = 1, 2, . . . , J , with t0 = 0.
Then, the backward Euler solution of the fully discrete formulation of (2.5) reads as: for
t = 0 set u0

h ∈ Wh as the projection (orthogonal L2-projection) of u0 onto Wh and for
n = 1, 2, . . . , J , find un

h := un
h(z) ∈ Wh satisfying for all wh ∈ Wh∫

Ω

un+1
h − un

h

∆t
whdz + ah(tn+1; un+1

h , wh) = lh(wh),

or in matrix-vector form
(M + ∆tA)un+1 = Mun + ∆tln+1. (2.8)

The coefficient matrix (M + ∆tA) is factorized by LU decomposition at the initial time
step and used in all successive time steps.

3. Reduced-order modeling
Both POD and DMD are snapshot-based post-processing algorithms which may be

applied equally well to data obtained in simulations or in experiments. The POD is
based on the observation that the dynamics of the PDE are optimally contained in a small
number of modes computed from a singular value decomposition [16]. After determination
of the POD basis by a predetermined cut-off value, the truncated POD modes are used
as the basis for Galerkin expansion for the reduced-order dynamical system. The DMD
can be interpreted as a model order reduction technique like the POD with temporal
POD modes [27]. While POD modes are characterized by spatial orthogonality and with
multi-frequential temporal content, DMD modes are non-orthogonal but each of them
possesses a single temporal frequency.ă Both methods are conceptually different; POD
attempts to build a low-dimensional basis for the solution and DMD attempts to build a
low-dimensional basis for the Koopman operator [14].

In the DMD, the eigenfunctions of an unknown linear time-independent operator are ap-
proximated, which can be thought of as a finite-dimensional approximation of the infinite-
dimensional Koopman operator [14]. The dimensionality reduction occurs through the
ăapproximation of the infinite-dimensional set of Koopman modes with a finite-dimensional
set of eigenvectors [27]. Because there are time dynamics associated with each eigenfunc-
tion, no analog of the Galerkin projection is needed to use the DMD modes. DMD is
equation-free, where the solutions are given in form of Fourier series in space and time.
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This feature of DMD allows making future predictions. However, the DMD modes are not
orthogonal and it requires in general more modes than an equally accurate approximation
of the data with POD.

3.1. Proper orthogonal decomposition
To form a ROM via POD, we construct a low-dimensional ODE system by a Galerkin

projection procedure. The FOM (2.7) is of a large dimension N. The ROM of a small
dimension N ≪ N is of the form:

∂tur + Arur = lr, (3.1)

with the reduced stiffness matrix Ar = UT AU , the reduced vector lr = UT l, and the
unknown vector ur ∈ RN is the coefficient vector of the reduced solution uh,r from the
N dimensional reduced space Wh,r spanned by the reduced basis functions {Ui}N

i=1. The
matrix U = [U1, . . . , UN ] ∈ RN×N is the matrix whose columns Ui’s will be called as the
reduced basis modes, and they are the coefficient vectors of the reduced basis functions
Ui’s. Indeed, we have the following relations

uh,r(t, z) =
N∑

i=1
(ur)i(t)Ui(z), Ui(z) =

N∑
j=1

Uj,iφj(z), u = Uur,

where u is the coefficient vector of the FOM solution, and {φi}Ni=1 are the dG finite
elements basis functions, for which then the reduced basis functions Ui’s lies in the space
Wh and so Wh,r ⊂ Wh. The ROM (3.1) is obtained by the projection of the FOM
(2.7) by the matrix U and by the substitution u = Uur. Another fact with (3.1) is
the M-orthogonality of the reduced modes Ui’s, i.e. UT

i MUj = δij where δij is the
Kronecker Delta. For this reason, the reduced mass matrix in (3.1) is the identity matrix
(UT MU = I).

The computation of the reduced modes Ui’s are based on the fact that the reduced
basis functions Ui’s are the solution of the optimization problem [28]

min
U1,...,UN

1
J

J∑
j=1

∥∥∥∥∥∥∥∥u
j
h −

N∑
i=1

(ur)i︷ ︸︸ ︷
(uj

h, Ui)L2(Ω) Ui

∥∥∥∥∥∥∥∥
2

L2(Ω)

subject to (Ui, Uj)L2(Ω) = UT
i MUj = δij , 1 ≤ i, j ≤ N,

(3.2)

where uj
h := uj

h(z) ≈ uh(tj , z) is the solution through the FOM at t = tj . The minimiza-
tion problem (3.2), on the other hand, is equivalent to the eigenvalue problem

ŜŜT Û·,i = σ2
i Û·,i, i = 1, 2, . . . , N

where Û·,i = RU·,i, Ŝ = RS, RT is the Cholesky factor of the mass matrix M , and
S = [u1, . . . , uJ ] ∈ RN×J is the snapshot matrix, where ui ≈ u(ti), i = 1, 2, . . . , J . To
have an enough accuracy, the number N of POD modes to be used is selected as the first
integer satisfying the relative information content I(N) criteria:

I(N) =
∑N

i=1 σ2
i∑s

i=1 σ2
i

≥ 1 − ε2,

where I(N) represents the energy captured by the first N POD modes for a given tolerance
ε, and s is the column rank of the snapshot matrix S.
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3.2. Dynamic mode decomposition
We consider the dynamic system on a manifold M

un+1 = g(un).
The linear infinite dimensional Koopman operator [14] maps any function f : M → C into

Af(un) = f(g(un)).
Then, the function f(un) can be written as

f(un) =
∞∑

j=1
αjvjλn

j ,

where the eigenvectors vj ∈ C denote the dynamic modes as Koopman eigenfunctions,
λj ∈ C denote the Ritz eigenvalues of the eigenvalue problem Avj = λvj and αj ∈ C
denotes the amplitudes of the Koopman modes.

The DMD represents the eigendecomposition [27] of an approximating linear operator A
corresponding to the Schmidt operator [25], which a is a special case of Koopman operator
acting on the dynamic variable u.

We consider the snapshot matrix S = [u1, . . . , uJ ] in RN×J with
S0 = [u1, . . . , uJ−1], S1 = [u2, . . . , uJ ],

as time discrete solutions of (2.8).
The DMD is based on the fact that for sufficiently large set of snapshots, the snapshots

can be written as
un+1 = Aun

where A is the Koopman operator. Hence, the snapshots form a Krylov sequence S1 =
{u1,Au1,A2u1, · · · ,AJ−1u1}, where the following snapshots became linearly dependent
on the previous ones. The last snapshot uJ is expressed with the error term R as:

uJ = c1u1 + c2u2 + · · · + cJ−1uJ−1 + R

The DMD algorithms are based on the minimization of the norm R. This can be
expressed equivalently as S1 ≈ AS0, so that Ã is the minimizer of

∥S1 − ÃS0∥F

in the Frobenious norm.
Different DMD algorithms are developed for the estimation of Koopman modes, eigen-

values and amplitudes from the given set of snapshots. In this paper we consider the exact
DMD algorihm in [27] and a variant of DMD algorithm in [6].

Algorithm 1 Exact DMD Algorithm (Tu et al. [27] )

Input: Snapshots S = [u1, . . . , uJ ] with ui ≈ u(ti).
Output: DMD modes ΦDMD.

1: Define the matrices S0 = [u1, . . . , uJ−1] and S1 = [u2, . . . , uJ ].
2: Take SVD of S0 : S0 = UΣV ∗.
3: Consider Ã = U∗S1Σ−1V .
4: Determine eigenvalues and eigenvectors of ÃW = ΛW
5: Obtain ΦDMD = S1Σ−1V W.

In POD the modes are ranked by energy level through the POD singular values. There
is no such criteria for ranking the contributions of the different DMD modes. Different
criteria are developed depending on what can be considered important for the models
used. The DMD modes can then be selected based on their amplitude or based on their
frequency/growth rate. The amplitude criterion is also not perfect because there exist
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Algorithm 2 Variant of DMD Algorithm (Chen et al. [6])

Input: Snapshots S = [u1, . . . , uJ ] with ui ≈ u(ti).
Output: DMD modes ΦDMD.

1: Define the matrices S0 = [u1, . . . , uJ−1] and S1 = [u2, . . . , uJ ].
2: Take SVD of ST

0 S0 : ST
0 S0 = V Σ2V ∗.

3: Let U = S0V Σ−1.
4: Consider Ã = U∗S1Σ−1V
5: Determine eigenvalues and eigenvectors of ÃW = ΛW
6: Obtain ΦDMD = S1Σ−1V W.

modes with very high amplitudes but which are very fast damped. The selection based
on frequency/growth rate has also disadvantages because it relies on a priori physical
knowledge. Additionally, spatial non-orthogonality of the DMD modes may introduce a
poor quality of approximation when only a subset of modes with the largest amplitude is
retained. Recently several algorithms are developed for selecting optimal amplitudes and
extracting the desired frequencies, spatial profiles using combinatorial search [6].

We give here briefly the optimal selection of amplitudes of extracted DMD modes fol-
lowing [13]. The dynamics of the reduced system in r dimensional subspace is governed
by

un+1 = Ãun,

where Ã = U∗S1V Σ−1 is the reduced matrix obtained from the DMD algorithms Algo-
rithm 1 and Algorithm 2. The reduced solution can be written as linear combination of
DMD modes

ur =
r∑

i=1
αiϕiλ

k
i , k ∈ [0, 1, . . . , J − 1]

The unknown optimal amplitudes α = (α1, · · · , αr) are then determined by solving fol-
lowing minimization problem [13]

min
α

∥S − ΦDMDDαVand∥2
F ,

where Dα = diag(α1, . . . , αr) and Vand is the Vandermonde matrix V (γ1, . . . , γr) with
γi = exp(ωit), i = 1, 2, . . . , k. Let P = (W ∗W ) ◦ (VandV ∗

and), q = diag(VandV Σ∗W )
where ∗ denotes the conjugate transpose, ◦ denotes the elementwise multiplication. Then,
αopt = P −1q.

Finally the approximate DMD solution is given as

ur(t) =
r∑

j=1
αj(0)ϕj(z) exp(ωjt) = ΦDMDdiag(exp(ωt))αOpt(0),

where

ΦDMD = [ϕ1, . . . , ϕk], αOpt(0) = [α1(0), . . . , αk(0)], ωj = log (λj)/∆t.

The initial amplitude of the modes are determined by αOpt(0) = Φ†u1, where Φ† denotes
the Moore-Penrose pseudo inverse of the DMD modes ΦDMD.

4. Numerical results
In this section, we present numerical results for different options to compare the reduced

solutions of POD and DMD with respect to accuracy and speed-up. In all numerical tests,
we have used linear dG elements in space and backward Euler in time. For the computation
of the DMD modes, we used the MATLAB Toolbox Koopman mode decomposition [3].
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The numerical simulations given in this paper are performed on Windows 7 with an Intel
Core i7, 2.9Ghz, and 8GB RAM using MATLAB R2014a.

4.1. European call option
We impose the initial and boundary conditions in [29]:

u(τ, vmin, x) = Kex−rf τ Φ(d+) − Kerdτ Φ(d−)
u(τ, vmax, x) = Kex−rf τ

u(τ, v, xmin) = λu(τ, vmax, xmin) + (1 − λ)u(τ, vmin, xmin)
∂

∂ν
u(τ, v, xmax) = A∇u · n⃗ = 1

2
vKex−rf τ

u(0, v, x) = (Kex − K)+

where n⃗ is the outward normal vector,

d+ =
x +

(
rd − rf + 1

2vmin
)

τ
√

vminτ
, d− =

x +
(
rd − rf − 1

2vmax
)

τ
√

vmaxτ

and Φ(x) is the cumulative distribution function given as

Φ(x) = 1
2π

∫ x

−∞
e−y2/2dy.

We take the discretization parameters as ∆t = 0.01, Nx = 96, and Nv = 48 in the domain
[0.0025, 0.5] × [−5, 5]. The parameter set for the European call option is taken from [4]
with strong negative correlation ρ = −0.9.

Table 1. Parameter set for the European call option.

κ θ σ ρ rd rf T S0 K v0

2.5 0.06 0.4 -0.9 0.0198 0 1 1 1 0.1683

The relative price and Frobenious errors between the FOM and ROM solutions decay
monotonically in Figure 1 for the POD modes, whereas they reach plateaus and decrease
more slowly for the DMD modes.

Figure 1. Relative price error for v0 = 0.1683 and S0 = 1 (left), relative Frobe-
nious error (right)

In Figure 2 the ROM-FOM errors are plotted at the almost same accuracy level for
different POD and DMD modes. As expected the POD requires fewer modes than both
DMD algorithms. As can be seen, in the neighborhood of x = 0 (i.e S = K) and at the
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boundaries relatively large errors are observed. One of the main reasons for this is the
initial function (Kex − K)+ has a discontinuity in its first derivative at x = 0. Hence, we
may conclude that the reduced-order models could not resolve the full order European call
option pricing problem for the at-the-money options.

Figure 2. ROM-FOM errors: 8 POD modes (left), 12 DMD (Chen) modes (mid-
dle), 18 DMD (Tu) modes function (right).

The performance of the DMD over POD is clearly seen in Figure 3. The speed-up factors
of both DMD algorithms increase more rapidly than of the POD with an increasing number
of modes. This is due to the fact that the DMD produces equation-free solutions, whereas
for the POD, for an increasing number of modes larger reduced-order Galerkin projected
ordinary differential equations have to be solved.

Figure 3. Speed-up factors

4.2. Butterfly spread
The butterfly spread is composed of three call options with different strike prices. Two

call options are bought for K1 < K3, with a strike price K1 and K3, and two call options
sold with a strike price K2 = (K1 + K3)/2. The payoff function is then given by

g(v, Kex) = (K2ex − K1)+ − 2(K2ex − K2)+ + (K2ex − K3)+,

with x = log (S/K2). Note that the payoff function (initial data) is non-differentiable at
the strike prices K1, K2 and K3.

Let u(τ, v, x) be the price of a butterfly spread option satisfying Heston’s PDE (2.3)
with x = log (S/K2). We impose the homogeneous Dirichlet boundary conditions in the
x-direction and homogeneous Neumann boundary conditions in the v-direction [1]:

u(τ, v, xmin) = 0, u(τ, v, xmax) = 0,
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∂

∂v
u(τ, vmin, x) = 0 ,

∂

∂v
u(τ, vmax, x) = 0,

with an initial condition

u(0, v, x) = (K2ex − K1)+ − 2(K2ex − K2)+ + (K2ex − K3)+.

The computational domain is taken as for the European call option (0.0025, 0.5) ×
(−5, 5). The discretization parameters are taken as ∆t = 0.01, Nx = 96, and Nv = 48 and
K = 0.5, K1 = 0.1 and K2 = 0.9. The parameter set is the same as in [4] with positive
correlation ρ = 0.55

Table 2. Parameter set for the butterfly spread.

κ θ σ ρ rd rf T S0 v0

2.5 0.06 0.4 0.55 0.0198 0 1 1 0.1683

The relative price and Frobenius errors in Figure 4 for the butterfly call option are
similar as for the European call option. In this case, Tu’s DMD algorithm requires less
number of DMD modes than the POD at the same level of accuracy, in Figure 5. Moreover,
as described in the European call option case, the reduced-order models could not resolve
the full-order solutions in the neighborhood of x = 0.

Figure 4. Relative price error for v0 = 0.1683 and S0 = 1 (left), relative Frobe-
nious error (right).

Figure 5. FOM-ROM errors: 14 POD modes (left), 23 DMD (Chen) modes
(middle), 8 DMD (Tu) modes (right).
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4.3. Digital option
Finally, we consider the digital call options with a discontinuous payoff [10,17]

g(v, Kex) = 1{Kex>K},

where K is the strike price of the option, which is treated as a barrier level. Precisely,
if the stock price reaches the level K at maturity, then the option will be worthless or
it will pay 1 unit of money at time T . The boundary conditions are the same as for the
butterfly spread, whereas we now impose an inhomogeneous Dirichlet boundary condition
at x = xmax [10]:

u(τ, v, xmax) = exmax−rf τ

and an initial condition
u(0, v, x) = 1{Kex>K}.

The discretization parameters are ∆t = 0.01, Nx = 128, and Nv = 32 in the domain
[0.0025, 0.5] × [−5, 5].. The parameters of the Heston’s PDE are taken from [29].

Table 3. Parameter set for the European call option.

κ θ σ ρ rd rf T S0 K v0

2.5 0.06 0.5 -0.1 log(1.052) log(1.048) 0.25 1 1 0.05225

The relative price and Frobenious errors and the ROM-FOM errors in Figure 6 and
Figure 7 show the same behavior as for the European and butterfly spread.

Figure 6. Relative price error for v0 = 0.05225 and S0 = 1 (left), relative Frobe-
nious error (right).

5. Conclusions
The comparison of the POD and DMD reduced order solutions for Heston’s PDE for

three different options reveals that in general, the POD behaves better in terms of accuracy.
But the DMD performs better in terms of the computational cost. A selection between
the two methods for a specific option should be based on balancing the accuracy of ROMs
and computational cost.
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Figure 7. FOM-ROM errors: 9 POD modes (left), 17 DMD (Chen) modes (mid-
dle), 9 DMD (Tu) modes (right).
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