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ABSTRACT. Let (M,V) be an n-dimensional differentiable manifold with a
torsion-free linear connection and 7% M its cotangent bundle. In this con-
text we study some properties of the natural Riemann extension (M. Sekizawa
(1987), O. Kowalski and M. Sekizawa (2011)) on the cotangent bundle T* M.
First, we give an alternative definition of the natural Riemann extension with
respect to horizontal and vertical lifts. Secondly, we investigate metric con-
nection for the natural Riemann extension. Finally, we present geodesics on
the cotangent bundle T* M endowed with the natural Riemann extension.

1. INTRODUCTION

Let (M, V) be an n-dimensional C'*°-manifold with a torsion-free linear connec-
tion and 7 : T*M — M be the natural projection from its cotangent bundle T* M
to M. For any local chart (U, :vj) , j=1,...,n around x € M induces a local chart
(77*1 (U), 27,27 = pj) , j=n+1,..,2n around (z,p) € T*M, where 2/ = p; are
the components of the covector p in each cotangent spaces T M, x € U endowed
with the natural coframe {dz7}, j = 1,...,n. By 7 (M) (S (T*M)) we take the
module over F (M) (F(T*M)) of C* tensor fields of type (r,s) on M(T*M).

In [18] Patterson and Walker defined a semi-Riemannian metric of signature
(n,n) on the cotangent bundle T*M of (M, V), called the Riemann extension. The
Riemann extension described by

BV (CV,CZ) = - (VvZ +VzV),

where €V and ¢ Z denote the complete lifts of the vector fields V and Z on M to
T*M and v (Vv Z +VzV) =pp (VjVth + ZjVth) .
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Since the tensor field VvV € Y (T*M) is completely determined by its action
upon the vector fields of type 7V and V49, Aslanci et al.[3] give the following alter-
native definition for 'V by

v (v, 7y) =1y (V9,Yw) =0,
B (Y9, 5Y) =V (9 (V) =0 (Y)on
for any V.Y € S (M) and 9, w € SV (M). The geometry of the Riemann extension
and its generalization were intensively studied in many papers (see for example [2,
4, 8-11, 14, 15-17, 19, 21]).
The natural Riemann extension g as a generalization of the Riemann extension

is given by Sekizawa in [20] (see also Kowalski and Sekizawa [12]) and defined by
the three identities:

g (°V.°2) = —aV (VvZ +VzV)+b"VVZ,
(V. w) = a" (w(V)), (1)
g (Vﬂ, Vw) =0

for any V,Z € S§(M) and 9,w € SV (M), where YV = V'V, ) = p(V,) =

> ory kak is a function and a,b are arbitrary constants. We may assume a > 0
without loss of generality. When b # 0 (resp. b =0), g is called a proper (resp. a
non-proper) natural Riemannian extension. As a particular situation, when a = 1
and b = 0, we get the Riemannian extension. For further references relation to the
natural Riemann extension, see [5-7,13].

In this paper, we give an alternative definition of the natural Riemann exten-
sion with respect to horizontal lifts of vector fields and vertical lifts of covector
fields. Also, we present the Levi-Civita connection and Christoffel symbols with
respect to the adapted frame. In Sect. 4, we show that the horizontal lift 7V of
the torsion-free connection V to the cotangent bundle 7* M is a metric connection
with respect to the natural Riemann extension. In Theorem 3 , we find that the
metric connection? V has a vanishing scalar curvature with respect to the natu-
ral Riemann extension. In Sect. 5, we investigate the geodesics on the cotangent
bundle T* M with respect to the natural Riemann extension.

2. PRELIMINARIES

Let ¥ = ¥4dx® and V = V’“ai be the local statements in U C M of a covector

xk
field (1-form) ¥ € 39 (M) and a vector field V € &} (M), respectively. The vertical
lift V') of 9, the horizontal and complete lift 7V, €V of V are defined, respectively,

by
Vo =" 0k,
k

BV = VRO, + > pal'iy V7 oy, (2)
k
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0 0
c k h
V=Vi—— V" —
ok ;ph k axk7
where % = O, 8%,; = 0 and sz are the components of V on M [21].
From (2), the complete lift “V of V € I} (M) is expressed by

V="V =V (YY), 3)

where p (VV) = p; (V,V7) da".
In U C M , we write

0
‘/(t) = @7 ﬂ(t) = dmt’ t: 172a -~-’n-

From (2) and the natural frame {0, 0}, we can see that these vector fields have,
respectively, the local expressions

Vﬁ(t) = Jiﬂ = afa
AV = fiy =0 + Zh:par‘ﬁtaﬁ- )

The set {HV(t),Vﬁ(t)} = {f(t),f@} = {f(g)} is called adapted frame to the

connection V in 7= (U) C T*M.
We now consider local 1-forms @ in 7=! (U) defined by

w® = AaBd.’EB,

where
. Al A & 0

- 8)-(hy B
(4%) Ay A —pal'yy 0} )

The matrix (5) is the inverse of the matrix

At A5 & 0

A=(A Ay < ]? j?’) — ( J ) 6
(A7) = L4y A3') - \paly 0 ©

of the transformation fg = A9 (see [4]). In what follows, the set {&°} is called
the coframe dual of the adapted frame {f(g)}, ie. 0% (fﬁ) = A AP = 03

The Lie bracket operations of the adapted frame { f(ﬁ)} on the cotangent bundle
T*M are given by

{f(t)’f(l)} :paRtlkaf(E)>
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where Ryr® being local components of the curvature tensor R of V on M.
Hence we have the undermentioned components for vector fields V9, 7V and
°Von T*M

vg (O m, (V7 Cyr_ Vi
19(1%), V<0> and V(—pthVh> (8)

in the adapted frame {f(ﬁ) }

3. THE NATURAL RIEMANN EXTENSION

Using (1) and (3), the natural Riemann extension § is determined by its action
on V9, #V. Then we find

g("viz) = bVVVZ bp(V)p(2),
g (Hw Vo) = = (W(V))om, (9)
g (V??, Vw) =0

for any V, Z € 3§ (M) and 9,w € 39 (M) where a > 0, a,b are arbitrary constants
and VV = VYV, =p(Va) = > PV = p(V) is a function. By virtue of (4)
and (9), we obtain

R o
=9 (fu),f(/;)) = gz = ada® <8a:3> = ad¥,

As corollary, the natural Riemann extension g = (g);, has the following com-

ponents with respect to the adapted frame { f( 3)

_ k
- ik gjk> _ (bpjpk a5j> 10
9= (gjk 9jk ad;, 0 (10)
Using s g"! = 6%, we obtain the inverse 7% of the matrix gsx as follows
0 17 )
G= gk = k
g= a . 11
(;5? — &Pk )

The Levi-Civita connection V of the natural Riemann extension g is given by the
following formulas:
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Theorem 1. In adapted frame {f(ﬁ) }, the Levi-Civita connection V of the natural

Riemann extension g on T*M is given by the following equations:

NS 3 b ~ b ~
i) Vifi= (Féj ~ % (55103' + 5§pz’)) fi+ (apkszfi _kajlik) It
o b , , N\ -
i) Vi f;= <2a (5?]71‘ + 531%) - ng> I
oo — 4 b Z 7/ <
i) Vf}fj =3 (5jpl + 5zpj) g (12)
iv) @f,_f; =0
where Ryj;;°, Féj are respectively the components of the curvature tensor and coeffi-
cients of V.

Proof. The Koszul formula is given by
a(S:2) = (o(4.2)) 10 (5 (27)) 2o (1) -0 (1. [.7)

+ g(W,[2.7])+q(2.[v.W])

29 (Vihi i) = Fi(o(F5) + 55 (9 (7 £)) = £ (9 (7)) = o (4|5 1))
+ o (5 [f 7)) +a (7 [705])
= (0; + pul'};05) bpjpe + (0; + pil};05) bpews — (Or + pilk, 05 ) bpip;
—  aprR;ju" 0 + app Ry "0 + apu Riji" o,
= oouTh, (i) + 9307 ) + bkl (i) + ol ) = bolh, (pso0 + i)
aprRjii™ + apy Ryii* + app Riji*
= 2bkatF§i - 2akajtik

= (22pkplf‘§i — 2kajlik> aéi
= 29 ((Zpkpzrfi kajlik> fr ft)
2 (950 F0) = Fi(a (7)) + 5 (a (7 ) = Fe(a (£ ) =a (7 [ 7))

v ([ 7)) + 3 ([ 7))
= —0; (bpipy) + a0} + a0
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— 2aTl,8¢ — b (5§pj + 5§-pi) 5t
b o
= 2 ((Féj — 5 (Olps + 6§pi)> I ft> :
For i), ii1) and iv) we get calculations similar to those above. O

Then we write ?fa fg = f‘iﬁf(; in the adapted frame {f(a)} of T* M, where f‘fw
is the coeffients of V. Using Theorem 1, we obtain

Corollary 1. In adapted frame {f(ﬁ)}, the components of the Christoffel symbols
1:“;5 of V on (T*M, g) are found as follows

_ b - b
Féj = Flij % <5épj + 55‘?1‘) ) Fij = Epkplffi *kaﬂik,
_- b ) ) ) - b, ,

Féi ~ 2 (5gpi + 53@) - Iy F%j =3 (8501 + 01p5)

a . il il

derivative of V with respect to the Levi-Civita connection V of the natural Riemann
extension g is given by
VVe = fia) Vo + T3,V
Applying (4), (8) and (13), we find the following components for the covariant
derivatives of the vector fields 7V, ¢V, V¢ with respect to the Levi-Civita connection

V of the natural Riemann extension g:
VAV = fio PV 4TI HVE LT HYVE = w19 - % (peV? + 8lp ™),
ViV = fo Vi 4 T3 Hyk 4 DL HyE =,
@iHVE = (i)HV3 + fngVk + f‘gffHV]; = gptpjr}fcivk - ptRkjith’
VilVI = o VI + T Hyk 4 TLHy R = g (V' + 6l VF) .
VoV = v, VI — % (Pz‘Vj + 5{kak) ,

_ b b
V.V = —p, ViV V4 Eptpjl“};in — 3Pt (psV;V' +p; ViV — piRiji' VF,

S o
= —VjV’ + 5 (ij‘ + 6;ka’“) .

<
SJQ
<
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ViV = V0, + % (pidj +pjvi)
vV = 0.
Then, we get the following theorem:
Theorem 2. The horizontal and complete lifts TV,CV € S (T*M) of V € 3§ (M)

and the vertical lift V9 € ¢ (T*M) of 9 € ST (M) are not parallel with respect to
the Levi-Civita connection V of the natural Riemann extension g.

4. THE METRIC CONNECTION WITH RESPECT TO THE NATURAL RIEMANN
EXTENSION g

The Levi-Civita connection V of the natural Riemann extension g on the cotan-
gent bundle T*M is the unique connection which satisfies Vg = 0, and has no
torsion. Further, there exists another connection which satisfies Vg = 0, and has
non-trivial torsion tensor. This connection is called the metric connection of g.

Now we consider the horizontal lift ¥V of any connection V on the cotangent
bundle T*M defined by

gy ,Vw=0, gy, 17 =0,
AVuyVw =" (Vyw) , Ayu 7z =2 (Vy2) (14)
for any V, Z € 3¢ (M) and 9, w € S9 (M) [21].
Let HFlﬂ be coefficients of #V. Using the formula #V f5) = HFZBf(W), where

Hy,=HV;: | we obtain
)
Hk Hk Hk Hyj
Fij = Fija Fﬁ:_ ng,
Hk Hk Hk Hk Hk Hk

The torsion tensor 7' of ¥V is the skew—symmetric (1,2)-tensor field and satisfies
the following:

T(V9,w)=0,T("V,Yw)=0,T("V,"2) = —yR(V,2),
where R denotes the curvature tensor of V and YR (V,Z) = thRleVkZl%
J

(see[21, p.287]).
From (9) and (14), we obtain

(HVVlgg) (Vw, VE) = Hv¥y,5 (Vw, VE) —g (vang, VE) —g (Vw7 HVV19VE) ,
= 0

(IVuyg) (V0,Vw) = HVauyg (V0.Vw) — g (FVuy 0,V w) — 5 (Y0, 7VuyVw),
= 0

("Vveg) (Yw,72) = HVvyg(Yw,"2)—g("Vvy w, " 2Z) —g(V0,"vv " Z)



370 F. OCAK

(Hvva) (Vw’HZ) _ VHVg(V HZ) g(HvHva HZ) (V HVHVHZ)
o)) T s Hz) — g (Vw0 (Vv 2)
= ("Vava) (Y @ (2)) +a (" (Vv @(2)) —a (¥ (Vvw) (2)))

+ a (V (w (VVZ)))
= a(" (Vv w(2) —a(V (Vv (@ (2)) =0,

("Vveg) ("2,Ve) = "Vvyg("2,Ve)—g("Vvy"2,Ve)—g("Z,"VvyVe),
= 0,
("Vuyg) ("2,Ve) = "Vuyg("2,Ve)—g("Vav"2,Ve)—g("2,"Vuy"e)

= "Vuy (" ((2)—g (" (VvZ),Ye)—g("2,Y (Vve))
= Y(Vy(ae(2)) —a" ((VvZ)) —a" (Vve)(2)) =0,

(1veg) (V. HZ) = Vg (V. Z) — g (10, V. Z) - g (VY Z)
= ()7
("Vauyg) ("Y,"2) = TVayg("V,7Z) — g ("Vay 'Y, Z) — g ("Y, IV uy " Z)

Ay (bp (V) p (X)) =Y (bp (VvY) p(2)) =Y (bp (Y)p (Vv Z))

= Y (Vvb(p(Y)p(2) =V (Vvb(p(Y))p(2)) =0

for any V.Y, Z € St (M) and 9, w, e € S9 (M), i.e. the horizontal lift V of V is a
metric connection.
In [21], the Ricci tensor field ? R, 5 of #V is given by:
HRkj = HRakja = HRikji + HR%kjg = Rikji = Rkj ,
"Ri; = "Ry, ="Ry; =0, (16)
where Ry; denotes the Ricci tensor field of V on M.

Now using (11) and (16) the natural Riemann extension g, the scalar curvature
of 'V is generated by

Hy = gBHR 5= "Ry + g Ry + " Ry + ¢* Ry, =
Thus we have

Theorem 3. The cotangent bundle T*M with metric connection TV has a van-
ishing scalar curvature with respect to the natural Riemann extension g.
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5. GEODESICS ON THE COTANGENT BUNDLE WITH THE NATURAL RIEMANN
EXTENSION

Let now we investigate the geodesics on the cotangent bundle with the natural
Riemann extension. Let C' : 2" = 2" () be a curve in M and wy, () be a covector
field along C. Also, we take that C' be a curve on T*M and locally given by

nde
=zt (t), " :fph =wyp (t). (17)

If the curve C satisfies at all the points the relation

owp  dwp, ; dad 0
— = — -1 —w; =0,
. dt M dt
then the curve C is said to be a horizontal lift of the curve C' in M. Hence, the
initial condition wy, = w9 for ¢ = ¢y is taken, there exists a unique horizontal lift
given by (17).
If ¢ is the arc length of a curve z4 = 24 (t),A = (i,4) in T*M, then the
differential equations of the geodesic is given by
2zt d2a? _, da© dxB
e T o + é374 =0 (18)
dt dt dt dt
with respect to the induced coordinates (xi, :172> = (2%, p;) in T*M, where T'3; are
components of V defined by (13).
Now, from (5), (6) and using the adapted frame {f(ﬁ)}, we write the equation
(18) as follow:
0% = A% ada?,

i.e.

o" = AM ydz? = otdxt = da”

for « = h and

gh = Al adzt = —p, Z,dej + §?dxj = dpp,

for o = h. Also we put

0" _ g det_da
at — " at T odt”
ﬁ:;{z da? opn
dt AT dt

along a curve 4 = 24 (t) in T* M. Hence,

d (6 -, 076°
Rl re,. - —
dt(dt>+ Bapar
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Using (18), we obtain

82zh b dzt dai

T (5 Y PSR v o = =
) gz 5 (52p3+5]p2) a a0
8pn b detdx?d b, ; op; da?
b s\ =onTl5; = Rjni® | —— = + 5 (0500 + 0pps) =7 —
) 2z TP <aph g Tk >dt ar 2 Pt o)
o Y Pj _ 1
+2a (5hpz+6lph> dt dit 07 ( 9)

&®pn _ d (dpa s Ops da?
where 5t = 5 (%5 ) — Ui “ar

Theorem 4. Let C be a curve expressed locally by = = z" (t), pn = wp, (t) with
respect to the induced coordinate system (xi,xg) = (xi,pi) on T*M. If the curve

C satisfies the equation (19), then it is a geodesic of the natural Riemann extension

g.
Let us assume that the curve (19) lies on a fibre, namely x" = const. Then we
obtain
pn
ez
Then we find p, = kit + np, where kpand ny, are constant. With this selection, we
have proved the following:

Theorem 5. If geodesic 2" = z" (t), pn, = pu(t) lies on a fibre of T*M endowed
with the natural Riemann extension g, then: x" = ¢, py, = knt + ny, where ¢, ky,
and ny, are constant.

Let now C': 2" = 2" (), 2" = py(t) = wy, () be a horizontal lift (%2~ = %21 = ()
of the geodesic C : 2" = z" (¢) (% = 0) in M of V. Then by virtue of (19), we
obtain
Theorem 6. Let (M,V) be an dimensional manifold with metric g and T*M be
its cotangent bundle with the natural Riemann extension g. Then the horizontal lift

of a geodesic on M need not be a geodesic on T M with respect to the connection
V.
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