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Abstract 

This paper investigates the torque generating capabilities and performance comparison of 

induction machines (IM) and interior-permanent magnet (IPM) machines for electric vehicle (EV) 

traction applications. Electromagnetic performance characteristics, such as torque, torque ripple, 

air-gap flux density, etc. are quantitatively compared by changing the level of electric loading. 

Other performance metrics such as saturation factor, power losses, efficiency, and so on, as well 

as the flux-weakening capability and efficiency map have also been compared. For calculations 

of the electromagnetic performance characteristics, 2D time-stepping finite element analysis 

(FEA) has been employed. It has been revealed that due to the reduction in torque components of 

IPM machine as a consequence of magnet demagnetization, it cannot generate toque as high as 

IM under overloading operating conditions. A thorough review of the literature on comparative 

studies on the electrical machines used in EV or Hybrid EV (HEV) applications is also included. 
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1. INTRODUCTION 

 
The International Council on Clean Transportation oversees worldwide CO2 emission regulations for new 

passenger vehicles, which are increasing each year to promote public health and prevent climate change 

[1]. Consequently, in order to enhance the eco-efficiency of the transportation, the emphasis on automobile 

electrification has grown significantly in the previous decade. Since electrical machines are at the core of 

electric vehicle (EV) propulsion systems, their improvement, along with power electronic and energy 

storage subsystems, has received a lot of attention. Interior-permanent magnet (IPM) rotor topologies are 

employed in the propulsion systems of the world's leading commercial hybrid electric vehicles (HEVs) and 

EVs, including Tesla/Model 3, Nissan/LEAF, Renault/Zoe, Toyota/Prius, Mitsubishi/Outlander, 

Hyundai/Kona, BMW/i3, Audi/e-tron, Kia/Niro, and many others. Alternatively, some other vehicles, such 

as Tesla (Model S), BMW (X5), GM (EV1), Renault (Kangoo), Chrysler (Durango), and several other 

vehicles use induction machines (IMs) [2-10]. Electrical machines designed for propulsion applications 

should have the following essential performance characteristics: high-starting torque, high-efficiency over 

a wide speed range, high-power and torque densities, low-torque ripple, high-reliability, and affordable cost 

[11,12].  

 

The reason for the preference of IMs in the EV and HEV applications is their mature manufacturing 

technology, robustness, relatively low cost, good dynamic torque control performance, and simplicity.  The 

joule losses and, as a result, the cooling equipment requirements increase due to the conductor bars on the 

rotor. When compared to IPM machines, this results in a lower overall efficiency. IPM machines, on the 
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other hand, benefit from the use of NdFeB permanent magnets (PMs), which provide high-torque, power, 

and also efficiency. Because of the superior characteristics of IPM machines, they are more popular than 

IMs in EV and HEV applications. The high cost of NdFeB PM, on the other hand, has a serious impact on 

the popularity of IPM machines [6]. 

 

A number of research papers on the comparison of electrical traction machines used in EV and HEV 

applications have been published in the literature. These studies compare IM with a various of different 

machine technologies including IPM machines with different rotor topologies, i.e. U-V-W-shapes, various 

PM layers, and etc. (IPM 2), IPM machines designed with one of the rotor topologies given in IPM 2 (IPM 

1), surface-mounted PM (SPM) machine, switched reluctance machine (SRM), synchronous reluctance 

machine (SnyRM), brushless DC (BLDC) machines, PM assisted SRM (PMaSRM), claw-pole (CP) 

machine [2-20]. Moreover, some of the studies have been investigated the design and drives of these 

traction machines [5,10-12] and [21-24]. Comparison studies and compared machine and drive technologies 

are summarized in Table 1.  

 

Table 1. Comparison studies on EV/HEV traction machines 

Machine Technology Reference 

IM [3-8,11-13,18] 

IPM 1 [4-8,13,18,20,24] 

IPM 2 [3,9-12,14-17,19] 

SPM [10-13,15,20] 

SRM [5,6,8,11-13] 

SnyRM [8,11,12] 

BLDC [5,11,12] 

PMaSRM [5,11,12] 

CP [5] 

Drive [5,10-12,21-24] 

 

A comparative study on four traction machines, namely; direct current (DC) machine, cage-rotor IM, 

surface-mounted PM (SPM) machine, and switched reluctance machine (SRM), has been conducted in [2]. 

Efficiency, power and torque densities, durability, controllability, technological maturity, and cost have all 

been considered when comparing these machines. The IM, among the machines evaluated, was found to 

better meet the key requirements of HEV propulsion. In [3], cage-rotor IM and IPM machines with various 

rotor configurations, i.e., U-V-W-shapes, various PM layers, and so on, were compared on the basis of 

torque-density, power factor, efficiency, and saturation levels, as well as the basic methods for design and 

analysis of these machines. One of the study's primary results is that, while having a high-torque density, 

the IM design is particularly susceptible to saturation, making it a potential alternative to IPM machines. 

[11,12] consider relative merits and some important major characteristics, including drive properties. It has 

been emphasized that the squirrel-cage IMs have mature manufacturing technology and can provide the 

needed drive characteristics. However, PM machines offer higher efficiency and torque density. In [3-8,11-

13,18], IM has been compared with IPM machines in terms of torque and power density, power losses, 

material costs, etc. However, in none of these studies, torque capabilities have been investigated. As a 

result, the primary purpose of this study is to fill that gap, and the second purpose is to establish which 

machine is capable of generating the most torque and discuss the underlying causes.   

 

This study is concerned with the design and quantitative comparison of electromagnetic performance 

characteristics, particularly the electromagnetic torque generating capabilities of IM and IPM machines 

operated under various electric loadings. The IPM machine was simply adopted for the Toyota Prius 2010, 

and the IM was designed with the same geometric and operating specifications, as well as winding 

arrangement with 5-slot pitch conventional single-layer windings, for a fair comparison. The obtained 

comparison findings between IM and IPM are presented and discussed, including flux linkage and locus, 

induced voltage, back-EMF, current angle, time-averaged torque, torque ripple, saturation factor, power 

losses, flux-weakening capabilities, and efficiency maps. 
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2. DESIGN OF IM AND IPM MACHINE 

 
The variation of IM and IPM machine performance characteristics is analysed using the 2D finite element 

method (FEM) for various electric loading operations. In order to investigate the torque generating 

capabilities, the electric loading level has been varied from half to six times of the rated current value. 

 

Table 2. Design and operating specifications 

Parameters Prius IPM IM 

Peak rated current (A)  250 250 

Synchronous speed (rpm) 1500 1500 

Number of stator slots 48 48 

PM/Rotor slot number 16 44 

Number of poles 8 8 

Stator outer diameter (mm) 264 264 

Stator inner diameter (mm) 161.9 195 

Air-gap length (mm) 0.73 0.73 

Stator slot opening width (mm) 1.88 1.88 

Stator slot width (mm) 7.55 8.77 

Stator slot height (mm) 30.9 13.85 

Rotor slot opening width (mm) ̶ 1 

Rotor slot width (mm) ̶ 9.29 

Rotor slot height (mm) ̶ 15.2 

PM dimensions (mm) 49.3 × 17.88 ̶ 

Number of turns per slot 11 7 

Number of turns per phase 88 56 

Slot filling factor 0.465 0.465 

Stator phase resistance (@20°C) (Ω) 0.077 0.08 

Core material M270_35 M270_35 

PM/Cage material N35UH Copper 

 

The same operating conditions and geometrical specifications, as shown in Table 2, are adopted for a fair 

comparison and to obtain comparable results. In addition, the core material properties of the M270_35 is 

shown in Figure 1. Moreover, the magnetic specifications of the N35UM material are given as follows. The 

relative permeability (μ) 1.09978 and coercivity (𝐻𝑐):-890000 A/m. Toyota Prius 2010 IPM is directly 

adopted by using the optimized specifications [25] and IM is optimized by using an analytical method given 

in [7]. 2-D cross-sectional views of the IPM machine and IM is illustrated in Figure 2. Very useful design 

guidelines for traction application of IMs and IPM machines are given in [11]. 

 

 
                             (a) (b) 

Figure 1. M270_35 core material specifications: (a) BH Curve; (b) PB curve for various frequencies 
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3. PERFORMANCE COMPARISON 

 
The IPM machine and IM's performance characteristics are evaluated using a dq-axis reference frame, with 

the d-axis aligned with the rotor field [26]. Figure 3 illustrates the variation of the 𝑑𝑞-axes currents with 

respect to current angle θ.  θ is one of the vital parameters that should be determine firstly in order to operate 

the machine at maximum torque. This term has been determined by conducting parametric analyses for 

IPM machine and IM. 

 
(a) (b) 

Figure 2. 2D cross-sections: (a) Toyota Prius 2010 IPM machine; (b) IM 

 

 
(a) 

 
(b) 

Figure 3. Variation of current components with current angle: (a) 𝐼𝑑 and (b) 𝐼𝑞 
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Figure 4. Variation of Back EMF with respect to excitation current 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.  Comparison of flux linkage component waveforms for IPM machine and IM for various 

excitation current: (a) 125A; (b) 250A; (c) 500A; (d) 1000A 
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Figure 4 shows the influence of excitation current on the amplitude of the back-EMF. Whereas an IPM 

machine has many more turns per phase than an IM, the obtained rms value of the IPM machine's back-

emf is substantially greater. Figure 5 depicts the fluctuation of the flux components with regard to θ for 

various current excitations.  

 

While the amplitude of the d-axis flux 𝜓𝑑 is smaller than that of the q-axis flux  𝜓𝑞 for the IPM machine, 

these flux components are identical for IM, indicating that there is no saliency in the IM. Moreover, as for 

IPM machine, saliency ratio decreases while the excitation current increases. This phenomenon can be 

clearly seen in Figure 6.    

 

 
 (a) 

 
(b) 

Figure 6.  Flux locus waveforms: (a) IPM machine; (b) IM 

 

As expressed in Equation (1), there are two variable components contributing the torque of PM machines. 

The first variable term in Equation (1) depends on the rotor excitation that is the PM flux 𝜓𝑃𝑀 depends on 

the properties of the PM material including size, maximum energy product 𝐵𝐻𝑚𝑎𝑥, and etc. and the second 

term, known as reluctance torque, depends on the saliency of the rotor which is determined by inductance 

components 𝐿𝑞 and 𝐿𝑑. The fixed term components are phase number 𝑚 and pole pair number 𝑝 
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𝑚

2
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Reluctance

  ].   (1) 

 

The IPM machines’ electromagnetic torque may be estimated by modifying Equation (1) to include the flux 

components expressed in Equation (2). In addition, the electromagnetic torque of a squirrel-cage IM can be 

estimated via Equation (3), which is derived for stator flux-oriented IM drive [27,28]. In Equation (3), the 

superscript "es" denotes that the quantity is in the synchronous reference frame orientated to the stator flux 
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𝑇𝑒𝑚_𝐼𝑀 =
3

2
𝑝(𝜓𝑑

𝑒𝑠𝐼𝑞
𝑒𝑠). (3) 

 

Calculated averaged electromagnetic torque varied with respect to current angle is illustrated in Figure 7. θ 

delivering the maximum torque in the motor operation mode has been determined as 270° and 0° electrical 

degrees for IPM machine and IM, respectively.  

 

 
(a) 

 
(b) 

Figure 7. Torque variations with respect to current angle: (a) IPM Machine; (b) IM 

 

Electromagnetic torque 𝑇 capability and torque ripple ΔT percentage of the machines are illustrated in 

Figure 8. The rise in torque capabilities of the IM with current is substantially faster than that of the IPM 

machine. The figure also shows that the torque capability of the IPM machine is better for smaller electric 

load operations than the rated current (250A). However, when the electric load rises, the torque capability 

of the IM becomes significantly better than that of the IPM machine. In addition, since the average torque 

of IM increased significantly with electric load, its torque ripple decreased eventually after 500A. The 

torque ripple of the IPM machine, on the other hand, increases rapidly as the electric load increases. 

 

 

Figure 8. Time-averaged torque and torque ripple percentage versus current 
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As previously stated, the electromagnetic torque of PM machines is composed of two torque components: 

"PM" and "reluctance." The torque generated by PMs is proportional to the current, as shown in Equation 

(1), but the reluctance torque is proportional to the square of the current. Since the saliency ratio is decreased 

with increasing electric loading (see Figure 6), the reluctance torque component decreases. Besides, when 

the electric load increases, the effect of PMs becomes less prominent, as seen in Figures 9 and 10. 

Furthermore, the saturation generated by PMs may have an effect on the rise in torque of the IPM machine. 

The IPM machine, on the other hand, has PMs that have a constant flux magnitude. Even if the induced 

voltage is increased in the stator and the flux produced by the stator windings is increased with increasing 

excitation current, the flux produced by the PMs cannot be increased. Actually, as clearly seen in Figure 9, 

flux generated by PMs dramatically reduces as the excitation current increases. Flux line distributions for 

Toyota Prius IPM and IM is illustrated in Figure 10 for various current excitations. It can be seen that the 

flux produced by the PMs reduces as the current increases. In particular, in 1000A current excitation, almost 

no flux is produced by the PMs. The flux produced by the windings dominates the flux produced by the 

PMs. Therefore, since the flux density of the rotor core is way higher than the PM’s flux density, quite a 

low flux can be produced by the PMs. Since the excitation and reluctance torque components of the IPM 

machine decreased dramatically as the excitation current increased, it could not generate torque as high as 

IM. It is also clear from the figures that the leakage flux is increasing with increased excitation current for 

both machines.  

 

 

Figure 9.  Flux density vectors of PMs for various electric loadings 
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Figure 10.  Flux line distributions for various current excitations: (a) IPM machine and (b) IM 
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 For the IPM machine, the total flux is limited by PMs and saliency. However, for IM, with the increasing 

injected current, both the stator and rotor circuit’s flux are increased. Because the rotor bar current will be 

increased by the increased excitation current. Therefore, since the total flux is increased, the obtained torque 

will also be increased. In theory, in comparison with PM machines, if the current density and heating issues 

are ignored, there is no torque limitation for the IMs. As for IM, the differential in magnetic fields between 

the stator and rotor, referred to as slip, rises as the electric load increases. Basically, the larger the electric 

load, the larger the slip as seen in Figure 11. To estimate the saturation levels of the machines, the saturation 

factor 𝑘𝑠𝑎𝑡𝑛 for both of the machines have been calculated by using Equation (4) and illustrated in Figure 

12. The parameters of the saturation factor are magneto-motive force of stator 𝑀𝑀𝐹𝑠𝑛, rotor 𝑀𝑀𝐹𝑅, and, 

air-gap 𝑀𝑀𝐹𝑔𝑛
 or surface integrations of flux intensity of the same regions. As seen in Figure 12, saturation 

levels are quite similar, and they increase dramatically as electric loading increases. 

 

 
Figure 11. Slip versus excitation current curve  

 

𝑘𝑠𝑎𝑡𝑛 = 1 +
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= 1 +

𝐻𝑠𝑛 +𝐻𝑅𝑛
𝐻𝑔𝑛

 (4) 

 

 
Figure 12. Saturation factor versus excitation current 

 

 

Figure 13. Power losses and efficiency against excitation current 
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loss of IM 𝑃𝑐𝑢(𝐼𝑀) includes the sum of the stator and rotor bar copper losses. Furthermore, windage, 

friction, and stray load losses were considered to represent 1% of output power throughout the efficiency 

calculation [29]. Although copper losses are comparable, the core loss of the IPM machine is quite higher 

than that of the IM. Since the IPM machine has higher total machine loss and lower output power (see 

Figure 14) than the IM, the IPM machine’s efficiency is noticeably lower than the IM under higher electric 

load operations. 

 

 
Figure 14. Power versus excitation current curve 

 
4. FLUX-WEAKENING CAPABILITIES 

 
The restricted excitation is one of the key limiting aspects of electrical motor drives. In the constant-torque 

area, the back-EMF increases with rotor speed until the inverter's voltage limit 𝑢𝑚𝑎𝑥 is reached as expressed 

in Equation (5). The electrical motor is then put into flux-weakening mode. Because the voltage is restricted 

by the inverter's rating, the current (𝑖𝑚𝑎𝑥) is also limited by the machine's rating (see Equation (6)). When 

phase current has a phase advance angle in comparison to the q-axis, the d-axis current 𝑖𝑑 acts as a 

weakening current. Thus, the motors are controlled by maximum torque-per-ampere (MTPA) mode below 

corner speed and flux-weakening control mode above the corner speed [30] 
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2 ≤ 𝑢𝑚𝑎𝑥
2  (5) 

  

𝑖𝑑
2 + 𝑖𝑞

2 ≤ 𝑖𝑚𝑎𝑥
2 . (6) 

 

The flux-weakening capabilities of induction and IPM machines have been calculated by employing dq-

equivalent circuits and above mentioned MTPA control algorithm by considering the limited inverter 

ratings given in Equations (5) and (6). Figure 15 depicts a flow chart with a clear illustration of the flux-

weakening computations. 

 

As can be observed, the applied FW method combines numerical and analytical calculations. During the 

FEA stage, [𝑖𝑑]10𝑥10 and [𝑖𝑞]10𝑥10 matrices are injected into the phase windings of the NSW IPM to 

evaluate [𝜆𝑑]10𝑥10 and [𝜆𝑞]10𝑥10 flux linkage and [𝑃𝑙𝑜𝑠𝑠]10𝑥10 constraints/coefficient matrices. Following 

that, the generated matrices are utilized as inputs to the MATLAB® code developed in this work (see Figure 

15), which calculates the output matrices, which include torque- and power-speed, power losses, and 

efficiency maps. 
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characteristics of the IPM machine is considerably poorer than the IM especially at the constant torque 

region (see Figure 16(c, d)). 

 

 
Figure 15. Flow chart of the flux-weakening algorithm 

 

IPM machines' flux-weakening performances are affected by the saliency ratio and also PM material 

properties. Because the IPM machine has a lower torque capability under high electric loadings, its overall 
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regardless of the electric loading level, the torque and power density of the IPM are clearly superior to the 

IM in the deep flux-weakening regions. Moreover, generally, the constant torque region of an IPM machine 

is slightly larger than the IM. Efficiency maps of the IPM machine and IM are calculated for the rated 

current excitation operation by using the expressions given between Equations (4) and (13). Note that all 

the terms, except for the mechanical loss coefficients 𝑘𝑚1 and 𝑘𝑚2 and 𝑝, are square matrixes obtained for 

a number of 𝐼𝑑 and 𝐼𝑑 excitations. 𝑅0_𝐼𝑃𝑀 and 𝑅0_𝐼𝑀 are the phase resistances calculated at 20℃ for IPM 

machine and IM, respectively. In additional to stator copper loss, rotor bar copper loss, estimated by the 
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additional losses 𝑃𝑎𝑑𝑑 including the friction, wind and stray load losses have also been taken into account. 

Output power 𝑃𝑜𝑢𝑡 is calculated by (12), where 𝜔𝑒 is the angular frequency 
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(b) 

 
(c) 

 
(d) 

Figure 16. Torque-Speed (left) and Torque-Power (right) characteristics for various current excitations: 

(a) 125A; (b) 250A; (c) 500A; (d) 1000A 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 17. Comparison of efficiency maps for IPM machine (left) and IM (right): (a) 125A; (b) 250A; (c) 

500A; (d) 1000A 
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highest efficiency has been obtained at 4 kpm and 6 krpm for the electric load between 125A and 500A. 

The IPM machine's power for 1000A is lower than half that of the IM. Therefore, the obtained maximum 

efficiency of the IPM machine is dramatically low, and it has been achieved between 3krpm and 5krpm. 

IM’s overall efficiency is lower at the low electric loadings, and higher than that of the IPM machine at 

high electric load operating. 

 

Table 3. Comparison of Max. Efficiency of IPM Machine According to IM 

Electric Load 125A 250A 500A 1000A 

𝜂 Difference (%) + 2.06 + 1.04 0 ̶  9.41 

 

5. CONCLUSION 

 

The electromagnetic performance of the Toyota Prius 2010 IPM machine and IM, which are both designed 

with the identical outer diameter, stack length, winding topologies, and so on, has been quantitatively 

compared, with a focus on torque producing capabilities. The important findings are stated below: 

The higher the electric loading;  

 

• the torque rise of the IM is substantially faster than that of the IPM machine; 

• the lower the torque ripple for IM while it is much higher for IPM machine; 

• the lower the saliency and hence lower the reluctance torque component; 

• the lower predominant PM effect and hence lower the excitation torque component; 

 

✓ the higher the slip percentage for IM; 

✓ the higher the saturation level for both of the IM and IPM machine; 

✓ the decrease of efficiency of IPM machine is much faster than the IM. 

 

Furthermore, it has also been revealed that the torque capability of the IPM machine is better for low electric 

load operations (≤ 250A), while the torque capability of the IM is better for high electric load operations 

(> 250A). The IPM machine has a superior flux-weakening capability than IM at low electric loadings, 

whereas IM has a much superior capability at larger electric loadings. It is concluded that the IPM machine 

cannot produce torque as high as IM at high electric load operations due to a decrease in saliency ratio and 

PM flux density, which are the main torque-producing components of the IPM machine. As for future work, 

the driving cycle characteristics of an IM and an IPM machine will be compared, and strategies for 

improving the electric loading characteristics of IPM machines, such as increasing the saliency ratio and 

using various core and magnet materials, will be researched further. 
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