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Abstract 

In this study, some information about figurate numbers and centered polygonal 

numbers is given. Also, a general binary operator that includes all centered polygonal 

numbers is defined, and it is investigated whether the algebraic structures defined 

with the general binary operator specify a groupoid and semigroup or not. And 

finally, some examples are given on the subject. 
 

 
1. Introduction 

 

Figurate numbers are natural numbers that can be 

represented by regular geometric patterns with 

equally spaced points. The theory of figurate numbers 

is not one of the main subjects of mathematics, but the 

charm of these numbers has raised awareness among 

scientists for thousands of years. Many special 

numbers have been created by being inspired from 

figurate numbers. Pythagoras triples, Perfect 

numbers, Mersenne numbers, Cullen numbers, 

Woodall numbers, Fermat numbers, Fibonacci 

numbers, Pell numbers, Lucas numbers, Thabit 

numbers, etc. are examples of such numbers. 

 These special number classes which are 

derived from Figurate numbers have a long and rich 

history dating back to ancient Greek times. They were 

first introduced in the Pythagorean school in the 6th 

century BC to enable the connection between 

geometry and arithmetic. It is possible to give some 

of the mathematicians who  worked in this field and 

whose works are still center of interest today; 

“Pythagoras of Samos (ca. 582 BC–ca. 507 BC), 

Diophantus of Alexandria (ca. 210–ca. 290), 

Leonardo of Pisa who was also known as Leonardo 

Fibonacci (ca. 1170–ca. 1250), Gerolamo Cardano 

(1501–1576), Pierre de Fermat (1601–1665), John 

Pell (1611–1685), Blaise Pascal (1623–1662), 

Leonhard Euler (1707–1783), Joseph Louis Lagrange 

(1736–1813), Carl Friedrich Gauss (1777–1855), 

Augustin-Louis Cauchy (1789–1857).” [1]. 
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 Figurate numbers have different names 

according to their form of shapes on the plane. If the 

geometric pattern is arranged with a regular polygon, 

then the figurate number is called a polygonal 

number. If the geometric pattern is arranged with a 

regular polyhedron, then the figurate number is called 

a polyhedral number. Also, there are many different 

forms of figurate numbers such as centered 

polygonal, pronic, oblong, L-shape, cross, pyramidal 

numbers, etc. 

 Polygonal numbers are examples of figurate 

numbers and are probably the most well-known. 

Polygonal numbers start from a fixed point and 

increase in numbers by constructing larger and larger 

regular polygons. In particular, triangular and square 

numbers are examples of polygonal numbers. 

Triangular numbers can be obtained by adding to a 

fixed point two, three, four, five etc. points and 

arranging them in the form of an equilateral triangle.  
 

Figure 1. Some triangular numbers. 

 

Similarly, square numbers can be obtained by adding 

to a fixed point three, five, seven, nine etc. points and 

arranging them in the form of a square. 

https://dergipark.org.tr/tr/pub/bitlisfen
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Figure 2. Some square numbers. 

 

 Mathematicians have worked on triangular 

and square numbers since ancient times. But studies 

on this field have been intensified for the last three 

centuries especially in this century. For example, in 

1638, the famous mathematician Pierre de Fermat 

came up with Polygonal Number Theory but without 

proof. That is, “every positive integer can be written 

as the sum of three or fewer triangular numbers, and 

as the sum of four or fewer square numbers.” In 1770 

Joseph Louis Lagrange proved that polygonal number 

theory is valid for square case, Carl Friedrich 

Gauss proved the triangular case in 1796. And finally 

in 1818, Cauchy became the first person who proved 

the most general case of this problem that is, “every 

positive integer can be written as the sum of n or 

fewer n-gonal numbers.” [2]. 

 The other example of figurate numbers is 

Centered polygonal numbers. Centered polygonal 

numbers are regular polygons that are surrounded 

around a fixed point. By adding a point in the center 

in the plane, polygonal layers with a constant number 

of sides are constructed around this point. The number 

of points in these sides of the polygonal layers 

increases one more than the previous layer. Thus, the 

number of points in each polygonal layer of a centered 

m-gonal numbers increases m more points than the 

previous layer. For more detailed information on the 

subject, see [1], [2]. 

 

2. Material and Method 

 

Binary operators have played an important role in 

many algebraic structures. It takes various names 

according to the binary operation defined on algebraic 

structures. Groupoid, semigroup and monoid are 

some of them. Specifically, it was proven by 

Sparavigna that it is a groupoid with binary operators 

defined on some polygonal numbers in [3]-[5]. Also, 

Emin studied semigroup construction on polygonal 

numbers in [6]. By using methods similar to those in 

these papers, we will give a general binary operator 

that includes all centered polygonal numbers. In 

addition, it will be investigated whether the algebraic 

structures defined with the general operator specify a 

groupoid and semigroup or not. By the way, maybe 

other algebraic properties, such as the studies in [7]-

[10], can be studied by other mathematicians with the 

binary operation defined on this new algebraic 

structure. 

 The concept of groupoid, semigroup, monoid, 

and centered polygonal numbers will be explained 

and also their definitions and properties were given in 

this part of the study. 
 

Definition 2.1. A groupoid (𝐺, 𝛻) is defined as a 

non-empty set G on which a binary operation 𝛻 

(by which we mean a map 𝛻: 𝐺 × 𝐺 ⟶ 𝐺) is 

defined. In other words, groupoid is an algebraic 

structure on a set with a binary operator. The only 

restriction on the operator is closure. It means 

that applying the binary operator on two elements 

of given set G returns with a value in which itself 

is a member of G. For more information, see [11], 

[12]. We say that (𝐺, 𝛻) is a semigroup if the 

operation 𝛻 is associative, that is to say, if, for all 

𝑥, 𝑦, 𝑧 ∈ 𝐺 
 

(𝑥𝛻𝑦)𝛻𝑧 = 𝑥𝛻(𝑦𝛻𝑧) (1) 

  

A semigroup is an associative groupoid; a 

semigroup with an identity is called a monoid. 

 

Definition 2.2. For 𝑚 = 3, 4, 5, … and 𝑛 ∈ ℕ, 𝑛 −
𝑡ℎ centered m-gonal number formula is as 

follows [1]; 

 

𝐶𝑆𝑚(𝑛): =
𝑚𝑛2 − 𝑚𝑛 + 2

2
          (2) 

  

Algebraically, for 𝑛 ∈ ℕ and 𝑚 ≥ 3, 𝑛 −
𝑡ℎ centered 𝑚-gonal number 𝐶𝑆𝑚(𝑛) is obtained 

as the sum of the first 𝑛 elements of the arithmetic 

progression 1, 𝑚, 2𝑚, 3𝑚, … , (𝑛 − 1)𝑚. So, it 

holds [1]; 

 
𝐶𝑆𝑚(𝑛) = 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 1)𝑚 

                   = 1 + 𝑚(1 + 2 + 3 + ⋯ + (𝑛 − 1)) 

                   = 1 + 𝑚
(𝑛 − 1)𝑛

2
 

                 =
𝑚𝑛2 − 𝑚𝑛 + 2

2
 .  (3) 

  

Example 2.1. In particular, for 𝑚 = 3, 4, 5, 6 and 𝑛 ∈

ℕ, 𝑛 − 𝑡ℎ centered 𝑚-gonal number formulas are as 

follows; 
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𝐶𝑆3(𝑛) = 1 + 3
𝑛(𝑛 − 1)

2
=

3𝑛2 − 3𝑛 + 2

2
, 

(4) 
𝐶𝑆4(𝑛) = 1 + 4

𝑛(𝑛 − 1)

2
= 2𝑛2 − 2𝑛 + 1, 

𝐶𝑆5(𝑛) = 1 + 5
𝑛(𝑛 − 1)

2
=

5𝑛2 − 5𝑛 + 2

2
, 

  𝐶𝑆6(𝑛) = 1 + 6
𝑛(𝑛 − 1)

2
= 3𝑛2 − 3𝑛 + 1. 

 

The expression above implies the following recurrence 

formula for centered 𝑚-gonal numbers: 

 

        𝐶𝑆𝑚(𝑛 + 1) = 𝐶𝑆𝑚(𝑛) + 𝑚𝑛 .  (5) 

        
In particular, the result is; 

 

          𝐶𝑆3(𝑛 + 1) = 𝐶𝑆3(𝑛) + 3𝑛, 

(6) 

          𝐶𝑆4(𝑛 + 1) = 𝐶𝑆4(𝑛) + 4𝑛, 
          𝐶𝑆5(𝑛 + 1) = 𝐶𝑆5(𝑛) + 5𝑛, 
          𝐶𝑆6(𝑛 + 1) = 𝐶𝑆6(𝑛) + 6𝑛, 
          𝐶𝑆7(𝑛 + 1) = 𝐶𝑆7(𝑛) + 7𝑛, 

 𝐶𝑆8(𝑛 + 1) = 𝐶𝑆8(𝑛) + 8𝑛. 
 
For some situations the value  𝐶𝑆𝑚(0) = 0 can be 

accepted, where necessary, see [1], [6]. 

 

Example 2.2. For 𝑛 = 1, 2, 3, 4, 5, and 𝑚 = 3, 4, 5, 6 

some centered polygonal numbers are as follows [13, 

A005448, A001844, A005891, A003215]; 

 

 
Figure 3. Some centered polygonal numbers 
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3. Findings and Discussion 

 

In this section, we create a set consisting of elements 

of all centered polygonal numbers sequence 𝐶𝑆𝑚(𝑛). 

After that we obtain an algebraic structure by defining 

binary operation on the defined set. And finally, we 

give a theorem and a corollary that show necessary 

conditions for this algebraic structure to be semigroup 

and monoid. 

 
3.1. Construction   of   Algebraic   Structure on 

Centered Polygonal Numbers 

 
Before we can construct the theorem that yields the 

main result of this paper, we need to define a set and 

a binary operation on that set. So, let 𝐶 denote the 

sequence of numbers 𝐶𝑆𝑚(𝑛). That is, let  

 

𝐶 = {1, 1 + 𝑚, 1 + 3𝑚, 1 + 6𝑚, 1 + 10𝑚, … ,

1 + 𝑚
𝑛(𝑛 − 1)

2
, … }.                (7) 

 

Now we can find a binary operation of given 

set of 𝐶 since 

 

(𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

= (
𝑚𝑛2 − 𝑚𝑛 + 2

2
−

8 − 𝑚

8
)

1
2

 

                             = (
4𝑚𝑛2 − 4𝑚𝑛 + 𝑚

8
)

1
2

 

                              = (
𝑚

2
(

4𝑛2 − 4𝑛 + 1

4
))

1
2

 

                      = √
𝑚

2
((

2𝑛 − 1

2
)

2

)

1
2

 

                                      = √
𝑚

2
(𝑛 −

1

2
).  (8) 

 

We define 

 

  𝑀𝑛 = (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

= √
𝑚

2
(𝑛 −

1

2
), 

  𝑀𝑘 = (𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2

= √
𝑚

2
(𝑘 −

1

2
), 

𝑀𝑛+𝑘 = (𝐶𝑆𝑚(𝑛 + 𝑘) −
8−𝑚

8
)

1

2
= √

𝑚

2
(𝑛 + 𝑘 −

1

2
). (9) 

We use 𝑀𝑛 for definition of binary operation. 

 

  𝑀𝑛+𝑘 = 𝑀𝑛𝛻𝑀𝑘 = 𝑀𝑛 + 𝑀𝑘 + √
𝑚

8
 

 

              = √
𝑚

2
(𝑛 −

1

2
) + √

𝑚

2
(𝑘 −

1

2
) + √

𝑚

8
 

 

            = √
𝑚

2
(𝑛 + 𝑘 −

1

2
).        (10) 

 

Therefore, we have the binary operation: 

 

 (𝐶𝑆𝑚(𝑛 + 𝑘) −
8 − 𝑚

8
)

1
2

= 𝑀𝑛+𝑘 

  = 𝑀𝑛𝛻𝑀𝑘 = 𝑀𝑛 + 𝑀𝑘 + √
𝑚

8
 

= (𝐶𝑆𝑚(𝑛) −
8−𝑚

8
)

1

2
+ (𝐶𝑆𝑚(𝑘) −

8−𝑚

8
)

1

2
+

√𝑚

2√2
  .    (11) 

 

As a result, from (11), we can rewrite the defined 

binary operation as follows: 
 

𝐶𝑆𝑚(𝑛)𝛻𝐶𝑆𝑚(𝑘) = 𝐶𝑆𝑚(𝑛 + 𝑘) 

= 𝐶𝑆𝑚(𝑛) + 𝐶𝑆𝑚(𝑘) +
𝑚

4
− 1 

+2 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

(𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2
 

+ 
√𝑚

√2
(𝐶𝑆𝑚(𝑛) −

8 − 𝑚

8
)

1
2

+  
√𝑚

√2
(𝐶𝑆𝑚(𝑘) −

8 − 𝑚

8
)

1
2

.   

 

In the following lemma, we give a necessary 

condition for the algebraic structure (𝐶, ∇) to be a 

groupoid. 

 

Lemma 3.1.1. Let 𝐶 be the set of sequence of 

numbers 𝐶𝑆𝑚(𝑛), that is, let 

 

𝐶 = {1, 1 + 𝑚, 1 + 3𝑚, 1 + 6𝑚, 1 + 10𝑚, … ,

1 + 𝑚
𝑛(𝑛 − 1)

2
, … }.                

 

Also let ∇ be a binary operation on 𝐶 such that 

 

𝐶𝑆𝑚(𝑛)𝛻𝐶𝑆𝑚(𝑘) = 𝐶𝑆𝑚(𝑛 + 𝑘) 

= 𝐶𝑆𝑚(𝑛) + 𝐶𝑆𝑚(𝑘) +
𝑚

4
− 1 

+2 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

(𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2
 

+ 
√𝑚

√2
(𝐶𝑆𝑚(𝑛) −

8−𝑚

8
)

1

2
+  

√𝑚

√2
(𝐶𝑆𝑚(𝑘) −

8−𝑚

8
)

1

2
. (12) 



A. Emin / BEÜ Fen Bilimleri Dergisi 11 (2), 604-612, 2022 

608 
 

where 𝑛, 𝑘 ∈ ℕ and 𝑚 ≥ 3. Then the algebraic 

structure (𝐶, 𝛻) is a groupoid. 

 

Proof. From binary operation (12), we can have 

recursive relation for 𝑘 = 1: 

 

𝐶𝑆𝑚(𝑛)∇𝐶𝑆𝑚(1) = 𝐶𝑆𝑚(𝑛 + 1) 

= 𝐶𝑆𝑚(𝑛) + 𝐶𝑆𝑚(1) +
𝑚

4
− 1 

+2 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

(𝐶𝑆𝑚(1) −
8 − 𝑚

8
)

1
2
 

 + 
√𝑚

√2
(𝐶𝑆𝑚(𝑛) −

8 − 𝑚

8
)

1
2

+  
√𝑚

√2
(𝐶𝑆𝑚(1) −

8 − 𝑚

8
)

1
2

. 

Thus, 𝐶𝑆𝑚(𝑛 + 1) = 𝐶𝑆𝑚(𝑛)∇𝐶𝑆𝑚(1) 

            = 𝐶𝑆𝑚(𝑛) +
𝑚

2
+ √2𝑚 (𝐶𝑆𝑚(𝑛) −

8−𝑚

8
)

1

2
. 

And so, we have  

𝐶𝑆𝑚(𝑛 + 1) = 𝐶𝑆𝑚(𝑛)+ √2𝑚 (𝐶𝑆𝑚(𝑛) −
8−𝑚

8
)

1

2
+

𝑚

2
 . (13) 

We prove this part of the lemma using the method of 

mathematical induction on n. For 𝑛 =  2, 3, 4, 5 and 

starting from number  𝐶𝑆𝑚(1) = 1, we have 1 +

𝑚, 1 +  3𝑚, 1 +  6𝑚, 1 +  10𝑚 which are the 

elements of the set of 𝐶. Indeed, for 𝑚 ≥ 3,  

𝐶𝑆𝑚(2) = 𝐶𝑆𝑚(1) + √2𝑚 (𝐶𝑆𝑚(1) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

                = 1 + √2𝑚 (1 −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

                = 1 + √2𝑚
√𝑚

2√2
+

𝑚

2
= 1 + 𝑚. 

 

𝐶𝑆𝑚(3) = 𝐶𝑆𝑚(2) + √2𝑚 (𝐶𝑆𝑚(2) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

               = 1 + 𝑚 + √2𝑚 (1 + 𝑚 −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

               = 1 + 𝑚 + √2𝑚
√9𝑚

2√2
+

𝑚

2
= 1 + 3𝑚. 

𝐶𝑆𝑚(4) = 𝐶𝑆𝑚(3) + √2𝑚 (𝐶𝑆𝑚(3) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

               = 1 + 3𝑚 + √2𝑚 (1 + 3𝑚 −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

               = 1 + 3𝑚 + √2𝑚
√25𝑚

2√2
+

𝑚

2
 

               = 1 + 3𝑚 +
6𝑚

2
= 1 + 6𝑚. 

𝐶𝑆𝑚(5) = 𝐶𝑆𝑚(4) + √2𝑚 (𝐶𝑆𝑚(4) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

                = 1 + 6𝑚 + √2𝑚 (1 + 6𝑚 −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

                = 1 + 6𝑚 + √2𝑚
√49𝑚

2√2
+

𝑚

2
 

                = 1 + 6𝑚 +
8𝑚

2
= 1 + 10𝑚. 

 

Now we suppose that the recursive formula 

(13) is true for 𝑛. That is, for 𝑚 ≥ 3, 

 

𝐶𝑆𝑚(𝑛) = 𝐶𝑆𝑚(𝑛 − 1)+ √2𝑚 (𝐶𝑆𝑚(𝑛 − 1) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

      =
𝑚(𝑛 − 1)2 − 𝑚(𝑛 − 1) + 2

2
 

      + √2𝑚 (
𝑚(𝑛 − 1)2 − 𝑚(𝑛 − 1) + 2

2
−

8 − 𝑚

8
)

1
2

+
𝑚

2
 

      =
𝑚𝑛2 − 3𝑚𝑛 + 2𝑚 + 2

2
 

      + √2𝑚 (
𝑚𝑛2 − 3𝑚𝑛 + 2𝑚 + 2

2
−

8 − 𝑚

8
)

1
2

+
𝑚

2
 

      =
𝑚𝑛2 − 3𝑚𝑛 + 2𝑚 + 2

2
+

𝑚(2𝑛 − 3)

2
+

𝑚

2
 

 

=
𝑚𝑛2 − 𝑚𝑛 + 2

2
 

 

is the element of the set of C. Also, from (3) and (9), 

we have 

𝐶𝑆𝑚(𝑛) = 𝐶𝑆𝑚(𝑛 − 1)+ √2𝑚 (𝐶𝑆𝑚(𝑛 − 1) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+√2𝑚√
𝑚

2
(𝑛 − 1 −

1

2
) +

𝑚

2
 

= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+(𝑛 − 1)𝑚 −
𝑚

2
+

𝑚

2
 

= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+(𝑛 − 1)𝑚.     (14) 

 

We need to show that the recursive formula (13) is 

true for 𝑛 + 1. From (9) and (14), 

 

𝐶𝑆𝑚(𝑛)+ √2𝑚 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

+
𝑚

2
 

= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+(𝑛 − 1)𝑚 + √2𝑚√
𝑚

2
(𝑛 −

1

2
) +

𝑚

2
 

= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+(𝑛 − 1)𝑚 + 𝑛𝑚 −
𝑚

2
+

𝑚

2
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= 1 + 𝑚 + 2𝑚 + 3𝑚 + ⋯ + (𝑛 − 3)𝑚 + (𝑛 − 2)𝑚 

+(𝑛 − 1)𝑚 + 𝑛𝑚 

= 1 + 𝑚(1 + 2 + 3 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛) 

= 1 + 𝑚
𝑛(𝑛 + 1)

2
 

=
𝑚𝑛2 + 𝑚𝑛 + 2

2
 

= 𝐶𝑆𝑚(𝑛 + 1). 

 

Therefore  𝐶𝑆𝑚(𝑛 + 1) is element of the set of C. 

That means, the algebraic structure (𝐶, 𝛻) satisfies the 

properties of closure which gives us the lemma 3.1.1. 

that (𝐶, 𝛻) is a groupoid. Hence the result. 

In the following theorem, we give a necessary 

condition for the algebraic structure (𝐶, 𝛻) to be a 

semigroup which is the main conclusion of this study. 

 

Theorem 3.1.1. Let 𝐶 be the set of sequence of 

numbers 𝐶𝑆𝑚(𝑛), that is, let 

 

𝐶 = {1, 1 + 𝑚, 1 + 3𝑚, 1 + 6𝑚, 1 + 10𝑚, … ,

1 + 𝑚
𝑛(𝑛 − 1)

2
, … }.                

 

Also let 𝛻 be a binary operation on 𝐶 such that 

 

𝐶𝑆𝑚(𝑛)𝛻𝐶𝑆𝑚(𝑘) = 𝐶𝑆𝑚(𝑛 + 𝑘) 

= 𝐶𝑆𝑚(𝑛) + 𝐶𝑆𝑚(𝑘) +
𝑚

4
− 1 

+2 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

(𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2
 

+ 
√𝑚

√2
(𝐶𝑆𝑚(𝑛) −

8 − 𝑚

8
)

1
2

+  
√𝑚

√2
(𝐶𝑆𝑚(𝑘) −

8 − 𝑚

8
)

1
2

.   

 

where 𝑛, 𝑘 ∈ ℕ and 𝑚 ≥ 3. Then the algebraic 

structure (𝐶, 𝛻) is a semigroup. 

 

Proof. From lemma 3.1.1. the algebraic structure 

(𝐶, 𝛻) is a groupoid. Now we need to show that 

(𝐶, 𝛻) satisfies the properties of associativity. From 

(9) and (10), we know  

𝑀𝑛+𝑘 = 𝑀𝑛∇𝑀𝑘 = 𝑀𝑛 + 𝑀𝑘 + √
𝑚

8
 where 𝑛, 𝑘 ∈ ℕ, 

𝑚 ≥ 3 and 

  𝑀𝑛 = (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

= √
𝑚

2
(𝑛 −

1

2
), 

  𝑀𝑘 = (𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2

= √
𝑚

2
(𝑘 −

1

2
), 

  𝑀𝑛+𝑘 = (𝐶𝑆𝑚(𝑛 + 𝑘) −
8−𝑚

8
)

1

2
= √

𝑚

2
(𝑛 + 𝑘 −

1

2
). 

For 𝑛, 𝑘, 𝑝 ∈ ℕ and 𝑚 ≥ 3, 

(𝑀𝑛∇𝑀𝑘)∇𝑀𝑝 = 𝑀𝑛+𝑘 + 𝑀𝑝 + √
𝑚

8
 

 = √
𝑚

2
(𝑛 + 𝑘 −

8 − 𝑚

8
) + √

𝑚

2
(𝑝 −

8 − 𝑚

8
) + √

𝑚

8
 

 

= √
𝑚

2
(𝑛 + 𝑘 + 𝑝 −

8 − 𝑚

4
) + √

𝑚

8
         (15) 

And 

 

𝑀𝑛𝛻(𝑀𝑘𝛻𝑀𝑝) = 𝑀𝑛 + 𝑀𝑘+𝑝 + √
𝑚

8
 

 = √
𝑚

2
(𝑛 −

8 − 𝑚

8
) + √

𝑚

2
(𝑘 + 𝑝 −

8 − 𝑚

8
) + √

𝑚

8
 

= √
𝑚

2
(𝑛 + 𝑘 + 𝑝 −

8 − 𝑚

4
) + √

𝑚

8
         (16) 

 

So, with the results of equations (15) and (16), we 

obtain, (𝑀𝑛𝛻𝑀𝑘)𝛻𝑀𝑝 = 𝑀𝑛𝛻(𝑀𝑘𝛻𝑀𝑝) which gives 

us the theorem 3.1.1. that (𝐶, 𝛻) satisfies the 

properties of associativity. Hence the result. 

As seen in Figure 3, centered polygonal 

numbers start from 𝐶𝑆𝑚(1) = 1. However, in some 

studies, as you can see in [1] and [6], centered 

polygonal numbers start from the number 𝐶𝑆𝑚(0) =

0. Now by considering the start point as the number 

𝐶𝑆𝑚(0) = 0 and theorem 3.1.1., we can give the 

following corollary which gives the conditions for 

(𝐶, 𝛻) to be a monoid. 

 

Corollary 3.1.1. Let 𝐶 be the set of sequence of 

numbers 𝐶𝑆𝑚(𝑛) and let ∇ be a binary operation on 

𝐶(defined in (7)) such that, 

𝐶𝑆𝑚(𝑛)𝛻𝐶𝑆𝑚(𝑘) = 𝐶𝑆𝑚(𝑛 + 𝑘) 

= 𝐶𝑆𝑚(𝑛) + 𝐶𝑆𝑚(𝑘) +
𝑚

4
− 1 

+2 (𝐶𝑆𝑚(𝑛) −
8 − 𝑚

8
)

1
2

(𝐶𝑆𝑚(𝑘) −
8 − 𝑚

8
)

1
2
 

+ 
√𝑚

√2
(𝐶𝑆𝑚(𝑛) −

8 − 𝑚

8
)

1
2

+  
√𝑚

√2
(𝐶𝑆𝑚(𝑘) −

8 − 𝑚

8
)

1
2

.   

where 𝑛, 𝑘 ∈ ℕ and 𝑚 ≥ 3. If 𝐶𝑆𝑚(0) = 0 ∈ 𝐶, 𝑡hen 

the algebraic structure (𝐶, 𝛻) is a monoid. 

 

Proof. In theorem 3.1.1., we have proved that (𝐶, 𝛻) 

is a semigroup. To show that the algebraic structure 

(𝐶, 𝛻) is a monoid, it must be shown that it has an 
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identity element. Let 𝐶𝑆𝑚(0) = 0 ∈ 𝐶, then, from the 

binary operation ∇ we have, 

 

𝐶𝑆𝑚(𝑛)𝛻 𝐶𝑆𝑚(0) = 𝐶𝑆𝑚(𝑛 + 0) = 𝐶𝑆𝑚(𝑛) 

 

and 

 

𝐶𝑆𝑚(0)𝛻 𝐶𝑆𝑚(𝑛) = 𝐶𝑆𝑚(0 + 𝑛) = 𝐶𝑆𝑚(𝑛). 
 

Thus, we have, 

𝐶𝑆𝑚(𝑛)𝛻 𝐶𝑆𝑚(0) = 𝐶𝑆𝑚(0)𝛻 𝐶𝑆𝑚(𝑛) = 𝐶𝑆𝑚(𝑛) 

which gives us the corollary 3.1.1. that (𝐶, 𝛻) satisfies 

the properties of identity. Hence the result. 

 

Example 3.1.1. [13, A005448] known as centered 

triangular numbers. Centered triangular numbers are 

integer having the following form below: 

𝐶𝑆3(𝑛) = 1 + 3 + 6 + 9 + 12 + ⋯ + 3(𝑛 − 1) 

               = 1 + 3(1 + 2 + 3 + 4 + ⋯ + (𝑛 − 1)) 

                   = 1 + 3
(𝑛 − 1)𝑛

2
       

                   =
3𝑛2 − 3𝑛 + 2

2
. 

Let 𝐴 denote the sequence of numbers 

𝐶𝑆3(𝑛). That is, let 

𝐴 = {1,4,10,19,31,46,64,85,109,136,166,199,235, 

274,316, … } 

Now we can find a binary operation of given set of 𝐴. 

Since 

(𝐶𝑆3(𝑛) −
5

8
)

1
2

= (
3𝑛2 − 3𝑛 + 2

2
−

5

8
)

1
2

    

                       = (
12𝑛2 − 12𝑛 + 3

8
)

1
2

 

                                       = (
3

2
(

4𝑛2 − 4𝑛 + 1

4
))

1
2

 

                                        = √
3

2
((

2𝑛 − 1

2
)

2

)

1
2

   

                                        = √
3

2
(𝑛 −

1

2
). 

we define: 

 

𝑇𝑛 = (𝐶𝑆3(𝑛) −
5

8
)

1
2

= √
3

2
(𝑛 −

1

2
), 

𝑇𝑘 = (𝐶𝑆3(𝑘) −
5

8
)

1
2

= √
3

2
(𝑘 −

1

2
), 

𝑇𝑛+𝑘 = (𝐶𝑆3(𝑛 + 𝑘) −
5

8
)

1
2

= √
3

2
(𝑛 + 𝑘 −

1

8
). 

We use 𝑇𝑛 for definition of binary operation: 

𝑇𝑛+𝑘 = 𝑇𝑛𝛻𝑇𝑘 = 𝑇𝑛 + 𝑇𝑘 +
√3

2√2
 

                         = √
3

2
(𝑛 −

1

2
) + √

3

2
(𝑘 −

1

2
) +

√3

2√2
 

                           = √
3

2
(𝑛 + 𝑘 −

1

2
). 

 

As a result, we can rewrite the defined binary 

operation as follows: 

 

𝐶𝑆3(𝑛)𝛻𝐶𝑆3(𝑘) = 𝐶𝑆3(𝑛 + 𝑘)                  

  = 𝐶𝑆3(𝑛) + 𝐶𝑆3(𝑘) −
1

4
 

 +2 (𝐶𝑆3(𝑛) −
5

8
)

1
2

(𝐶𝑆3(𝑘) −
5

8
)

1
2
 

+√
3

2
(𝐶𝑆3(𝑛) −

5

8
)

1
2

+ √
3

2
(𝐶𝑆3(𝑘) −

5

8
)

1
2

         (17) 

 

From binary operation (17), we can have recursive 

relation for 𝑘 = 1: 

 

       𝐶𝑆3(𝑛 + 1) = 𝐶𝑆3(𝑛)𝛻𝐶𝑆3(1) 

                        = 𝐶𝑆3(𝑛)  + 2√
3

2
(𝐶𝑆3(𝑛) −

5

8
)

1
2

+
3

2
. 

 

And so, we obtain 

𝐶𝑆3(𝑛 + 1) = 𝐶𝑆3(𝑛) +
2√3

√2
(𝐶𝑆3(𝑛) −

5

8
)

1
2

+
3

2
. 

 

Starting from number 𝐶𝑆3(1) = 1, we have 

4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 
274, 316, … which are the elements of the set of 𝐴. 
From lemma 3.1.1. and theorem 3.1.1., one can say 

that the algebraic structure (𝐴, 𝛻) is a groupoid and 

semigroup. Also, if the 𝐶𝑆3(0) = 0 ∈ 𝐴 then the 

algebraic structure (𝐴, 𝛻) is a monoid from corollary 

3.1.1. 
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Example 3.1.2. [13, A005891] known as centered 

pentagonal numbers. Centered pentagonal numbers 

are integer having the following form below: 

𝐶𝑆5(𝑛) = 1 + 5 + 10 + 15 + 20 + ⋯ + 5(𝑛 − 1)  

               = 1 + 5(1 + 2 + 3 + 4 + ⋯ + (𝑛 − 1)) 

               = 1 + 5
(𝑛 − 1)𝑛

2
      

               =
5𝑛2 − 5𝑛 + 2

2
. 

 

Let 𝐵 denote the sequence of numbers 

𝐶𝑆5(𝑛). That is, let 

𝐵 = {1, 6, 16, 31, 51, 76, 91, 106, 141, 181, 226, 

276, 331, 391, … } 

Now we can find a binary operation of given set of 𝐵. 

Since 

(𝐶𝑆5(𝑛) −
3

8
)

1
2

= (
5𝑛2 − 5𝑛 + 2

2
−

3

8
)

1
2

 

                          = (
20𝑛2 − 20𝑛 + 5

8
)

1
2

 

                              = (
5

2
(

4𝑛2 − 4𝑛 + 1

4
))

1
2

 

                       = √
5

2
((

2𝑛 − 1

2
)

2

)

1
2

 

             = √
5

2
(𝑛 −

1

2
). 

we define: 

 

𝑃𝑛 = (𝐶𝑆5(𝑛) −
3

8
)

1
2

= √
5

2
(𝑛 −

1

2
), 

 

𝑃𝑘 = (𝐶𝑆5(𝑘) −
3

8
)

1
2

= √
5

2
(𝑘 −

1

2
), 

𝑃𝑛+𝑘 = (𝐶𝑆5(𝑛 + 𝑘) −
3

8
)

1
2

= √
5

2
(𝑛 + 𝑘 −

1

2
). 

 

We use 𝑃𝑛 for definition of binary operation: 

 

𝑃𝑛+𝑘 = 𝑃𝑛𝛻𝑃𝑘 = 𝑃𝑛 + 𝑃𝑘 +
√5

2√2
 

                            = √
5

2
(𝑛 −

1

2
) + √

5

2
(𝑘 −

1

2
) +

√5

2√2
 

                             = √
5

2
(𝑛 + 𝑘 −

1

2
). 

As a result, we can rewrite the defined binary 

operation as follows: 

 

𝐶𝑆5(𝑛)𝛻𝐶𝑆5(𝑘) = 𝐶𝑆5(𝑛 + 𝑘) 

 = 𝐶𝑆5(𝑛) + 𝐶𝑆5(𝑘) +
1

4
 

  +2 (𝐶𝑆5(𝑛) −
3

8
)

1
2

(𝐶𝑆5(𝑘) −
3

8
)

1
2
 

+√
5

2
(𝐶𝑆5(𝑛) −

3

8
)

1
2

+ √
5

2
(𝐶𝑆5(𝑘) −

3

8
)

1
2

.  (18) 

 

From binary operation (18), we can have recursive 

relation for 𝑘 = 1: 

 

     𝐶𝑆5(𝑛 + 1) = 𝐶𝑆5(𝑛)∇𝐶𝑆5(1) 

                           = 𝐶𝑆5(𝑛) +
2√5

√2
(𝐶𝑆5(𝑛) −

3

8
)

1
2

+
5

2
. 

 

And so, we obtain 

𝐶𝑆5(𝑛 + 1) = 𝐶𝑆5(𝑛) +
2√5

√2
(𝐶𝑆5(𝑛) −

3

8
)

1
2

+
5

2
. 

 

Starting from number 𝐶𝑆5(1) = 1, we have 

6, 16, 31, 51, 76, 91, 106, 141, 181, 226, 276, 331,  
391, … which are the elements of the set of 𝐵. From 

lemma 3.1.1. and theorem 3.1.1., one can say that the 

algebraic structure (𝐵, 𝛻) is a groupoid and 

semigroup. Also, if the 𝐶𝑆5(0) = 0 ∈ 𝐵, then the 

algebraic structure (𝐵, 𝛻) is a monoid from Corollary 

3.1.1. 

 

4. Conclusion and Suggestions  

 
Firstly, in this paper, the definition of algebraic 

structure and, in particular, the definitions of 

groupoid, semigroup, and monoid were made. Also, 

figurate numbers and centered polygonal numbers 

were introduced. Later, the algebraic structure was 

proved to be a groupoid and a semigroup with the 

binary operation defined on centered polygonal 

numbers. And finally, some examples were given on 

the subject. 
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