Düzce University Journal of Science \& Technology

Research Article

A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces

(D) Erdem TOKSOY ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Ondokuz Mayls University, Samsun, TURKEY
* Corresponding author's e-mail address: erdem.toksoy@omu.edu.tr

DOI: 10.29130/dubited. 1068024

Abstract

The purpose of this paper is to introduce and study a function space $A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$ to be a linear space of functions $h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ whose fractional Fourier transforms $F_{\alpha} h$ belong to the Wiener-type space $W(B, Y)\left(\mathbb{R}^{d}\right)$, where w is a Beurling weight function on \mathbb{R}^{d}. We show that this space becomes a Banach algebra with the sum norm $\|h\|_{1, w}+\left\|F_{\alpha} h\right\|_{W(B, Y)}$ and Θ convolution operation under some conditions. We find an approximate identity in this space and show that this space is an abstract Segal algebra with respect to $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ under some conditions.

Keywords: Fractional Fourier transform, convolution, Wiener-type spaces

Kesirli Fourier Dönüşümleri Wiener-tipi Uzaylarda olan Fonksiyon Uzayları Üzerine Bir Not

ÖZET

Bu çalışmanın amacı w, \mathbb{R}^{d} kümesi üzerinde bir Beurling ağırlık fonksiyonu olmak üzere $F_{\alpha} h$ kesirli Fourier dömüşümü $W(B, Y)\left(\mathbb{R}^{d}\right)$ Wiener-tipi uzayına ait $h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ fonksiyonlarının bir vektör uzayı olan $A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$ fonksiyon uzayını tanıtmak ve çalışmaktır. Bu uzayın bazı koşullar altında, $\|h\|_{1, w}+\left\|F_{\alpha} h\right\|_{W(B, Y)}$ toplam normu ve Θ girişim işlemiyle birlikte bir Banach cebiri olduğu gösterildi. Bu uzayda bir yaklaşık birim bulundu ve bu uzayın $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ uzayına göre bir soyut Segal cebiri olduğu gösterildi.

Anahtar Kelimeler: Kesirli Fourier dönüşümü, girişim işlemi, Wiener-tipi uzaylar

I. INTRODUCTION

In this paper, we study on \mathbb{R}^{d}. $C_{c}\left(\mathbb{R}^{d}\right)$ denotes the space of all continuous, complex-valued functions on \mathbb{R}^{d} with compact support, and $C_{0}\left(\mathbb{R}^{d}\right)$ indicates the space of continuous, complex-valued functions on \mathbb{R}^{d} which vanish at infinity, [1]. $\left(L^{p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{p}\right)$ denotes the usual Lebesgue spaces for $1 \leq p<$ ∞. Throughout this paper, we will use Beurling weights, i.e. measurable and locally bounded functions w on \mathbb{R}^{d} which satisfy $w(x) \geq 1$ and $w(x+y) \leq w(x) w(y)$, for all $x, y \in \mathbb{R}^{d}$. Let $\eta \geq 1$. A weight function w is called weighted function of regular growth if $w\left(\frac{x}{\eta}\right) \leq w(x)$ and there are constants $C>0$ and $\sigma>0$ such that $w(\eta x) \leq C \eta^{\sigma} w(x)$ for all $x \in \mathbb{R}^{d} . L_{w}^{p}\left(\mathbb{R}^{d}\right)$ denotes weighted Lebesgue space i.e.
$L_{w}^{p}\left(\mathbb{R}^{d}\right)=\left\{h \mid h w \in L^{p}\left(\mathbb{R}^{d}\right)\right\}$,
for $1 \leq p<\infty . L_{w}^{p}\left(\mathbb{R}^{d}\right)$ is a Banach space with the norm $\|h\|_{p, w}=\|h w\|_{p},[2]$.
Let B be any subset of \mathbb{R}^{d}. χ_{B} indicates characteristic function of B. The space $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ is the set of all measurable functions (equivalence classes) h such that $h \chi_{K} \in L^{1}\left(\mathbb{R}^{d}\right)$ for any compact subset K of \mathbb{R}^{d}. This space is topological vector space with the senimorms $h \rightarrow\left\|h \chi_{K}\right\|_{1}$. A BF-space on \mathbb{R}^{d} is a Banach space that is continuously embedded into $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$, [3]. A normed space of measurable functions is called F-space, if every convergent sequence has a subsequence converging almost everywhere. If the space is complete, then it is called BF-spaces, [4]. A normed space $\left(A,\|\cdot\|_{A}\right)$ of measurable functions is called solid, if for all $f \in A$ and any measurable function h satisfying $|h(x)| \leq|f(x)|$ almost everywhere, implies $h \in A$ and $\|h\|_{A} \leq\|f\|_{A}$, [4]. Let h be any function from \mathbb{R}^{d} into \mathbb{C}. The translation and character (modulation) operators are defined by $T_{y} h(x)=h(x-y)$ and $M_{\omega} h(x)=\exp (i \omega x) h(x)$ for all $y, \omega \in \mathbb{R}^{d}$, respectively, [5]. ($X,\|\cdot\|_{X}$) is called (strongly) translation invariant if $T_{y} h \in X$ (and $\left\|T_{y} h\right\|_{X}=\|h\|_{X}$ i.e. strongly) for all $h \in X$ and $y \in \mathbb{R}^{d}$. The strongly character invariance similar to definition of the strongly translation invariance. A commutative Banach algebra $\left(B,\|\cdot\|_{B}\right)$ that is a subset of commutative Banach algebra $\left(A,\|\cdot\|_{A}\right)$ is called a Banach ideal of A if $h f \in B$ and the inequalities $\|h\|_{A} \leq\|h\|_{B}$ and $\|h f\|_{B} \leq\|h\|_{B}\|f\|_{A}$ hold for all $h \in B, f \in A$, [6]. A Banach space ($X\left(\mathbb{R}^{d}\right),\|\cdot\|_{X}$) of complex-valued measurable functions on \mathbb{R}^{d} is called homogeneous Banach space if it is strongly translation invariant and the function $y \rightarrow$ $T_{y} h$ from \mathbb{R}^{d} into $X\left(\mathbb{R}^{d}\right)$ is continuous for $h \in X\left(\mathbb{R}^{d}\right)$, [7]. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach algebra. $\left(Y,\|\cdot\|_{Y}\right)$ is said to be an abstract Segal algebra with respect to $\left(X,\|\cdot\|_{X}\right)$ if it has the following properties [8]:

1. $\left(Y,\|\cdot\|_{Y}\right)$ is a Banach algebra and is a dense ideal in X.
2. There exists $M_{1}>0$ such that $\|h\|_{X} \leq M_{1}\|h\|_{Y}$ for all $h \in Y$.
3. There exists $M_{2}>0$ such that $\|h f\|_{Y} \leq M_{2}\|h\|_{X}\|f\|_{Y}$ for all $h, f \in Y$.

In order to introduce the Wiener-type space, let us give some expressions: For any Banach space $\left(B,\|\cdot\|_{B}\right)$ there exists a homogeneous Banach space ($A,\|\cdot\|_{A}$), continuously embedded into $\left(C_{b}\left(\mathbb{R}^{d}\right),\|\cdot\|_{\infty}\right)$, which is a regular Banach algebra under pointwise multiplication operation (i.e. separating points from closed sets), and which is closed under complex conjugation, such that $\left(B,\|\cdot\|_{B}\right)$ is continuously embedded into topological dual of $A_{0}\left(\mathbb{R}^{d}\right)=\mathrm{A}\left(\mathbb{R}^{d}\right) \cap C_{c}\left(\mathbb{R}^{d}\right)$ and is a Banach module over A under pointwise multiplication operation (i.e. $\|f g\|_{B} \leq\|g\|_{B}\|f\|_{A}$ for all $f \in$ $A, g \in B)$. Here $A_{0}\left(\mathbb{R}^{d}\right)$ that is given above is a topological vector space with respect to usual inductive limit topology. Let $B_{l o c}\left(\mathbb{R}^{d}\right)$ be the space of all $h \in A_{0}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $\varphi h \in B$ for all $\varphi \in$ $A_{0}\left(\mathbb{R}^{d}\right)$, where $A_{0}^{\prime}\left(\mathbb{R}^{d}\right)$ is the topological dual of $A_{0}\left(\mathbb{R}^{d}\right)$. The space $B_{\text {loc }}\left(\mathbb{R}^{d}\right)$ is a topological vector space with respect to the family of seminorms $h \rightarrow\|\varphi h\|_{B}$. Let O be any open subset of \mathbb{R}^{d} with compact closure. Let $\left(Y,\|\cdot\|_{Y}\right)$ be a solid translation invariant BF-space on \mathbb{R}^{d}. Then the Wiener-type
space $W(B, Y)\left(\mathbb{R}^{d}\right)$ consist of all $g \in B_{l o c}\left(\mathbb{R}^{d}\right)$ such that the mapping $G:=x \rightarrow\|g\|_{B(x O)}$ belongs to the space Y, where $\|g\|_{B(x O)}$ is the restriction norm of g over $x O$. This space has a norm that defined as $\|g\|_{W(B, Y)}=\|G\|_{Y}$. The spaces B and Y are called the local and the global component of $W(B, Y)\left(\mathbb{R}^{d}\right)$, respectively, [3]. Let $f \in C_{c}\left(\mathbb{R}^{d}\right)$ be any non-zero window-function and $h \in$ $B_{l o c}\left(\mathbb{R}^{d}\right)$. The control function $K(f, h)$ is defined as $K(f, h)(y)=\left\|\left(T_{y} f\right) h\right\|_{B}$ for $y \in \mathbb{R}^{d}$. This function is a continuous function from \mathbb{R}^{d} into $(0, \infty)$. Then we also define the Wiener-type space $W(B, Y)\left(\mathbb{R}^{d}\right)$ as
$W(B, Y)\left(\mathbb{R}^{d}\right)=\left\{h \in B_{l o c}\left(\mathbb{R}^{d}\right) \mid K(f, h) \in Y\right\}$.
This space is endowed with the norm $\|h\|_{W(B, Y)}=\|K(f, h)\|_{Y}$, [9]. Some families of Wiener-type spaces are studied in [10-12].

Let $h \in L^{1}(\mathbb{R})$. The Fourier transform \hat{h} (or $F h$) of the function h is defined as
$\hat{h}(\omega)=F h(\omega)=(\sqrt{2 \pi})^{-1} \int_{-\infty}^{+\infty} h(x) \exp (-i \omega x) d x$.
The fractional Fourier transform is a generalization of the Fourier transform with a paramater α. Let δ be Dirac delta function (i.e. $\delta(x)=\left\{\begin{array}{r}\infty, x=0 \\ 0, x \neq 0\end{array}\right.$ and $\int_{-\infty}^{+\infty} \delta(x) d x=1$). The fractional Fourier transform with angle α of $h \in L^{1}(\mathbb{R})$ is given by
$F_{\alpha} h(x)=\int_{-\infty}^{+\infty} K_{\alpha}(x, y) h(y) d y$
such that
$K_{\alpha}(x, y)= \begin{cases}\sqrt{\frac{1-i \cot \alpha}{2 \pi}} \exp \left(\frac{i}{2}\left(x^{2}+y^{2}\right) \cot \alpha-i x y \operatorname{cosec} \alpha\right), & \alpha \neq m \pi, m \in \mathbb{Z} \\ \delta(y-x), & \alpha=2 m \pi, m \in \mathbb{Z} \\ \delta(y+x), & \alpha=(2 m+1) \pi, m \in \mathbb{Z} .\end{cases}$
If we take $\alpha=\frac{\pi}{2}$, then the fractional Fourier transform coincides the Fourier transform, [13-17]. The definition of the fractional Fourier transform on \mathbb{R}^{d} is given below [18]: Let us take $\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right)$ such that each α_{j} is related to j -th coordinates of the variables of the function $K_{\alpha}(x, y)$, where $x=$ $\left(x_{1}, \cdots, x_{d}\right), y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. Then the fractional Fourier transform of $h \in L^{1}\left(\mathbb{R}^{d}\right)$ is
$F_{\alpha} h(x)=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K_{\alpha}(x, y) h(y) d y$
such that
$K_{\alpha}(x, y)=K_{\left(\alpha_{1}, \cdots, \alpha_{d}\right)}\left(x_{1}, \cdots, x_{d} ; y_{1}, \cdots, y_{d}\right)=K_{\alpha_{1}}\left(x_{1}, y_{1}\right) K_{\alpha_{2}}\left(x_{2}, y_{2}\right) \cdots K_{\alpha_{\mathrm{d}}}\left(x_{\mathrm{d}}, y_{\mathrm{d}}\right)$.
Throughout this paper, we get $\alpha_{\mathrm{j}} \neq m \pi, m \in \mathbb{Z}$ for all $\mathrm{j}=1,2, \cdots, \mathrm{~d}$. Therefore, the fractional Fourier transform of $h \in L^{1}\left(\mathbb{R}^{d}\right)$ is taken
$F_{\alpha} h(x)=\prod_{\mathrm{j}=1}^{\mathrm{d}}\left|\sqrt{\frac{1-i \cot \alpha_{j}}{2 \pi}}\right| \int_{\mathbb{R}^{d}} h(y) \exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2}\left(x_{j}^{2}+y_{j}^{2}\right) \cot \alpha_{j}-i x_{j} y_{j} \operatorname{cosec} \alpha_{j}\right) d y$.
The fractional Fourier transform $F_{\alpha} h$ of $h \in L^{1}\left(\mathbb{R}^{d}\right)$ belongs to $C_{0}\left(\mathbb{R}^{d}\right)$, [19]. Hence the operator F_{α} is an integral operator with kernel function $K_{\alpha}(x, y)$. Then the operator F_{α} is a linear operator from $L^{1}\left(\mathbb{R}^{d}\right)$ into $C_{0}\left(\mathbb{R}^{d}\right)$. Let $z=\left(-y_{1} \cot \alpha_{1}, \cdots,-y_{d} \cot \alpha_{d}\right)$ for all $y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. The Θ convolution operation is defined as

$$
\begin{aligned}
(h \Theta f)(x) & =\int_{\mathbb{R}^{d}} h(y) f(x-y) \exp \left(\sum_{j=1}^{d} i y_{j}\left(y_{j}-x_{j}\right) \cot \alpha_{j}\right) d y \\
& =\int_{\mathbb{R}^{d}} h(y) T_{y} M_{z} f(x) d y
\end{aligned}
$$

for all $h, f \in L^{1}\left(\mathbb{R}^{d}\right),[20,21]$.
Let G be a locally compact Abelian group and \hat{G} is dual group of G. The space $A_{p}(\mathrm{G})$ to be the space of $g \in L^{1}(\mathrm{G})$ such that $\hat{g} \in L^{p}(\widehat{G})$ for $1 \leq p<\infty$. This space and its properties investigate in [22-25]. The weighted type of this spaces are studied in [26,27]. For the some other spaces that define by Fourier transform, we refer [28-31]. Also there are some spaces which define by other time-frequency operators, [32,33].

II. MAIN RESULTS

Definition 2.1. Let w be a weight function on \mathbb{R}^{d}. Let B and Y be a solid translation invariant BFspace on \mathbb{R}^{d}, and local and the global component of $W(B, Y)\left(\mathbb{R}^{d}\right)$, respectively. The set $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ consist of all functions $h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ such that the fractional Fourier transforms $F_{\alpha} h \in W(B, Y)\left(\mathbb{R}^{d}\right)$. Since the space $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ is a linear space, then $0 \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$. By using (1), we get $F_{\alpha} 0=0$. From the linearity of space $W(B, Y)\left(\mathbb{R}^{d}\right)$ clearly $0 \in W(B, Y)\left(\mathbb{R}^{d}\right)$. This means that the zero function belongs to $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and so the set $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is non-empty. By using the linearity of the spaces $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $W(B, Y)\left(\mathbb{R}^{d}\right)$, and the linearity property of the operator F_{α}, it is easy to see that $A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$ is a linear space. Let us define a function on this linear space as
$\|h\|_{A_{\alpha, W}^{B, Y}}=\|h\|_{1, W}+\left\|F_{\alpha} h\right\|_{W(B, Y)}$
for all $h \in A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$. Since $\left(L_{w}^{1}\left(\mathbb{R}^{d}\right),\|\cdot\|_{1, w}\right)$ and $\left(W(B, Y)\left(\mathbb{R}^{d}\right),\|\cdot\|_{W(B, Y)}\right)$ are normed spaces, then $\|h\|_{1, W} \geq 0$ and $\left\|F_{\alpha} h\right\|_{W(B, Y)} \geq 0$. Then we have
$\|h\|_{A_{\alpha, W}^{B, Y}}=\|h\|_{1, w}+\left\|F_{\alpha} h\right\|_{W(B, Y)} \geq 0$
for all $h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. By using the norms $\|\cdot\|_{1, w}$ and $\|\cdot\|_{W(B, Y)}$, and the linearity property of the operator F_{α}, we obtain

$$
\begin{aligned}
\|\lambda h\|_{A_{\alpha, W}^{B, Y}}^{B,} & =\|\lambda h\|_{1, w}+\left\|F_{\alpha} \lambda h\right\|_{W(B, Y)} \\
& =|\lambda|\|h\|_{1, w}+|\lambda|\left\|F_{\alpha} h\right\|_{W(B, Y)}=|\lambda|\|h\|_{A_{\alpha, W}^{B, Y}}
\end{aligned}
$$

and

$$
\begin{aligned}
\|h+g\|_{A_{\alpha, W}^{B, W}} & =\|h+g\|_{1, w}+\left\|F_{\alpha}(h+g)\right\|_{W(B, Y)} \\
& =\|h+g\|_{1, w}+\left\|F_{\alpha} h+F_{\alpha} g\right\|_{W(B, Y)} \\
& \leq\|h\|_{1, w}+\|g\|_{1, w}+\left\|F_{\alpha} h\right\|_{W(B, Y)}+\left\|F_{\alpha} g\right\|_{W(B, Y)} \\
& =\|h\|_{A_{\alpha, w}^{B, Y}}+\|g\|_{A_{\alpha, w}^{B, W}}^{B, Y}
\end{aligned}
$$

for all $h, g \in A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$ and $\lambda \in \mathbb{C}$. Let $h \in A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$. If $\|h\|_{A_{\alpha, W}^{B, Y}}=0$, then we get $h=0$ by using the norms $\|\cdot\|_{1, w}$ and $\|\cdot\|_{W(B, Y)}$. If $h=0$, then $F_{\alpha} h=0$ by (1), and so $\|h\|_{A_{\alpha, w}^{B, Y}}=0$. Since the above mentioned properties are satisfied, the function $\|\cdot\|_{A_{\alpha, w}^{B, Y}}$ is a norm on $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. If we take $B=$ $L^{p}\left(\mathbb{R}^{d}\right)$ and $Y=L_{w}^{p}\left(\mathbb{R}^{d}\right)$, then $W\left(L^{p}\left(\mathbb{R}^{d}\right), L_{w}^{p}\left(\mathbb{R}^{d}\right)\right)\left(\mathbb{R}^{d}\right)=L_{w}^{p}\left(\mathbb{R}^{d}\right),[3]$. Therefore the space $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ coincides to the space $A_{\alpha, p}^{w, w}\left(\mathbb{R}^{d}\right)$ which is given in [21].

Theorem 2.2. The space $\left(A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, W}^{B, Y}}\right)$ is a Banach space.
Proof. Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. Hence, $\left(h_{n}\right)_{n \in \mathbb{N}}$ and $\left(F_{\alpha} h_{n}\right)_{n \in \mathbb{N}}$ are Cauchy sequences in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $W(B, Y)\left(\mathbb{R}^{d}\right)$, respectively. It is well known that the spaces $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $W(B, Y)\left(\mathbb{R}^{d}\right)$ are Banach spaces. Thus there exist $h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $f \in W(B, Y)\left(\mathbb{R}^{d}\right)$ such that $\left\|h_{n}-h\right\|_{1, w} \rightarrow 0$ and $\left\|F_{\alpha} h_{n}-f\right\|_{W(B, Y)} \rightarrow 0$. Since $\left(B,\|\cdot\|_{B}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are solid translation invariant BF-spaces, then the space $W(B, Y)\left(\mathbb{R}^{d}\right)$ is also a solid translation invariant BF-space $[34,35]$. Besides, since the space $W(B, Y)\left(\mathbb{R}^{d}\right)$ is a BF-space, then the sequence $\left(F_{\alpha} h_{n}\right)_{n \in \mathbb{N}}$ that satisfies $\left\|F_{\alpha} h_{n}-f\right\|_{W(B, Y)} \rightarrow 0$ has a subsequence $\left(F_{\alpha} h_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ that converges to the function f almost everywhere [4]. Therefore by using the inequality

$$
\begin{aligned}
\left|F_{\alpha} h(u)-f(u)\right| & =\left|F_{\alpha} h(u)-F_{\alpha} h_{n_{k}}(u)+F_{\alpha} h_{n_{k}}(u)-f(u)\right| \\
& \leq \prod_{j=1}^{\mathrm{d}}\left|\sqrt{\frac{1-i \cot \alpha_{j}}{2 \pi}}\right| \int_{\mathbb{R}^{d}}\left|\left(h_{n_{k}}-h\right)(t)\right| d t+\left|F_{\alpha} h_{n_{k}}(u)-f(u)\right| \\
& \leq \prod_{\mathrm{j}=1}^{\mathrm{d}}\left|\sqrt{\frac{1-i \cot \alpha_{j}}{2 \pi}}\right|\left\|h_{n_{k}}-h\right\|_{1, w}+\left|F_{\alpha} h_{n_{k}}(u)-f(u)\right|
\end{aligned}
$$

we may write $F_{\alpha} h=f$ almost everywhere. Thus $\left\|h_{n}-h\right\|_{A_{\alpha, W}^{B, Y}} \rightarrow 0$ and $h \in A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$. This means $\left(A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, W}^{B, Y}}\right)$ is a Banach space.

Theorem 2.3. The space $\left(A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, w}^{B, Y}}\right)$ is a Banach algebra with Θ convolution operation.
Proof. The space $\left(A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, W}^{B, Y}}\right)$ is a Banach space by Theorem 2.2. Let $g, h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$.
Then $g, h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $F_{\alpha} g, F_{\alpha} h \in W(B, Y)\left(\mathbb{R}^{d}\right)$ by the definition of the space $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. Since the space $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ is a Banach algebra with Θ convolution operation (see [21]), we have
$\|g \Theta h\|_{1, w} \leq\|g\|_{1, w}\|h\|_{1, w}$.
Also, we shall write

$$
\begin{align*}
\left|F_{\alpha}(g \Theta h)(u)\right| & =\prod_{\mathrm{j}=1}^{\mathrm{d}}\left|\sqrt{\frac{2 \pi}{1-i \cot \alpha_{j}}}\right| \exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}}-\frac{i}{2} u_{j}^{2} \cot \alpha_{j}\right)\left|F_{\alpha} g(u)\right|\left|F_{\alpha} h(u)\right| \tag{3}\\
& \leq\left|F_{\alpha} h(u)\right| \int_{\mathbb{R}^{d}}|g(t)| d t \leq\left|F_{\alpha} h(u)\right|\|g\|_{1, w}
\end{align*}
$$

by Theorem 7 in [21]. It is known that the fractional Fourier transform of a function belongs to $C_{0}\left(\mathbb{R}^{d}\right),[19]$ and so it is continuous on \mathbb{R}^{d}. Thus $F_{\alpha}(g \Theta h)$ is a measurable function on \mathbb{R}^{d}. Since $\left(B,\|\cdot\|_{B}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are solid translation invariant BF-spaces, then the space $W(B, Y)\left(\mathbb{R}^{d}\right)$ is also a solid translation invariant BF-space $[34,35]$. By using the solidity of the space $W(B, Y)\left(\mathbb{R}^{d}\right)$ and inequality (3), we obtain $F_{\alpha}(g \Theta h) \in W(B, Y)\left(\mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\left\|F_{\alpha}(g \Theta h)\right\|_{W(B, Y)} \leq\left\|F_{\alpha} h\right\| g\left\|_{1, w}\right\|_{W(B, Y)}=\|g\|_{1, W}\left\|F_{\alpha} h\right\|_{W(B, Y)} . \tag{4}
\end{equation*}
$$

Combining (2) and (4), we get

$$
\begin{align*}
\|g \Theta h\|_{A_{\alpha, W}^{B, Y}}^{B} & =\|g \Theta h\|_{1, w}+\left\|F_{\alpha}(g \Theta h)\right\|_{W(B, Y)} \\
& \leq\|g\|_{1, w}\|h\|_{1, w}+\|g\|_{1, w}\left\|F_{\alpha} h\right\|_{W(B, Y)} \leq\|g\|_{A_{\alpha, W}^{B, Y}}\|h\|_{A_{\alpha, w}^{B, Y}} . \tag{5}
\end{align*}
$$

Theorem 2.4. The space $\left(A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, w}^{B, Y}}\right)$ is a Banach ideal on $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ with Θ convolution operation.

Proof. Let $h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and $g \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$. By the definition of the space $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$, clearly $h \in$ $L_{w}^{1}\left(\mathbb{R}^{d}\right)$. Then we have the inequality (2). By using the inequality (3) and solidity of the space $W(B, Y)\left(\mathbb{R}^{d}\right)$, we get $F_{\alpha}(g \Theta h) \in W(B, Y)\left(\mathbb{R}^{d}\right)$ and the inequality (4). Hence, by combining (2) and (4), we obtain
$\|g \Theta h\|_{A_{\alpha, w}^{B, Y}} \leq\|g\|_{1, w}\|h\|_{A_{\alpha, W}^{B, Y}}$.
Besides, by the definition of the norm $\|\cdot\|_{A_{\alpha, w}^{B, Y}}$, we have $\|h\|_{1, \mathrm{w}} \leq\|h\|_{A_{\alpha, w}^{B, Y}}$. Thus, the space $\left(A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right),\|\cdot\|_{A_{\alpha, w}^{B, W}}\right)$ is a Banach ideal on $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Proposition 2.5. Let w be a weight function of regular growth on \mathbb{R}^{d}. If $C_{c}\left(\mathbb{R}^{d}\right) \subset W(B, Y)\left(\mathbb{R}^{d}\right)$, then $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Proof. Let us take a set $F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)=\left\{g \in L_{w}^{1}\left(\mathbb{R}^{d}\right) \mid F_{\alpha} g \in C_{c}\left(\mathbb{R}^{d}\right)\right\}$. Then it is known that the set $F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ by Corollary 2.14 in [36]. Since $C_{c}\left(\mathbb{R}^{d}\right) \subset W(B, Y)\left(\mathbb{R}^{d}\right)$, then we get
$F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right) \subset A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right) \subset L_{w}^{1}\left(\mathbb{R}^{d}\right)$.
By using this inclusion and the density of $F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$, it is easy to see that $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Proposition 2.6. Let w be a weight function of regular growth on \mathbb{R}^{d}. If $C_{c}\left(\mathbb{R}^{d}\right) \subset W(B, Y)\left(\mathbb{R}^{d}\right)$, then $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is an abstract Segal algebra with respect to $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Proof. The space $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is a Banach algebra and also is a Banach ideal on $L_{w}^{1}\left(\mathbb{R}^{d}\right)$, in addition the inequality $\|g \Theta h\|_{A_{\alpha, w}^{B, Y}} \leq\|g\|_{1, w}\|h\|_{A_{\alpha, w}^{B, Y}}$ holds for all $g, h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ by Theorem 2.3 and Theorem
2.4. Furthermore, from the structure of the norm $\|\cdot\|_{A_{\alpha, w}^{B, Y}}$, we may write an inequality $\|h\|_{1, w} \leq$ $\|h\|_{A_{\alpha, w}^{B, Y}}$ for all $h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. Finally, it is shown that $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ by Proposition 2.5. Thus under the given conditions, $A_{\alpha, w}^{B, Y_{V}}\left(\mathbb{R}^{d}\right)$ is an abstract Segal algebra with respect to $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Theorem 2.7. Let B be a strongly character invariant space on \mathbb{R}^{d}. Suppose that translation and character operators are continuous in B and also $C_{c}\left(\mathbb{R}^{d}\right)$ is dense in Y. Let $z=$ $\left(-y_{1} \cot \alpha_{1}, \ldots,-y_{d} \cot \alpha_{d}\right)$ for all $y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$.

1. $T_{y} M_{z} h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and

$$
\left\|T_{y} M_{z} h\right\|_{A_{\alpha, W}^{B, Y}} \leq w(y)\|h\|_{A_{\alpha, W}^{B, Y}}
$$

$$
\text { for all } h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)
$$

2. Assume that $C_{c}\left(\mathbb{R}^{d}\right) \cap A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is dense in $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. Then the mapping $y \rightarrow T_{y} M_{z} h$ from \mathbb{R}^{d} into $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is continuous.

Proof. 1. Let $h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. Then the definition of $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ implies $h \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $F_{\alpha} h \in$ $W(B, Y)\left(\mathbb{R}^{d}\right)$. It is well known that the space $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ is translation and character invariant space and the inequality $\left\|T_{y} h\right\|_{1, w} \leq w(y)\|h\|_{1, w}$ holds for all $y \in \mathbb{R}^{d}$. Therefore we shall write
$\left\|T_{y} M_{z} h\right\|_{1, w} \leq w(y)\|h\|_{1, w}$.
Let us take $v=\left(-y_{1} \operatorname{cosec} \alpha_{1}, \cdots,-y_{d} \operatorname{cosec} \alpha_{d}\right)$ for all $y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. Thus we have
$F_{\alpha}\left(T_{y} M_{z} h\right)(u)=\exp \left(\sum_{j=1}^{\mathrm{d}} \frac{i}{2} y_{j}^{2} \cot \alpha_{j}\right) M_{v} F_{\alpha} h(u)$
by the equality (2.55) in [36]. Since B is strongly character invariant, then $W(B, Y)\left(\mathbb{R}^{d}\right)$ is also strongly character invariant by Corollary 1.4 in [35]. Hence we obtain

$$
\exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{j}^{2} \cot \alpha_{j}\right) M_{v} F_{\alpha} h \in W(B, Y)\left(\mathbb{R}^{d}\right)
$$

and

$$
\begin{align*}
\left\|F_{\alpha}\left(T_{y} M_{z} \mathrm{~h}\right)\right\|_{W(B, Y)} & =\left|\exp \left(\sum_{j=1}^{\mathrm{d}} \frac{i}{2} y_{j}^{2} \cot \alpha_{j}\right)\right|\left\|M_{v} F_{\alpha} h\right\|_{W(B, Y)} \tag{8}\\
& =\left\|M_{v} F_{\alpha} h\right\|_{W(B, Y)}=\left\|F_{\alpha} h\right\|_{W(B, Y)}
\end{align*}
$$

Consequently, combininig (6) and (8), we get
$\left\|T_{y} M_{z} h\right\|_{A_{\alpha, W}^{B, Y}} \leq w(y)\|h\|_{A_{\alpha, W}^{B, Y}}$.
2. We will show continuity at 0 . Assume that $h \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and $\left(y_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{d}$ such that $\lim _{n \rightarrow \infty} y_{n}=0$. Let $z=\left(-y_{1} \cot \alpha_{1}, \cdots,-y_{d} \cot \alpha_{d}\right)$ for all $y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. It is known that the mapping $y \rightarrow$ $T_{y} M_{z} \mathrm{~h}$ is continuous from \mathbb{R}^{d} into $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ by Theorem 2.1 in [36]. Now, let us take the sequences
$\left(z_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{d} where j sequences of coordinates $z_{n j}=-y_{n j} \cot \alpha_{j}$ and $v_{n j}=$ $-y_{n j} \operatorname{cosec} \alpha_{j}$. By the continuity of $y \rightarrow T_{y} M_{z} \mathrm{~h}$, we shall write

$$
\begin{equation*}
\left\|T_{y_{n}} M_{z_{n}} h-h\right\|_{1, w} \rightarrow 0 \tag{9}
\end{equation*}
$$

as n approaches infinity. From the equality (6), we get

$$
\begin{align*}
\left\|F_{\alpha}\left(T_{y_{n}} M_{z_{n}} h-h\right)\right\|_{W(B, Y)}= & \left\|F_{\alpha}\left(T_{y_{n}} M_{z_{n}} h\right)-F_{\alpha} h\right\|_{W(B, Y)} \\
\leq & \| \exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{n j}^{2} \cot \alpha_{j}\right) M_{v_{n}} F_{\alpha} h \\
& -\exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{n j}^{2} \cot \alpha_{j}\right) F_{\alpha} h \|_{W(B, Y)} \\
& +\left\|\exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{n j}^{2} \cot \alpha_{j}\right) F_{\alpha} h-F_{\alpha} h\right\|_{W(B, Y)} \tag{10}\\
= & \left\|M_{v_{n}} F_{\alpha} h-F_{\alpha} h\right\|_{W(B, Y)} \\
& +\left|\exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{n j}^{2} \cot \alpha_{j}\right)-1\right|\left\|F_{\alpha} h\right\|_{W(B, Y)}
\end{align*}
$$

Let us take $v=\left(-y_{1} \csc \alpha_{1}, \cdots,-y_{d} \csc \alpha_{d}\right)$ for all $y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. Obviously, the mapping $y \rightarrow v$ from \mathbb{R}^{d} into \mathbb{R}^{d} is continuous. Using that is given in the hypothesis, we say that the mapping $y \rightarrow M_{y} \mathrm{~h}$ from \mathbb{R}^{d} into $W(B, Y)\left(\mathbb{R}^{d}\right)$ is continuous (see Lemma 1.5 in [35]). Therefore the composition mapping $y \rightarrow M_{v} \mathrm{~h}$ from \mathbb{R}^{d} into $W(B, Y)\left(\mathbb{R}^{d}\right)$ is continuous. In the other words, we can write
$\left\|M_{v_{n}} F_{\alpha} h-F_{\alpha} h\right\|_{W(B, Y)} \rightarrow 0$
as n approaches infinity. Let us define $p_{n}=\exp \left(\sum_{\mathrm{j}=1}^{\mathrm{d}} \frac{i}{2} y_{n j}^{2} \cot \alpha_{j}\right)-1$ for all $n \in \mathbb{N}$. By using convergence of the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ to zero, we get $\left|p_{n}\right| \rightarrow 0$ as n approaches infinity. By combining (9), (10) and (11) we obtain

$$
\begin{aligned}
\left\|T_{y_{n}} M_{z_{n}} h-h\right\|_{A_{\alpha, W}^{B, Y}} & =\left\|T_{y_{n}} M_{z_{n}} h-h\right\|_{1, w}+\left\|F_{\alpha}\left(T_{y_{n}} M_{z_{n}} h-h\right)\right\|_{W(B, Y)} \\
\leq & \left\|T_{y_{n}} M_{z_{n}} h-h\right\|_{1, w}+\left\|M_{v_{n}} F_{\alpha} h-F_{\alpha} h\right\|_{W(B, Y)} \\
& +\left|p_{n}\right|\left\|F_{\alpha} h\right\|_{W(B, Y)} \rightarrow 0
\end{aligned}
$$

as n approaches infinity. This means that the function $y \rightarrow T_{y} M_{z} h$ is continuous at 0 . Let us take any fixed point $y^{*}=\left(y_{1}^{*}, \cdots, y_{d}^{*}\right) \in \mathbb{R}^{d}$. Hence we get
$T_{y-y^{*}} M_{z-z^{*}}\left(T_{y^{*}} M_{z^{*}} h\right)(x)=\exp \left(i y^{*} z-i y^{*} z^{*}\right) T_{y} M_{z} h(x)$,
where $z^{*}=\left(-y_{1}^{*} \cot \alpha_{1}, \cdots,-y_{d}^{*} \cot \alpha_{d}\right)$ for all $x \in \mathbb{R}^{d}$ by the proof of Theorem 2.17 (2) in [36]. Therefore, we may write
$\left\|T_{y} M_{z} h-T_{y^{*}} M_{z^{*}} h\right\|_{A_{\alpha, W}^{B, Y}}=\left\|\exp \left(i y^{*} z^{*}-i y^{*} z\right) T_{y-y^{*}} M_{z-z^{*}}\left(T_{y^{*}} M_{z^{*}} h\right)-T_{y^{*}} M_{z^{*}} h\right\|_{A_{\alpha, W}^{B, Y}}$.
Let us take $T_{y^{*}} M_{z^{*}} h=g$. Then $g \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ by the first part of this theorem. Thus we have

$$
\begin{aligned}
&\left\|T_{y} M_{z} h-T_{y^{*}} M_{z^{*}} h\right\|_{A_{\alpha, w}^{B, Y}}=\left\|\exp \left(i y^{*} z^{*}-i y^{*} z\right) T_{y-y^{*}} M_{z-z^{*}} \mathrm{~g}-\mathrm{g}\right\|_{A_{\alpha, w}^{B, Y}} \\
& \leq\left\|T_{y-y^{*}} M_{z-z^{*}} \mathrm{~g}-\mathrm{g}\right\|_{A_{\alpha, W}^{B, Y}} \\
&+\|g\|_{A_{\alpha, w}, \mid}\left|\exp \left(i y^{*} z\right)-\exp \left(i y^{*} z^{*}\right)\right| .
\end{aligned}
$$

Let $\varepsilon>0$ be given. By using continuity of the function $y \rightarrow \exp \left(i y^{*} z\right)$ from \mathbb{R}^{d} into \mathbb{C} and continuity at zero of the function $y \rightarrow T_{y} M_{z} h$, there exists $\delta>0$ such that
$\left\|T_{y} M_{z} h-T_{y^{*}} M_{z^{*}} h\right\|_{A_{\alpha, W}^{B Y}}<\varepsilon$
when $\left\|y-y^{*}\right\|<\delta$. Since y^{*} is an arbitrary fixed point, then the function $y \rightarrow T_{y} M_{z} h$ is continuous on \mathbb{R}^{d}.

Proposition 2.8. Assume that all the hypotheses given in Theorem 2.7 are satisfied. Let $C_{c}\left(\mathbb{R}^{d}\right)$ be a dense subset of $W(B, Y)\left(\mathbb{R}^{d}\right)$ and w be a weight function of regular growth on \mathbb{R}^{d}. Then $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ has an approximate identity with compactly supported fractional Fourier transforms.

Proof. Let us define a set $H=\left\{h_{1}, h_{2}, \cdots, h_{k}\right\}$ such that $h_{j} \in A_{\alpha, W}^{B, Y}\left(\mathbb{R}^{d}\right)$ for all $j=1,2, \cdots, k$. Let $h \in$ $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and $z=\left(-y_{1} \cot \alpha_{1}, \cdots,-y_{d} \cot \alpha_{d}\right)$ for all $y=\left(y_{1}, \cdots, y_{d}\right) \in \mathbb{R}^{d}$. It is shown that the function $y \rightarrow T_{y} M_{z} \mathrm{~h}$ from \mathbb{R}^{d} into $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ is continuous by Theorem 2.7. Let $\varepsilon>0$ be given. By the continuity of $y \rightarrow T_{y} M_{z} \mathrm{~h}$, there exist positive δ_{j} such that

$$
\left\|T_{\mathrm{y}} M_{\mathrm{z}} h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}}<\frac{\varepsilon}{2}
$$

whenever $\|y\|<\delta_{j}$ for all $j=1,2, \cdots, k$. Let $\delta=\min \left\{\delta_{j} \mid j=1,2, \cdots, k\right\}$. Then we get

$$
\begin{equation*}
\left\|T_{\mathrm{y}} M_{\mathrm{z}} h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}}<\frac{\varepsilon}{2} \tag{12}
\end{equation*}
$$

whenever $\|y\|<\delta$ for all $j=1,2, \cdots, k$. Let $g \in C_{c}\left(\mathbb{R}^{d}\right) \subset L_{w}^{1}\left(\mathbb{R}^{d}\right)$ be a positive function that

$$
\operatorname{supp} g \subset\left\{x \in \mathbb{R}^{d} \mid\|x\|<\delta\right\}
$$

and $\int_{\mathbb{R}^{d}} g(x) d x=1$. Therefore, by the definition of Θ convolution, we shall write

$$
\left(g \Theta h_{j}\right)(x)-h_{j}(x)=\int_{\mathbb{R}^{d}} g(y) T_{y} M_{\mathrm{z}} h_{j}(x) d y-h_{j}(x)=\int_{\mathbb{R}^{d}} g(y)\left(T_{y} M_{\mathrm{z}} h_{j}(x)-h_{j}(x)\right) d y
$$

for all $x \in \mathbb{R}^{d}$ and $j=1,2, \cdots, k$. By using (12), we obtain

$$
\begin{align*}
\left\|g \Theta h_{j}-h_{j}\right\|_{A_{\alpha, w}^{B, Y}} & =\left\|\int_{\mathbb{R}^{d}} g(y)\left(T_{y} M_{\mathrm{z}} h_{j}-h_{j}\right) d y\right\|_{A_{\alpha, w}^{B, Y}} \\
& \leq \int_{\text {suppg }}|g(y)|\left\|T_{y} M_{\mathrm{z}} h_{j}-h_{j}\right\|_{A_{\alpha, w}^{B, Y}} d y \tag{13}\\
& <\frac{\varepsilon}{2} \int_{\text {suppg } g}|g(y)| d y=\frac{\varepsilon}{2}
\end{align*}
$$

for all $j=1,2, \cdots, k$. Let $K=\max \left\{\left\|h_{j}\right\|_{A_{\alpha, W}^{B, Y}} \mid j=1,2, \cdots, k\right\}$. Let us take the set $F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)=$ $\left\{g \in L_{w}^{1}\left(\mathbb{R}^{d}\right) \mid F_{\alpha} g \in C_{c}\left(\mathbb{R}^{d}\right)\right\}$. Then it is known that the set $F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ by Corollary 2.14 in [36]. From this density, there exists a function $f \in F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ where

$$
\begin{equation*}
\|\mathrm{g}-f\|_{1, w}<\frac{\varepsilon}{2 \mathrm{~K}} . \tag{14}
\end{equation*}
$$

Since $C_{c}\left(\mathbb{R}^{d}\right)$ is a subset of $W(B, Y)\left(\mathbb{R}^{d}\right)$, then $f \in A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$. By using (13) and (14), we get

$$
\begin{aligned}
\left\|f \Theta h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}} & \leq\left\|f \Theta h_{j}-g \Theta h_{j}\right\|_{A_{\alpha, W}^{B, Y}}+\left\|g \Theta h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}} \\
& \leq\|g-f\|_{1, w}\left\|h_{j}\right\|_{A_{\alpha, W}^{B, Y}}^{B, Y}+\left\|g \Theta h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}}<\varepsilon
\end{aligned}
$$

for all $j=1,2, \cdots, k$. Hence, for every infinite subset $H=\left\{h_{1}, h_{2}, \cdots, h_{k}\right\}$ of $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and every $\varepsilon>$ 0 there exists a function $f \in F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\left\|f \Theta h_{j}-h_{j}\right\|_{A_{\alpha, W}^{B, Y}}<\varepsilon \tag{15}
\end{equation*}
$$

for all $j=1,2, \cdots, k$. Therefore, there exists an approximate identity of $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ that is defined by functions $f \in F_{0, w}^{\alpha}\left(\mathbb{R}^{d}\right)$ which ensure inequality (15) for every infinite subset $H=\left\{h_{1}, h_{2}, \cdots, h_{k}\right\}$ of $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ and every $\varepsilon>0$, by Proposition 1.3 in [37]. This means $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ has an approximate identity with compactly supported fractional Fourier transforms.

III. CONCLUSION

In this study, we investigate a subalgebra of $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ (with Θ convolution operation) that fractional Fourier transforms of its elements belong to $W(B, Y)\left(\mathbb{R}^{d}\right)$. Let G be a locally compact abelian group and $\widehat{\mathrm{G}}$ be the dual group of G . It is known that the space $A_{w}^{B, Y}(\mathrm{G})$ consisting of all functions $h \in L_{w}^{1}(\mathrm{G})$ whose Fourier transforms belong to Wiener-type spaces $W(B, Y)$, [35]. Let us take $\alpha_{j}=\frac{\pi}{2}$ for all $j=$ $1,2, \cdots, d$ such that $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{d}\right)$. Therefore, the Θ convolution opeator and the fractional Fourier transform coincide the usual convolution and the Fourier transform, respectively. Hence the space $A_{\alpha, w}^{B, Y}\left(\mathbb{R}^{d}\right)$ corresponds the space $A_{w}^{B, Y}\left(\mathbb{R}^{d}\right)$ which is given in [35]. This means that this study extend some results of [35] for $\mathrm{G}=\mathbb{R}^{d}$.

IV. REFERENCES

[1] W. Rudin, Real and Complex Analysis, New York: MacGraw-Hill, 1966.
[2] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups. Oxford: Clarendon Press, , 2000.
[3] H. G. Feichtinger, "Banach convolution algebras of Wiener type," in Functions, Series, Operators, Budapest, 1980, vol. 38, pp. 509-524.
[4] H. G. Feichtinger, "On a class of convolution algebras of functions," Annales de l'institut Fourier, vol. 27, no. 3, pp. 135-162, 1977.
[5] W. Rudin, Functional Analysis, New York: MacGraw-Hill, 1973.
[6] H. Feichtinger, C. Graham, and E. Lakien, "Nonfactorization in commutative, weakly selfadjoint Banach algebras," Pacific Journal of Mathematics, vol. 80, no. 1, pp. 117-125, 1979.
[7] H. Wang, Homogeneous Banach Algebras, New York and Basel: Marcel Dekker Inc., 1977.
[8] J. T. Burnham, "Closed ideals in subalgebras of Banach algebras. I," Proceedings of the American Mathematical Society, vol. 32, no. 2, pp. 551-555, 1972.
[9] H. G. Feichtinger and K. H. Gröchenig, "Banach spaces related to integrable group representations and their atomic decompositions, I," Journal of Functional Analysis, vol. 86, no. 2, pp. 307-340, 1989.
[10] R. H. Fischer, A. T. Gürkanli, and T. S. Liu, "On a family of Wiener type spaces," International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 1, pp. 57-66, 1996.
[11] B. Sağır and A. T. Gürkanli, "The Wiener type spaces $\mathrm{B}_{\mathrm{w}_{\mathrm{n}}}^{\mathrm{p}, \mathrm{q}}(\mathrm{G}), \mathrm{L}_{\mathrm{w}}(\mathrm{G}), "$ İstanbul University Science Faculty the Journal of Mathematics Physics and Astronomy, vol. 57, pp. 53-61, 1998.
[12] I. Aydın, "On variable exponent amalgam spaces," Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, vol. 20, no. 3, pp. 5-20, 2012.
[13] L. B. Almeida, "The fractional Fourier transform and time-frequency representations," IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3084-3091, 1994.
[14] L. B. Almeida, "Product and convolution theorems for the fractional Fourier transform," IEEE Signal Processing Letters, vol. 4, no. 1, pp. 15-17, 1997.
[15] V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," IMA Journal of Applied Mathematics, vol. 25, no. 3, pp. 241-265, 1980.
[16] H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Chichester: Wiley, 2001.
[17] A. I. Zayed, "On the relationship between the Fourier and fractional Fourier transforms," IEEE Signal Processing Letters, vol. 3, no. 12, pp. 310-311, 1996.
[18] A. Bultheel and H. Martínez, "A shattered survey of the Fractional Fourier Transform," Report $T W$, vol. 337, 2002.
[19] R. Kamalakkannan and R. Roopkumar, "Multidimensional fractional Fourier transform and generalized fractional convolution," Integral Transforms and Special Functions, vol. 31, no. 2, pp. 152-165, 2020.
[20] A. K. Singh and R. Saxena, "On convolution and product theorems for FRFT," Wireless Personal Communications, vol. 65, no. 1, pp. 189-201, 2012.
[21] E. Toksoy and A. Sandıkçı, "On function spaces with fractional Fourier transform in weighted Lebesgue spaces," Journal of Inequalities and Applications, vol. 2015, no. 1, pp. 1-10, 2015.
[22] R. Larsen, T. Liu, and J. Wang, "On functions with Fourier transforms in L_{p}," Michigan Mathematical Journal, vol. 11, no. 4, pp. 369-378, 1964.
[23] H. C. Lai, "On some properties of $\mathrm{A}^{\mathrm{p}}(\mathrm{G})$-algebras," Proceedings of the Japan Academy, vol. 45, no. 7, pp. 572-576, 1969.
[24] H. C. Lai, "Remark on the $\mathrm{A}^{\mathrm{p}}(\mathrm{G})$-algebras," Proceedings of the Japan Academy, vol. 46, no. 1, pp. 58-63, 1970.
[25] J. C. Martin and L. Y. Yap, "The algebra of functions with Fourier transforms in L_{p}," Proceedings of the American Mathematical Society, pp. 217-219, 1970.
[26] H. G. Feichtinger and A. T. Gürkanli, "On a family of weighted convolution algebras," International Journal of Mathematics and Mathematical Sciences, vol. 13, no. 3, pp. 517-525, 1990.
[27] R. H. Fischer, A. T. Gürkanli, and T. S. Liu, "On a family of weighted spaces," Mathematica Slovaca, vol. 46, no. 1, pp. 71-82, 1996.
[28] L. Y. Yap, "On Two classes of subalgebras of $\mathrm{L}^{1}(\mathrm{G})$," Proceedings of the Japan Academy, vol. 48, no. 5, pp. 315-319, 1972.
[29] I. Aydin and B. Sağir, "On functions with Fourier transforms in $A_{p}^{\operatorname{lip}}(G), "$ Demonstratio Mathematica, vol. 41, no. 2, pp. 425-432, 2008.
[30] I. Eryilmaz and C. Duyar, "On $A_{\mathrm{p}, \mathrm{q}}^{\mathrm{lip}}(\mathrm{G})$ spaces," Studia. Universitatis Babeş-Bolyai Mathematica, vol. 56, no. 1, 2011.
[31] C. Unal and I. Aydin, "Some results on a weighted convolution algebra," in Proceedings of the Jangjeon Mathematical Society, 2015, vol. 18, no. 1, pp. 109-127.
[32] A. Sandıkçı and A. T. Gürkanlı, "Gabor analysis of the spaces $M(p, q, w)\left(R^{d}\right)$ and S(p, q, w, ω) ($\left.\mathrm{R}^{\mathrm{d}}\right)$," Acta Mathematica Scientia, vol. 31, no. 1, pp. 141-158, 2011.
[33] O. Kulak and A. T. Gürkanlı, "On function spaces with wavelet transform in $L_{w}^{p}\left(\mathrm{R}^{\mathrm{d}} \times \mathrm{R}_{+}\right)$," Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 163-177, 2011.
[34] H. G. Feichtinger and K. H. Gröchenig, "Banach spaces related to integrable group representations and their atomic decompositions, I," in Fundamental Papers in Wavelet Theory, Princeton University Press, 2009, pp. 408-441.
[35] B. Sağir, "On functions with Fourier transforms in W(B,Y)," Demonstratio Mathematica, vol. 33, no. 2, pp. 355-364, 2000.
[36] A. Sandıkçı and E. Toksoy, "On an abstract Segal algebra under fractional convolution," Montes Taurus Journal of Pure and Applied Mathematics, vol. 4, no. 1, pp. 1-22, 2022.
[37] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, vol. 768. Springer-Verlag, 1979.

