

Düzce University Journal of Science & Technology

Research Article

A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces

厄 Erdem TOKSOY ª,*

^a Department of Mathematics, Faculty of Sciences, Ondokuz Mayıs University, Samsun, TURKEY * Corresponding author's e-mail address: erdem.toksoy@omu.edu.tr DOI: 10.29130/dubited.1068024

ABSTRACT

The purpose of this paper is to introduce and study a function space $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ to be a linear space of functions $h \in L^1_w(\mathbb{R}^d)$ whose fractional Fourier transforms $F_{\alpha}h$ belong to the Wiener-type space $W(B,Y)(\mathbb{R}^d)$, where w is a Beurling weight function on \mathbb{R}^d . We show that this space becomes a Banach algebra with the sum norm $||h||_{1,w} + ||F_{\alpha}h||_{W(B,Y)}$ and Θ convolution operation under some conditions. We find an approximate identity in this space and show that this space is an abstract Segal algebra with respect to $L^1_w(\mathbb{R}^d)$ under some conditions.

Keywords: Fractional Fourier transform, convolution, Wiener-type spaces

Kesirli Fourier Dönüşümleri Wiener-tipi Uzaylarda olan Fonksiyon Uzayları Üzerine Bir Not

Özet

Bu çalışmanın amacı w, \mathbb{R}^d kümesi üzerinde bir Beurling ağırlık fonksiyonu olmak üzere $F_{\alpha}h$ kesirli Fourier dömüşümü $W(B, Y)(\mathbb{R}^d)$ Wiener-tipi uzayına ait $h \in L^1_w(\mathbb{R}^d)$ fonksiyonlarının bir vektör uzayı olan $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ fonksiyon uzayını tanıtmak ve çalışmaktır. Bu uzayın bazı koşullar altında, $\|h\|_{1,w} + \|F_{\alpha}h\|_{W(B,Y)}$ toplam normu ve Θ girişim işlemiyle birlikte bir Banach cebiri olduğu gösterildi. Bu uzayda bir yaklaşık birim bulundu ve bu uzayın $L^1_w(\mathbb{R}^d)$ uzayına göre bir soyut Segal cebiri olduğu gösterildi.

Anahtar Kelimeler: Kesirli Fourier dönüşümü, girişim işlemi, Wiener-tipi uzaylar

I. INTRODUCTION

In this paper, we study on \mathbb{R}^d . $C_c(\mathbb{R}^d)$ denotes the space of all continuous, complex-valued functions on \mathbb{R}^d with compact support, and $C_0(\mathbb{R}^d)$ indicates the space of continuous, complex-valued functions on \mathbb{R}^d which vanish at infinity, [1]. $(L^p(\mathbb{R}^d), \|.\|_p)$ denotes the usual Lebesgue spaces for $1 \le p < \infty$. Throughout this paper, we will use Beurling weights, i.e. measurable and locally bounded functions w on \mathbb{R}^d which satisfy $w(x) \ge 1$ and $w(x + y) \le w(x)w(y)$, for all $x, y \in \mathbb{R}^d$. Let $\eta \ge 1$. A weight function w is called weighted function of regular growth if $w\left(\frac{x}{\eta}\right) \le w(x)$ and there are constants C > 0 and $\sigma > 0$ such that $w(\eta x) \le C\eta^{\sigma}w(x)$ for all $x \in \mathbb{R}^d$. $L_w^p(\mathbb{R}^d)$ denotes weighted Lebesgue space i.e.

$$L^p_w(\mathbb{R}^d) = \{h | hw \in L^p(\mathbb{R}^d)\},\$$

for $1 \le p < \infty$. $L^p_w(\mathbb{R}^d)$ is a Banach space with the norm $||h||_{p,w} = ||hw||_p$, [2].

Let B be any subset of \mathbb{R}^d . χ_B indicates characteristic function of B. The space $L^1_{loc}(\mathbb{R}^d)$ is the set of all measurable functions (equivalence classes) h such that $h\chi_K \in L^1(\mathbb{R}^d)$ for any compact subset K of \mathbb{R}^d . This space is topological vector space with the senimorms $h \to ||h\chi_K||_1$. A BF-space on \mathbb{R}^d is a Banach space that is continuously embedded into $L^1_{loc}(\mathbb{R}^d)$, [3]. A normed space of measurable functions is called F-space, if every convergent sequence has a subsequence converging almost everywhere. If the space is complete, then it is called BF-spaces, [4]. A normed space $(A, \|.\|_{4})$ of measurable functions is called solid, if for all $f \in A$ and any measurable function h satisfying $|h(x)| \le |f(x)|$ almost everywhere, implies $h \in A$ and $||h||_A \le ||f||_A$, [4]. Let h be any function from \mathbb{R}^d into \mathbb{C} . The translation and character (modulation) operators are defined by $T_v h(x) = h(x - y)$ and $M_{\omega}h(x) = \exp(i\omega x)h(x)$ for all $y, \omega \in \mathbb{R}^d$, respectively, [5]. $(X, \|.\|_X)$ is called (strongly) translation invariant if $T_y h \in X$ (and $||T_y h||_x = ||h||_x$ i.e. strongly) for all $h \in X$ and $y \in \mathbb{R}^d$. The strongly character invariance similar to definition of the strongly translation invariance. A commutative Banach algebra $(B, \|.\|_B)$ that is a subset of commutative Banach algebra $(A, \|.\|_A)$ is called a Banach ideal of A if $hf \in B$ and the inequalities $||h||_A \le ||h||_B$ and $||hf||_B \le ||h||_B ||f||_A$ hold for all $h \in B$, $f \in A$, [6]. A Banach space $(X(\mathbb{R}^d), \|.\|_X)$ of complex-valued measurable functions on \mathbb{R}^d is called homogeneous Banach space if it is strongly translation invariant and the function $y \rightarrow \infty$ $T_{v}h$ from \mathbb{R}^{d} into $X(\mathbb{R}^{d})$ is continuous for $h \in X(\mathbb{R}^{d})$, [7]. Let $(X, \|.\|_{X})$ be a Banach algebra. $(Y, \|.\|_Y)$ is said to be an abstract Segal algebra with respect to $(X, \|.\|_X)$ if it has the following properties [8]:

- 1. $(Y, \|.\|_Y)$ is a Banach algebra and is a dense ideal in X.
- 2. There exists $M_1 > 0$ such that $||h||_X \le M_1 ||h||_Y$ for all $h \in Y$.
- 3. There exists $M_2 > 0$ such that $||hf||_Y \le M_2 ||h||_X ||f||_Y$ for all $h, f \in Y$.

In order to introduce the Wiener-type space, let us give some expressions: For any Banach space $(B, \|.\|_B)$ there exists a homogeneous Banach space $(A, \|.\|_A)$, continuously embedded into $(C_b(\mathbb{R}^d), \|.\|_{\infty})$, which is a regular Banach algebra under pointwise multiplication operation (i.e. separating points from closed sets), and which is closed under complex conjugation, such that $(B, \|.\|_B)$ is continuously embedded into topological dual of $A_0(\mathbb{R}^d) = A(\mathbb{R}^d) \cap C_c(\mathbb{R}^d)$ and is a Banach module over A under pointwise multiplication operation (i.e. $\|fg\|_B \leq \|g\|_B \|f\|_A$ for all $f \in A$, $g \in B$). Here $A_0(\mathbb{R}^d)$ that is given above is a topological vector space with respect to usual inductive limit topology. Let $B_{loc}(\mathbb{R}^d)$ be the space of all $h \in A'_0(\mathbb{R}^d)$ such that $\varphi h \in B$ for all $\varphi \in A_0(\mathbb{R}^d)$, where $A'_0(\mathbb{R}^d)$ is the topological dual of $A_0(\mathbb{R}^d)$. The space $B_{loc}(\mathbb{R}^d)$ is a topological vector space with respect to the family of seminorms $h \to \|\varphi h\|_B$. Let O be any open subset of \mathbb{R}^d with compact closure. Let $(Y, \|.\|_Y)$ be a solid translation invariant BF-space on \mathbb{R}^d . Then the Wiener-type

space $W(B,Y)(\mathbb{R}^d)$ consist of all $g \in B_{loc}(\mathbb{R}^d)$ such that the mapping $G \coloneqq x \to ||g||_{B(xO)}$ belongs to the space Y, where $||g||_{B(xO)}$ is the restriction norm of g over xO. This space has a norm that defined as $||g||_{W(B,Y)} = ||G||_Y$. The spaces B and Y are called the local and the global component of $W(B,Y)(\mathbb{R}^d)$, respectively, [3]. Let $f \in C_c(\mathbb{R}^d)$ be any non-zero window-function and $h \in B_{loc}(\mathbb{R}^d)$. The control function K(f,h) is defined as $K(f,h)(y) = ||(T_y f)h||_B$ for $y \in \mathbb{R}^d$. This function is a continuous function from \mathbb{R}^d into $(0,\infty)$. Then we also define the Wiener-type space $W(B,Y)(\mathbb{R}^d)$ as

 $W(B,Y)(\mathbb{R}^d) = \{h \in B_{loc}(\mathbb{R}^d) | K(f,h) \in Y\}.$

This space is endowed with the norm $||h||_{W(B,Y)} = ||K(f,h)||_Y$, [9]. Some families of Wiener-type spaces are studied in [10–12].

Let $h \in L^1(\mathbb{R})$. The Fourier transform \hat{h} (or Fh) of the function h is defined as

$$\hat{h}(\omega) = Fh(\omega) = \left(\sqrt{2\pi}\right)^{-1} \int_{-\infty}^{+\infty} h(x) \exp(-i\omega x) \, dx.$$

The fractional Fourier transform is a generalization of the Fourier transform with a parameter α . Let δ be Dirac delta function (i.e. $\delta(x) = \begin{cases} \infty, x = 0 \\ 0, x \neq 0 \end{cases}$ and $\int_{-\infty}^{+\infty} \delta(x) dx = 1$). The fractional Fourier transform with angle α of $h \in L^1(\mathbb{R})$ is given by

$$F_{\alpha}h(x) = \int_{-\infty}^{+\infty} K_{\alpha}(x, y)h(y)dy$$

such that

$$K_{\alpha}(x,y) = \begin{cases} \sqrt{\frac{1-i\cot\alpha}{2\pi}}\exp\left(\frac{i}{2}(x^{2}+y^{2})\cot\alpha-ixy\csc\alpha\right), & \alpha \neq m\pi, m \in \mathbb{Z} \\ \delta(y-x), & \alpha = 2m\pi, m \in \mathbb{Z} \\ \delta(y+x), & \alpha = (2m+1)\pi, m \in \mathbb{Z}. \end{cases}$$

If we take $\alpha = \frac{\pi}{2}$, then the fractional Fourier transform coincides the Fourier transform, [13–17]. The definition of the fractional Fourier transform on \mathbb{R}^d is given below [18]: Let us take $\alpha = (\alpha_1, \dots, \alpha_d)$ such that each α_j is related to j-th coordinates of the variables of the function $K_{\alpha}(x, y)$, where $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d) \in \mathbb{R}^d$. Then the fractional Fourier transform of $h \in L^1(\mathbb{R}^d)$ is

$$F_{\alpha}h(x) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K_{\alpha}(x, y)h(y)dy$$

such that

$$K_{\alpha}(x,y) = K_{(\alpha_{1},\dots,\alpha_{d})}(x_{1},\dots,x_{d};y_{1},\dots,y_{d}) = K_{\alpha_{1}}(x_{1},y_{1})K_{\alpha_{2}}(x_{2},y_{2})\cdots K_{\alpha_{d}}(x_{d},y_{d}).$$

Throughout this paper, we get $\alpha_j \neq m\pi$, $m \in \mathbb{Z}$ for all $j = 1, 2, \dots, d$. Therefore, the fractional Fourier transform of $h \in L^1(\mathbb{R}^d)$ is taken

$$F_{\alpha}h(x) = \prod_{j=1}^{d} \left| \sqrt{\frac{1-i\cot\alpha_{j}}{2\pi}} \right| \int_{\mathbb{R}^{d}} h(y) \exp\left(\sum_{j=1}^{d} \frac{i}{2} \left(x_{j}^{2} + y_{j}^{2}\right) \cot\alpha_{j} - ix_{j}y_{j} \csc\alpha_{j}\right) dy.$$
(1)

The fractional Fourier transform $F_{\alpha}h$ of $h \in L^1(\mathbb{R}^d)$ belongs to $C_0(\mathbb{R}^d)$, [19]. Hence the operator F_{α} is an integral operator with kernel function $K_{\alpha}(x, y)$. Then the operator F_{α} is a linear operator from $L^1(\mathbb{R}^d)$ into $C_0(\mathbb{R}^d)$. Let $z = (-y_1 \cot \alpha_1, \cdots, -y_d \cot \alpha_d)$ for all $y = (y_1, \cdots, y_d) \in \mathbb{R}^d$. The Θ convolution operation is defined as

$$(h\Theta f)(x) = \int_{\mathbb{R}^d} h(y)f(x-y)\exp\left(\sum_{j=1}^d iy_j(y_j-x_j)\cot\alpha_j\right)dy$$
$$= \int_{\mathbb{R}^d}^d h(y)T_yM_zf(x)dy$$

for all $h, f \in L^1(\mathbb{R}^d)$, [20,21].

Let G be a locally compact Abelian group and \hat{G} is dual group of G. The space $A_p(G)$ to be the space of $g \in L^1(G)$ such that $\hat{g} \in L^p(\hat{G})$ for $1 \le p < \infty$. This space and its properties investigate in [22–25]. The weighted type of this spaces are studied in [26,27]. For the some other spaces that define by Fourier transform, we refer [28–31]. Also there are some spaces which define by other time-frequency operators, [32,33].

II. MAIN RESULTS

Definition 2.1. Let *w* be a weight function on \mathbb{R}^d . Let *B* and *Y* be a solid translation invariant BFspace on \mathbb{R}^d , and local and the global component of $W(B, Y)(\mathbb{R}^d)$, respectively. The set $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ consist of all functions $h \in L^1_w(\mathbb{R}^d)$ such that the fractional Fourier transforms $F_\alpha h \in W(B, Y)(\mathbb{R}^d)$. Since the space $L^1_w(\mathbb{R}^d)$ is a linear space, then $0 \in L^1_w(\mathbb{R}^d)$. By using (1), we get $F_\alpha 0 = 0$. From the linearity of space $W(B,Y)(\mathbb{R}^d)$ clearly $0 \in W(B,Y)(\mathbb{R}^d)$. This means that the zero function belongs to $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ and so the set $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ is non-empty. By using the linearity of the spaces $L^1_w(\mathbb{R}^d)$ and $W(B,Y)(\mathbb{R}^d)$, and the linearity property of the operator F_α , it is easy to see that $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ is a linear space. Let us define a function on this linear space as

$$\|h\|_{A^{B,Y}_{\alpha,w}} = \|h\|_{1,w} + \|F_{\alpha}h\|_{W(B,Y)}$$

for all $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. Since $(L^1_w(\mathbb{R}^d), \|.\|_{1,w})$ and $(W(B,Y)(\mathbb{R}^d), \|.\|_{W(B,Y)})$ are normed spaces, then $\|h\|_{1,w} \ge 0$ and $\|F_{\alpha}h\|_{W(B,Y)} \ge 0$. Then we have

$$\|h\|_{A^{B,Y}_{\alpha,w}} = \|h\|_{1,w} + \|F_{\alpha}h\|_{W(B,Y)} \ge 0$$

for all $h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. By using the norms $\|.\|_{1,w}$ and $\|.\|_{W(B,Y)}$, and the linearity property of the operator F_{α} , we obtain

$$\begin{aligned} \|\lambda h\|_{A^{B,Y}_{\alpha,w}} &= \|\lambda h\|_{1,w} + \|F_{\alpha}\lambda h\|_{W(B,Y)} \\ &= |\lambda| \|h\|_{1,w} + |\lambda| \|F_{\alpha}h\|_{W(B,Y)} = |\lambda| \|h\|_{A^{B,Y}_{\alpha,w}} \end{aligned}$$

and

$$\begin{split} \|h+g\|_{A^{B,Y}_{\alpha,w}} &= \|h+g\|_{1,w} + \|F_{\alpha}(h+g)\|_{W(B,Y)} \\ &= \|h+g\|_{1,w} + \|F_{\alpha}h + F_{\alpha}g\|_{W(B,Y)} \\ &\leq \|h\|_{1,w} + \|g\|_{1,w} + \|F_{\alpha}h\|_{W(B,Y)} + \|F_{\alpha}g\|_{W(B,Y)} \\ &= \|h\|_{A^{B,Y}_{\alpha,w}} + \|g\|_{A^{B,Y}_{\alpha,w}} \end{split}$$

for all $h, g \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ and $\lambda \in \mathbb{C}$. Let $h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. If $||h||_{A_{\alpha,w}^{B,Y}} = 0$, then we get h = 0 by using the norms $||.||_{1,w}$ and $||.||_{W(B,Y)}$. If h = 0, then $F_{\alpha}h = 0$ by (1), and so $||h||_{A_{\alpha,w}^{B,Y}} = 0$. Since the above mentioned properties are satisfied, the function $||.||_{A_{\alpha,w}^{B,Y}}$ is a norm on $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. If we take $B = L^p(\mathbb{R}^d)$ and $Y = L_w^p(\mathbb{R}^d)$, then $W(L^p(\mathbb{R}^d), L_w^p(\mathbb{R}^d))(\mathbb{R}^d) = L_w^p(\mathbb{R}^d)$, [3]. Therefore the space $A_{\alpha,w}^{W,W}(\mathbb{R}^d)$ voincides to the space $A_{\alpha,p}^{W,W}(\mathbb{R}^d)$ which is given in [21].

Theorem 2.2. The space $\left(A_{\alpha,w}^{B,Y}(\mathbb{R}^d), \|.\|_{A_{\alpha,w}^{B,Y}}\right)$ is a Banach space.

Proof. Let $(h_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. Hence, $(h_n)_{n\in\mathbb{N}}$ and $(F_{\alpha}h_n)_{n\in\mathbb{N}}$ are Cauchy sequences in $L_w^1(\mathbb{R}^d)$ and $W(B,Y)(\mathbb{R}^d)$, respectively. It is well known that the spaces $L_w^1(\mathbb{R}^d)$ and $W(B,Y)(\mathbb{R}^d)$ are Banach spaces. Thus there exist $h \in L_w^1(\mathbb{R}^d)$ and $f \in W(B,Y)(\mathbb{R}^d)$ such that $\|h_n - h\|_{1,w} \to 0$ and $\|F_{\alpha}h_n - f\|_{W(B,Y)} \to 0$. Since $(B, \|.\|_B)$ and $(Y, \|.\|_Y)$ are solid translation invariant BF-spaces, then the space $W(B,Y)(\mathbb{R}^d)$ is also a solid translation invariant BF-space [34,35]. Besides, since the space $W(B,Y)(\mathbb{R}^d)$ is a BF-space, then the sequence $(F_{\alpha}h_n)_{n\in\mathbb{N}}$ that satisfies $\|F_{\alpha}h_n - f\|_{W(B,Y)} \to 0$ has a subsequence $(F_{\alpha}h_{n_k})_{n_k\in\mathbb{N}}$ that converges to the function f almost everywhere [4]. Therefore by using the inequality

$$\begin{aligned} |F_{\alpha}h(u) - f(u)| &= \left|F_{\alpha}h(u) - F_{\alpha}h_{n_{k}}(u) + F_{\alpha}h_{n_{k}}(u) - f(u)\right| \\ &\leq \prod_{j=1}^{d} \left|\sqrt{\frac{1 - i\cot\alpha_{j}}{2\pi}}\right| \int_{\mathbb{R}^{d}} |(h_{n_{k}} - h)(t)|dt + |F_{\alpha}h_{n_{k}}(u) - f(u)| \\ &\leq \prod_{j=1}^{d} \left|\sqrt{\frac{1 - i\cot\alpha_{j}}{2\pi}}\right| \, \|h_{n_{k}} - h\|_{1,w} + |F_{\alpha}h_{n_{k}}(u) - f(u)|, \end{aligned}$$

we may write $F_{\alpha}h = f$ almost everywhere. Thus $||h_n - h||_{A^{B,Y}_{\alpha,w}} \to 0$ and $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. This means $(A^{B,Y}_{\alpha,w}(\mathbb{R}^d), ||.||_{A^{B,Y}_{\alpha,w}})$ is a Banach space.

Theorem 2.3. The space $(A_{\alpha,w}^{B,Y}(\mathbb{R}^d), \|.\|_{A_{\alpha,w}^{B,Y}})$ is a Banach algebra with Θ convolution operation.

Proof. The space $(A_{\alpha,w}^{B,Y}(\mathbb{R}^d), \|.\|_{A_{\alpha,w}^{B,Y}})$ is a Banach space by Theorem 2.2. Let $g, h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. Then $g, h \in L^1_w(\mathbb{R}^d)$ and $F_{\alpha}g, F_{\alpha}h \in W(B,Y)(\mathbb{R}^d)$ by the definition of the space $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$. Since the space $L^1_w(\mathbb{R}^d)$ is a Banach algebra with Θ convolution operation (see [21]), we have

 $\|g\Theta h\|_{1,w} \le \|g\|_{1,w} \|h\|_{1,w}.$ (2)

Also, we shall write

$$|F_{\alpha}(g\Theta h)(u)| = \prod_{j=1}^{d} \left| \sqrt{\frac{2\pi}{1 - i\cot\alpha_j}} \right| \exp\left(\sum_{j=1}^{d} -\frac{i}{2}u_j^2\cot\alpha_j\right) |F_{\alpha}g(u)||F_{\alpha}h(u)|$$
(3)

$$\leq |F_{\alpha}h(u)| \int_{\mathbb{R}^d} |g(t)| dt \leq |F_{\alpha}h(u)| ||g||_{1,w}$$

by Theorem 7 in [21]. It is known that the fractional Fourier transform of a function belongs to $C_0(\mathbb{R}^d)$, [19] and so it is continuous on \mathbb{R}^d . Thus $F_\alpha(g\Theta h)$ is a measurable function on \mathbb{R}^d . Since $(B, \|.\|_B)$ and $(Y, \|.\|_Y)$ are solid translation invariant BF-spaces, then the space $W(B, Y)(\mathbb{R}^d)$ is also a solid translation invariant BF-space [34,35]. By using the solidity of the space $W(B,Y)(\mathbb{R}^d)$ and inequality (3), we obtain $F_\alpha(g\Theta h) \in W(B,Y)(\mathbb{R}^d)$ and

$$\|F_{\alpha}(g\Theta h)\|_{W(B,Y)} \le \|F_{\alpha}h\|g\|_{1,w}\|_{W(B,Y)} = \|g\|_{1,w}\|F_{\alpha}h\|_{W(B,Y)}.$$
(4)

Combining (2) and (4), we get

$$\begin{aligned} \|g\Theta h\|_{A^{B,Y}_{\alpha,w}} &= \|g\Theta h\|_{1,w} + \|F_{\alpha}(g\Theta h)\|_{W(B,Y)} \\ &\leq \|g\|_{1,w} \|h\|_{1,w} + \|g\|_{1,w} \|F_{\alpha}h\|_{W(B,Y)} \leq \|g\|_{A^{B,Y}_{\alpha,w}} \|h\|_{A^{B,Y}_{\alpha,w}}. \end{aligned}$$
(5)

Theorem 2.4. The space $(A_{\alpha,w}^{B,Y}(\mathbb{R}^d), \|.\|_{A_{\alpha,w}^{B,Y}})$ is a Banach ideal on $L^1_w(\mathbb{R}^d)$ with Θ convolution operation.

Proof. Let $h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ and $g \in L_w^1(\mathbb{R}^d)$. By the definition of the space $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$, clearly $h \in L_w^1(\mathbb{R}^d)$. Then we have the inequality (2). By using the inequality (3) and solidity of the space $W(B,Y)(\mathbb{R}^d)$, we get $F_\alpha(g\Theta h) \in W(B,Y)(\mathbb{R}^d)$ and the inequality (4). Hence, by combining (2) and (4), we obtain

 $||g\Theta h||_{A^{B,Y}_{\alpha,w}} \le ||g||_{1,w} ||h||_{A^{B,Y}_{\alpha,w}}.$

Besides, by the definition of the norm $\|.\|_{A^{B,Y}_{\alpha,w}}$, we have $\|h\|_{1,w} \leq \|h\|_{A^{B,Y}_{\alpha,w}}$. Thus, the space $\left(A^{B,Y}_{\alpha,w}(\mathbb{R}^d), \|.\|_{A^{B,Y}_{\alpha,w}}\right)$ is a Banach ideal on $L^1_w(\mathbb{R}^d)$.

Proposition 2.5. Let *w* be a weight function of regular growth on \mathbb{R}^d . If $C_c(\mathbb{R}^d) \subset W(B,Y)(\mathbb{R}^d)$, then $A_{a,w}^{B,Y}(\mathbb{R}^d)$ is dense in $L_w^1(\mathbb{R}^d)$.

Proof. Let us take a set $F_{0,w}^{\alpha}(\mathbb{R}^d) = \{g \in L_w^1(\mathbb{R}^d) | F_{\alpha}g \in C_c(\mathbb{R}^d)\}$. Then it is known that the set $F_{0,w}^{\alpha}(\mathbb{R}^d)$ is dense in $L_w^1(\mathbb{R}^d)$ by Corollary 2.14 in [36]. Since $C_c(\mathbb{R}^d) \subset W(B,Y)(\mathbb{R}^d)$, then we get

$$F^{\alpha}_{0,w}(\mathbb{R}^d) \subset A^{B,Y}_{\alpha,w}(\mathbb{R}^d) \subset L^1_w(\mathbb{R}^d)$$

By using this inclusion and the density of $F_{0,w}^{\alpha}(\mathbb{R}^d)$ in $L_w^1(\mathbb{R}^d)$, it is easy to see that $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ is dense in $L_w^1(\mathbb{R}^d)$.

Proposition 2.6. Let *w* be a weight function of regular growth on \mathbb{R}^d . If $C_c(\mathbb{R}^d) \subset W(B,Y)(\mathbb{R}^d)$, then $A_{a,w}^{B,Y}(\mathbb{R}^d)$ is an abstract Segal algebra with respect to $L^1_w(\mathbb{R}^d)$.

Proof. The space $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ is a Banach algebra and also is a Banach ideal on $L_w^1(\mathbb{R}^d)$, in addition the inequality $\|g\Theta h\|_{A_{\alpha,w}^{B,Y}} \leq \|g\|_{1,w} \|h\|_{A_{\alpha,w}^{B,Y}}$ holds for all $g, h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ by Theorem 2.3 and Theorem

2.4. Furthermore, from the structure of the norm $\|.\|_{A^{B,Y}_{\alpha,w}}$, we may write an inequality $\|h\|_{1,w} \leq \|h\|_{A^{B,Y}_{\alpha,w}}$ for all $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. Finally, it is shown that $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ is dense in $L^1_w(\mathbb{R}^d)$ by Proposition 2.5. Thus under the given conditions, $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ is an abstract Segal algebra with respect to $L^1_w(\mathbb{R}^d)$.

Theorem 2.7. Let *B* be a strongly character invariant space on \mathbb{R}^d . Suppose that translation and character operators are continuous in B and also $C_c(\mathbb{R}^d)$ is dense in Y. Let $z = (-y_1 \cot \alpha_1, \ldots, -y_d \cot \alpha_d)$ for all $y = (y_1, \ldots, y_d) \in \mathbb{R}^d$.

- 1. $T_y M_z h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ and
- $||T_{y}M_{z}h||_{A^{B,Y}_{\alpha,w}} \le w(y)||h||_{A^{B,Y}_{\alpha,w}}$

for all $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$.

2. Assume that $C_c(\mathbb{R}^d) \cap A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ is dense in $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. Then the mapping $y \to T_y M_z h$ from \mathbb{R}^d into $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ is continuous.

Proof. 1. Let $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. Then the definition of $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ implies $h \in L^1_w(\mathbb{R}^d)$ and $F_{\alpha}h \in W(B,Y)(\mathbb{R}^d)$. It is well known that the space $L^1_w(\mathbb{R}^d)$ is translation and character invariant space and the inequality $||T_vh||_{1,w} \le w(y)||h||_{1,w}$ holds for all $y \in \mathbb{R}^d$. Therefore we shall write

$$\|T_{y}M_{z}h\|_{1,w} \le w(y)\|h\|_{1,w}.$$
(6)

Let us take $v = (-y_1 \csc \alpha_1, \cdots, -y_d \csc \alpha_d)$ for all $y = (y_1, \cdots, y_d) \in \mathbb{R}^d$. Thus we have

$$F_{\alpha}(T_{y}M_{z}h)(u) = \exp\left(\sum_{j=1}^{d} \frac{i}{2}y_{j}^{2}\cot\alpha_{j}\right)M_{v}F_{\alpha}h(u)$$
(7)

by the equality (2.55) in [36]. Since B is strongly character invariant, then $W(B,Y)(\mathbb{R}^d)$ is also strongly character invariant by Corollary 1.4 in [35]. Hence we obtain

$$\exp\left(\sum_{j=1}^{d} \frac{i}{2} y_{j}^{2} \cot \alpha_{j}\right) M_{\nu} F_{\alpha} h \in W(B, Y)(\mathbb{R}^{d})$$

and

$$\|F_{\alpha}(T_{y}M_{z}h)\|_{W(B,Y)} = \left| \exp\left(\sum_{j=1}^{d} \frac{i}{2}y_{j}^{2}\cot\alpha_{j}\right) \right| \|M_{\nu}F_{\alpha}h\|_{W(B,Y)} = \|F_{\alpha}h\|_{W(B,Y)}.$$
(8)

Consequently, combining (6) and (8), we get

 $||T_y M_z h||_{A^{B,Y}_{\alpha,w}} \le w(y) ||h||_{A^{B,Y}_{\alpha,w}}.$

2. We will show continuity at 0. Assume that $h \in A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ and $(y_n)_{n \in \mathbb{N}} \subset \mathbb{R}^d$ such that $\lim_{n \to \infty} y_n = 0$. Let $z = (-y_1 \cot \alpha_1, \dots, -y_d \cot \alpha_d)$ for all $y = (y_1, \dots, y_d) \in \mathbb{R}^d$. It is known that the mapping $y \to T_y M_z$ h is continuous from \mathbb{R}^d into $L_w^1(\mathbb{R}^d)$ by Theorem 2.1 in [36]. Now, let us take the sequences $(z_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ in \mathbb{R}^d where *j* sequences of coordinates $z_{nj} = -y_{nj}\cot\alpha_j$ and $v_{nj} = -y_{nj}\csc\alpha_j$. By the continuity of $y \to T_y M_z$ h, we shall write

$$\|T_{y_n}M_{z_n}h - h\|_{1,w} \to 0$$
(9)

as n approaches infinity. From the equality (6), we get

$$\begin{aligned} \left\| F_{\alpha} \left(T_{y_n} M_{z_n} h - h \right) \right\|_{W(B,Y)} &= \left\| F_{\alpha} \left(T_{y_n} M_{z_n} h \right) - F_{\alpha} h \right\|_{W(B,Y)} \\ &\leq \left\| \exp \left(\sum_{j=1}^{d} \frac{i}{2} y_{n_j}^2 \cot \alpha_j \right) M_{v_n} F_{\alpha} h \right. \\ &\left. - \exp \left(\sum_{j=1}^{d} \frac{i}{2} y_{n_j}^2 \cot \alpha_j \right) F_{\alpha} h \right\|_{W(B,Y)} \\ &+ \left\| \exp \left(\sum_{j=1}^{d} \frac{i}{2} y_{n_j}^2 \cot \alpha_j \right) F_{\alpha} h - F_{\alpha} h \right\|_{W(B,Y)} \\ &= \left\| M_{v_n} F_{\alpha} h - F_{\alpha} h \right\|_{W(B,Y)} \\ &+ \left| \exp \left(\sum_{j=1}^{d} \frac{i}{2} y_{n_j}^2 \cot \alpha_j \right) - 1 \right| \left\| F_{\alpha} h \right\|_{W(B,Y)}. \end{aligned}$$
(10)

Let us take $v = (-y_1 \csc \alpha_1, \dots, -y_d \csc \alpha_d)$ for all $y = (y_1, \dots, y_d) \in \mathbb{R}^d$. Obviously, the mapping $y \to v$ from \mathbb{R}^d into \mathbb{R}^d is continuous. Using that is given in the hypothesis, we say that the mapping $y \to M_y$ h from \mathbb{R}^d into $W(B, Y)(\mathbb{R}^d)$ is continuous (see Lemma 1.5 in [35]). Therefore the composition mapping $y \to M_v$ h from \mathbb{R}^d into $W(B, Y)(\mathbb{R}^d)$ is continuous. In the other words, we can write

$$\left\|M_{\nu_n}F_{\alpha}h - F_{\alpha}h\right\|_{W(B,Y)} \to 0 \tag{11}$$

as *n* approaches infinity. Let us define $p_n = \exp\left(\sum_{j=1}^{d} \frac{i}{2}y_{nj}^2 \cot \alpha_j\right) - 1$ for all $n \in \mathbb{N}$. By using convergence of the sequence $(y_n)_{n \in \mathbb{N}}$ to zero, we get $|p_n| \to 0$ as *n* approaches infinity. By combining (9), (10) and (11) we obtain

$$\begin{split} \left\| T_{y_n} M_{z_n} h - h \right\|_{A_{\alpha,w}^{B,Y}} &= \left\| T_{y_n} M_{z_n} h - h \right\|_{1,w} + \left\| F_\alpha (T_{y_n} M_{z_n} h - h) \right\|_{W(B,Y)} \\ &\leq \left\| T_{y_n} M_{z_n} h - h \right\|_{1,w} + \left\| M_{v_n} F_\alpha h - F_\alpha h \right\|_{W(B,Y)} \\ &+ |p_n| \| F_\alpha h \|_{W(B,Y)} \to 0 \end{split}$$

as *n* approaches infinity. This means that the function $y \to T_y M_z h$ is continuous at 0. Let us take any fixed point $y^* = (y_1^*, \dots, y_d^*) \in \mathbb{R}^d$. Hence we get

$$T_{y-y^*}M_{z-z^*}(T_{y^*}M_{z^*}h)(x) = \exp(iy^*z - iy^*z^*)T_yM_zh(x),$$

where $z^* = (-y_1^* \cot \alpha_1, \dots, -y_d^* \cot \alpha_d)$ for all $x \in \mathbb{R}^d$ by the proof of Theorem 2.17 (2) in [36]. Therefore, we may write

$$\left\|T_{y}M_{z}h - T_{y^{*}}M_{z^{*}}h\right\|_{A^{B,Y}_{\alpha,w}} = \left\|\exp(iy^{*}z^{*} - iy^{*}z)T_{y-y^{*}}M_{z-z^{*}}(T_{y^{*}}M_{z^{*}}h) - T_{y^{*}}M_{z^{*}}h\right\|_{A^{B,Y}_{\alpha,w}}$$

Let us take $T_{y^*}M_{z^*}h = g$. Then $g \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ by the first part of this theorem. Thus we have

$$\begin{split} \left\| T_{y}M_{z}h - T_{y^{*}}M_{z^{*}}h \right\|_{A^{B,Y}_{\alpha,w}} &= \left\| \exp(iy^{*}z^{*} - iy^{*}z)T_{y-y^{*}}M_{z-z^{*}}g - g \right\|_{A^{B,Y}_{\alpha,w}} \\ &\leq \left\| T_{y-y^{*}}M_{z-z^{*}}g - g \right\|_{A^{B,Y}_{\alpha,w}} \\ &+ \left\| g \right\|_{A^{B,Y}_{\alpha,w}} |\exp(iy^{*}z) - \exp(iy^{*}z^{*})|. \end{split}$$

Let $\varepsilon > 0$ be given. By using continuity of the function $y \to \exp(iy^*z)$ from \mathbb{R}^d into \mathbb{C} and continuity at zero of the function $y \to T_y M_z h$, there exists $\delta > 0$ such that

$$\left\|T_{y}M_{z}h - T_{y^{*}}M_{z^{*}}h\right\|_{A^{B,Y}_{\alpha,w}} < \varepsilon$$

when $||y - y^*|| < \delta$. Since y^* is an arbitrary fixed point, then the function $y \to T_y M_z h$ is continuous on \mathbb{R}^d .

Proposition 2.8. Assume that all the hypotheses given in Theorem 2.7 are satisfied. Let $C_c(\mathbb{R}^d)$ be a dense subset of $W(B,Y)(\mathbb{R}^d)$ and w be a weight function of regular growth on \mathbb{R}^d . Then $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ has an approximate identity with compactly supported fractional Fourier transforms.

Proof. Let us define a set $H = \{h_1, h_2, \dots, h_k\}$ such that $h_j \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ for all $j = 1, 2, \dots, k$. Let $h \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ and $z = (-y_1 \cot \alpha_1, \dots, -y_d \cot \alpha_d)$ for all $y = (y_1, \dots, y_d) \in \mathbb{R}^d$. It is shown that the function $y \to T_y M_z$ h from \mathbb{R}^d into $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ is continuous by Theorem 2.7. Let $\varepsilon > 0$ be given. By the continuity of $y \to T_y M_z$ h, there exist positive δ_j such that

$$\left\|T_{\mathbf{y}}M_{\mathbf{z}}h_{j}-h_{j}\right\|_{A^{B,Y}_{\alpha,w}}<\frac{\varepsilon}{2}$$

whenever $||y|| < \delta_j$ for all $j = 1, 2, \dots, k$. Let $\delta = \min\{\delta_j | j = 1, 2, \dots, k\}$. Then we get

$$\left\|T_{\mathbf{y}}M_{\mathbf{z}}h_{j}-h_{j}\right\|_{A^{B,Y}_{\alpha,w}} < \frac{\varepsilon}{2}$$
⁽¹²⁾

whenever $||y|| < \delta$ for all $j = 1, 2, \dots, k$. Let $g \in C_c(\mathbb{R}^d) \subset L^1_w(\mathbb{R}^d)$ be a positive function that $\sup pg \subset \{x \in \mathbb{R}^d | \|x\| < \delta\}$

and $\int_{\mathbb{R}^d} g(x) \, dx = 1$. Therefore, by the definition of Θ convolution, we shall write

$$(g\Theta h_j)(x) - h_j(x) = \int_{\mathbb{R}^d} g(y) T_y M_z h_j(x) \, dy - h_j(x) = \int_{\mathbb{R}^d} g(y) \left(T_y M_z h_j(x) - h_j(x) \right) \, dy$$

for all $x \in \mathbb{R}^d$ and $j = 1, 2, \dots, k$. By using (12), we obtain

$$\|g\Theta h_{j} - h_{j}\|_{A^{B,Y}_{\alpha,w}} = \left\| \int_{\mathbb{R}^{d}} g(y) (T_{y}M_{z}h_{j} - h_{j}) dy \right\|_{A^{B,Y}_{\alpha,w}}$$

$$\leq \int_{\mathrm{supp}g} |g(y)| \|T_{y}M_{z}h_{j} - h_{j}\|_{A^{B,Y}_{\alpha,w}} dy$$

$$< \frac{\varepsilon}{2} \int_{\mathrm{supp}g} |g(y)| dy = \frac{\varepsilon}{2}$$
(13)

725

for all $j = 1, 2, \dots, k$. Let $K = \max\{\|h_j\|_{A_{\alpha,w}^{B,Y}}| j = 1, 2, \dots, k\}$. Let us take the set $F_{0,w}^{\alpha}(\mathbb{R}^d) = \{g \in L_w^1(\mathbb{R}^d) | F_{\alpha}g \in C_c(\mathbb{R}^d)\}$. Then it is known that the set $F_{0,w}^{\alpha}(\mathbb{R}^d)$ is dense in $L_w^1(\mathbb{R}^d)$ by Corollary 2.14 in [36]. From this density, there exists a function $f \in F_{0,w}^{\alpha}(\mathbb{R}^d)$ where

$$\|\mathbf{g} - f\|_{1,w} < \frac{\varepsilon}{2\mathbf{K}}.$$
(14)

Since $C_c(\mathbb{R}^d)$ is a subset of $W(B,Y)(\mathbb{R}^d)$, then $f \in A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$. By using (13) and (14), we get

$$\begin{split} \|f\Theta h_j - h_j\|_{A^{B,Y}_{\alpha,w}} &\leq \|f\Theta h_j - g\Theta h_j\|_{A^{B,Y}_{\alpha,w}} + \|g\Theta h_j - h_j\|_{A^{B,Y}_{\alpha,w}} \\ &\leq \|g - f\|_{1,w} \|h_j\|_{A^{B,Y}_{\alpha,w}} + \|g\Theta h_j - h_j\|_{A^{B,Y}_{\alpha,w}} < \varepsilon \end{split}$$

for all $j = 1, 2, \dots, k$. Hence, for every infinite subset $H = \{h_1, h_2, \dots, h_k\}$ of $A^{B,Y}_{\alpha,w}(\mathbb{R}^d)$ and every $\varepsilon > 0$ there exists a function $f \in F^{\alpha}_{0,w}(\mathbb{R}^d)$ such that

$$\|f\Theta h_j - h_j\|_{A^{B,Y}_{\alpha,w}} < \varepsilon \tag{15}$$

for all $j = 1, 2, \dots, k$. Therefore, there exists an approximate identity of $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ that is defined by functions $f \in F_{0,w}^{\alpha}(\mathbb{R}^d)$ which ensure inequality (15) for every infinite subset $H = \{h_1, h_2, \dots, h_k\}$ of $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ and every $\varepsilon > 0$, by Proposition 1.3 in [37]. This means $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ has an approximate identity with compactly supported fractional Fourier transforms.

III. CONCLUSION

In this study, we investigate a subalgebra of $L_w^1(\mathbb{R}^d)$ (with Θ convolution operation) that fractional Fourier transforms of its elements belong to $W(B, Y)(\mathbb{R}^d)$. Let G be a locally compact abelian group and \widehat{G} be the dual group of G. It is known that the space $A_w^{B,Y}(G)$ consisting of all functions $h \in L_w^1(G)$ whose Fourier transforms belong to Wiener-type spaces W(B, Y), [35]. Let us take $\alpha_j = \frac{\pi}{2}$ for all j =1,2,..., d such that $\alpha = (\alpha_1, \alpha_2, ..., \alpha_d)$. Therefore, the Θ convolution opeator and the fractional Fourier transform coincide the usual convolution and the Fourier transform, respectively. Hence the space $A_{\alpha,w}^{B,Y}(\mathbb{R}^d)$ corresponds the space $A_w^{B,Y}(\mathbb{R}^d)$ which is given in [35]. This means that this study extend some results of [35] for $G = \mathbb{R}^d$.

IV. REFERENCES

- [1] W. Rudin, Real and Complex Analysis, New York: MacGraw-Hill, 1966.
- [2] H. Reiter and J. D. Stegeman, *Classical Harmonic Analysis and Locally Compact Groups*. Oxford: Clarendon Press, , 2000.
- [3] H. G. Feichtinger, "Banach convolution algebras of Wiener type," in *Functions, Series, Operators,* Budapest, 1980, vol. 38, pp. 509–524.
- [4] H. G. Feichtinger, "On a class of convolution algebras of functions," Annales de l'institut Fourier, vol. 27, no. 3, pp. 135–162, 1977.
- [5] W. Rudin, Functional Analysis, New York: MacGraw-Hill, 1973.

- [6] H. Feichtinger, C. Graham, and E. Lakien, "Nonfactorization in commutative, weakly selfadjoint Banach algebras," *Pacific Journal of Mathematics*, vol. 80, no. 1, pp. 117–125, 1979.
- [7] H. Wang, *Homogeneous Banach Algebras*, New York and Basel: Marcel Dekker Inc., 1977.
- [8] J. T. Burnham, "Closed ideals in subalgebras of Banach algebras. I," Proceedings of the American Mathematical Society, vol. 32, no. 2, pp. 551–555, 1972.
- [9] H. G. Feichtinger and K. H. Gröchenig, "Banach spaces related to integrable group representations and their atomic decompositions, I," *Journal of Functional Analysis*, vol. 86, no. 2, pp. 307–340, 1989.
- [10] R. H. Fischer, A. T. Gürkanli, and T. S. Liu, "On a family of Wiener type spaces," *International Journal of Mathematics and Mathematical Sciences*, vol. 19, no. 1, pp. 57–66, 1996.
- [11] B. Sağır and A. T. Gürkanli, "The Wiener type spaces B^{p,q}_{wn}(G), L_w(G)," *İstanbul University Science Faculty the Journal of Mathematics Physics and Astronomy*, vol. 57, pp. 53–61, 1998.
- [12] I. Aydın, "On variable exponent amalgam spaces," Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, vol. 20, no. 3, pp. 5–20, 2012.
- [13] L. B. Almeida, "The fractional Fourier transform and time-frequency representations," *IEEE Transactions on Signal Processing*, vol. 42, no. 11, pp. 3084–3091, 1994.
- [14] L. B. Almeida, "Product and convolution theorems for the fractional Fourier transform," *IEEE Signal Processing Letters*, vol. 4, no. 1, pp. 15–17, 1997.
- [15] V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," IMA Journal of Applied Mathematics, vol. 25, no. 3, pp. 241–265, 1980.
- [16] H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Chichester: Wiley, 2001.
- [17] A. I. Zayed, "On the relationship between the Fourier and fractional Fourier transforms," *IEEE Signal Processing Letters*, vol. 3, no. 12, pp. 310–311, 1996.
- [18] A. Bultheel and H. Martínez, "A shattered survey of the Fractional Fourier Transform," *Report TW*, vol. 337, 2002.
- [19] R. Kamalakkannan and R. Roopkumar, "Multidimensional fractional Fourier transform and generalized fractional convolution," *Integral Transforms and Special Functions*, vol. 31, no. 2, pp. 152–165, 2020.
- [20] A. K. Singh and R. Saxena, "On convolution and product theorems for FRFT," *Wireless Personal Communications*, vol. 65, no. 1, pp. 189–201, 2012.
- [21] E. Toksoy and A. Sandıkçı, "On function spaces with fractional Fourier transform in weighted Lebesgue spaces," *Journal of Inequalities and Applications*, vol. 2015, no. 1, pp. 1–10, 2015.
- [22] R. Larsen, T. Liu, and J. Wang, "On functions with Fourier transforms in L_p," *Michigan Mathematical Journal*, vol. 11, no. 4, pp. 369–378, 1964.
- [23] H. C. Lai, "On some properties of A^p(G)-algebras," *Proceedings of the Japan Academy*, vol. 45, no. 7, pp. 572–576, 1969.

- [24] H. C. Lai, "Remark on the A^p(G)-algebras," *Proceedings of the Japan Academy*, vol. 46, no. 1, pp. 58–63, 1970.
- [25] J. C. Martin and L. Y. Yap, "The algebra of functions with Fourier transforms in L_p," *Proceedings of the American Mathematical Society*, pp. 217–219, 1970.
- [26] H. G. Feichtinger and A. T. Gürkanli, "On a family of weighted convolution algebras," *International Journal of Mathematics and Mathematical Sciences*, vol. 13, no. 3, pp. 517–525, 1990.
- [27] R. H. Fischer, A. T. Gürkanli, and T. S. Liu, "On a family of weighted spaces," *Mathematica Slovaca*, vol. 46, no. 1, pp. 71–82, 1996.
- [28] L. Y. Yap, "On Two classes of subalgebras of L¹(G)," *Proceedings of the Japan Academy*, vol. 48, no. 5, pp. 315–319, 1972.
- [29] I. Aydin and B. Sağir, "On functions with Fourier transforms in A^{lip}_p(G)," Demonstratio Mathematica, vol. 41, no. 2, pp. 425–432, 2008.
- [30] I. Eryilmaz and C. Duyar, "On A^{lip}_{p,q}(G) spaces," Studia. Universitatis Babeş-Bolyai Mathematica, vol. 56, no. 1, 2011.
- [31] C. Unal and I. Aydin, "Some results on a weighted convolution algebra," in *Proceedings of the Jangjeon Mathematical Society*, 2015, vol. 18, no. 1, pp. 109–127.
- [32] A. Sandıkçı and A. T. Gürkanlı, "Gabor analysis of the spaces M(p,q,w)(R^d) and S(p,q,w,ω)(R^d)," Acta Mathematica Scientia, vol. 31, no. 1, pp. 141–158, 2011.
- [33] O. Kulak and A. T. Gürkanlı, "On function spaces with wavelet transform in $L_w^p(\mathbb{R}^d \times \mathbb{R}_+)$," *Hacettepe Journal of Mathematics and Statistics*, vol. 40, no. 2, pp. 163–177, 2011.
- [34] H. G. Feichtinger and K. H. Gröchenig, "Banach spaces related to integrable group representations and their atomic decompositions, I," in *Fundamental Papers in Wavelet Theory*, Princeton University Press, 2009, pp. 408–441.
- [35] B. Sağir, "On functions with Fourier transforms in W(B,Y)," *Demonstratio Mathematica*, vol. 33, no. 2, pp. 355–364, 2000.
- [36] A. Sandıkçı and E. Toksoy, "On an abstract Segal algebra under fractional convolution," *Montes Taurus Journal of Pure and Applied Mathematics*, vol. 4, no. 1, pp. 1–22, 2022.
- [37] R. S. Doran and J. Wichmann, *Approximate Identities and Factorization in Banach Modules*, vol. 768. Springer-Verlag, 1979.