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ABSTRACT 
The purpose of this paper is to introduce and study a function space 𝐴 ,

, ℝ  to be a linear space of 
functions ℎ ∈ 𝐿 ℝ  whose fractional Fourier transforms 𝐹 ℎ belong to the Wiener-type space 
𝑊(𝐵, 𝑌) ℝ , where 𝑤 is a Beurling weight function on ℝ . We show that this space becomes a 
Banach algebra with the sum norm ‖ℎ‖ , + ‖𝐹 ℎ‖ ( , ) and 𝛩 convolution operation under some 
conditions. We find an approximate identity in this space and show that this space is an abstract Segal 
algebra with respect to 𝐿 ℝ  under some conditions. 
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Kesirli Fourier Dönüşümleri Wiener-tipi Uzaylarda olan Fonksiyon 
Uzayları Üzerine Bir Not 

 

ÖZET 
Bu çalışmanın amacı 𝑤, ℝ  kümesi üzerinde bir Beurling ağırlık fonksiyonu olmak üzere 𝐹 ℎ kesirli 
Fourier dömüşümü 𝑊(𝐵, 𝑌) ℝ  Wiener-tipi uzayına ait ℎ ∈ 𝐿 ℝ  fonksiyonlarının bir vektör 

uzayı olan 𝐴 ,
, ℝ  fonksiyon uzayını tanıtmak ve çalışmaktır. Bu uzayın bazı koşullar altında, 

‖ℎ‖ , + ‖𝐹 ℎ‖ ( , ) toplam normu ve 𝛩 girişim işlemiyle birlikte bir Banach cebiri olduğu 

gösterildi. Bu uzayda bir yaklaşık birim bulundu ve bu uzayın 𝐿 ℝ  uzayına göre bir soyut Segal 
cebiri olduğu gösterildi. 
 
Anahtar Kelimeler: Kesirli Fourier dönüşümü, girişim işlemi, Wiener-tipi uzaylar 
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I. INTRODUCTION 
 

In this paper, we study on ℝ . 𝐶 ℝ  denotes the space of all continuous, complex-valued functions 
on ℝ  with compact support, and 𝐶 (ℝ ) indicates the space of continuous, complex-valued functions 
on ℝ  which vanish at infinity, [1]. 𝐿 ℝ , ‖. ‖  denotes the usual Lebesgue spaces for 1 ≤ 𝑝 <

∞. Throughout this paper, we will use Beurling weights, i.e. measurable and locally bounded 
functions 𝑤 on ℝ  which satisfy 𝑤(𝑥) ≥ 1 and 𝑤(𝑥 + 𝑦) ≤ 𝑤(𝑥)𝑤(𝑦), for all 𝑥, 𝑦 ∈ ℝ . Let 𝜂 ≥ 1. 

A weight function 𝑤 is called weighted function of regular growth if 𝑤 ≤ 𝑤(𝑥) and there are 

constants 𝐶 > 0 and 𝜎 > 0 such that 𝑤(𝜂𝑥) ≤ 𝐶𝜂 𝑤(𝑥) for all 𝑥 ∈ ℝ . 𝐿 ℝ  denotes weighted 
Lebesgue space i.e.  
 
𝐿 ℝ = ℎ|ℎ𝑤 ∈ 𝐿 ℝ , 
 
for 1 ≤ 𝑝 < ∞. 𝐿 ℝ  is a Banach space with the norm ‖ℎ‖ , = ‖ℎ𝑤‖ , [2].  
 
Let 𝐵 be any subset of ℝ . 𝜒  indicates characteristic function of 𝐵. The space 𝐿 ℝ  is the set of 
all measurable functions (equivalence classes) ℎ such that ℎ𝜒 ∈ 𝐿 ℝ  for any compact subset 𝐾 of 
ℝ . This space is topological vector space with the senimorms ℎ → ‖ℎ𝜒 ‖ . A BF-space on ℝ  is a 
Banach space that is continuously embedded into 𝐿 ℝ , [3]. A normed space of measurable 
functions is called F-space, if every convergent sequence has a subsequence converging almost 
everywhere. If the space is complete, then it is called BF-spaces, [4]. A normed space (𝐴, ‖. ‖ ) of 
measurable functions is called solid, if for all 𝑓 ∈ 𝐴 and any measurable function ℎ satisfying 
|ℎ(𝑥)| ≤ |𝑓(𝑥)| almost everywhere, implies ℎ ∈ 𝐴 and ‖ℎ‖ ≤ ‖𝑓‖ , [4]. Let ℎ be any function from 
ℝ  into ℂ. The translation and character (modulation) operators are defined by 𝑇 ℎ(𝑥) = ℎ(𝑥 − 𝑦) 
and 𝑀 ℎ(𝑥) = exp(𝑖𝜔𝑥)ℎ(𝑥) for all 𝑦, 𝜔 ∈ ℝ , respectively, [5]. (𝑋, ‖. ‖ ) is called (strongly) 
translation invariant if 𝑇 ℎ ∈ 𝑋 (and 𝑇 ℎ = ‖ℎ‖  i.e. strongly) for all ℎ ∈ 𝑋 and 𝑦 ∈ ℝ . The 

strongly character invariance similar to definition of the strongly translation invariance. A 
commutative Banach algebra (𝐵, ‖. ‖ )  that is a subset of commutative Banach algebra (𝐴, ‖. ‖ ) is 
called a Banach ideal of 𝐴 if ℎ𝑓 ∈ 𝐵 and the inequalities ‖ℎ‖ ≤ ‖ℎ‖  and ‖ℎ𝑓‖ ≤ ‖ℎ‖ ‖𝑓‖  hold 
for all ℎ ∈ 𝐵, 𝑓 ∈ 𝐴, [6]. A Banach space 𝑋 ℝ , ‖. ‖  of complex-valued measurable functions on 
ℝ  is called homogeneous Banach space if it is strongly translation invariant and the function 𝑦 →
𝑇 ℎ from ℝ  into 𝑋 ℝ  is continuous for ℎ ∈ 𝑋 ℝ , [7]. Let (𝑋, ‖. ‖ ) be a Banach algebra. 
(𝑌, ‖. ‖ ) is said to be an abstract Segal algebra with respect to (𝑋, ‖. ‖ ) if it has the following 
properties [8]:  
 

1. (𝑌, ‖. ‖ ) is a Banach algebra and is a dense ideal in 𝑋. 
2. There exists 𝑀 > 0 such that ‖ℎ‖ ≤ 𝑀 ‖ℎ‖  for all ℎ ∈ 𝑌. 
3. There exists 𝑀 > 0 such that ‖ℎ𝑓‖ ≤ 𝑀 ‖ℎ‖ ‖𝑓‖  for all ℎ, 𝑓 ∈ 𝑌. 

 
In order to introduce the Wiener-type space, let us give some expressions: For any Banach space 
(𝐵, ‖. ‖ ) there exists a homogeneous Banach space (𝐴, ‖. ‖ ), continuously embedded into 

𝐶 ℝ , ‖. ‖ , which is a regular Banach algebra under pointwise multiplication operation (i.e. 
separating points from closed sets), and which is closed under complex conjugation, such that 
(𝐵, ‖. ‖ ) is continuously embedded into topological dual of 𝐴 ℝ = A ℝ ∩ 𝐶 ℝ  and is a 
Banach module over 𝐴 under pointwise multiplication operation (i.e. ‖𝑓𝑔‖ ≤ ‖𝑔‖ ‖𝑓‖  for all  𝑓 ∈

𝐴, 𝑔 ∈ 𝐵). Here 𝐴 ℝ  that is given above is a topological vector space with respect to usual 
inductive limit topology. Let 𝐵 ℝ  be the space of all ℎ ∈ 𝐴 ℝ  such that 𝜑ℎ ∈ 𝐵 for all 𝜑 ∈

𝐴 ℝ , where 𝐴 ℝ  is the topological dual of 𝐴 ℝ . The space 𝐵 ℝ  is a topological vector 
space with respect to the family of seminorms ℎ → ‖𝜑ℎ‖ . Let 𝑂 be any open subset of ℝ  with 
compact closure. Let (𝑌, ‖. ‖ ) be a solid translation invariant BF-space on ℝ . Then the Wiener-type 



719 

 

space 𝑊(𝐵, 𝑌) ℝ  consist of all 𝑔 ∈ 𝐵 ℝ  such that the mapping 𝐺 ≔ 𝑥 → ‖𝑔‖ ( ) belongs to 
the space 𝑌, where ‖𝑔‖ ( ) is the restriction norm of 𝑔 over 𝑥𝑂. This space has a norm that defined 
as ‖𝑔‖ ( , ) = ‖𝐺‖ . The spaces 𝐵 and 𝑌 are called the local and the global component of 

𝑊(𝐵, 𝑌) ℝ , respectively, [3]. Let 𝑓 ∈ 𝐶 ℝ  be any non-zero window-function and ℎ ∈

𝐵 ℝ . The control function 𝐾(𝑓, ℎ) is defined as 𝐾(𝑓, ℎ)(𝑦) = ‖ 𝑇 𝑓 ℎ‖  for 𝑦 ∈ ℝ . This 
function is a continuous function from ℝ  into (0, ∞). Then we also define the Wiener-type space 
𝑊(𝐵, 𝑌) ℝ  as 
 
𝑊(𝐵, 𝑌) ℝ = ℎ ∈ 𝐵 ℝ 𝐾(𝑓, ℎ) ∈ 𝑌 . 
 
This space is endowed with the norm ‖ℎ‖ ( , ) = ‖𝐾(𝑓, ℎ)‖ , [9]. Some families of Wiener-type 
spaces are studied in [10–12]. 
 
Let ℎ ∈ 𝐿 (ℝ). The Fourier transform ℎ (or 𝐹ℎ) of the function ℎ is defined as  
 

ℎ(𝜔) = 𝐹ℎ(𝜔) = √2𝜋 ∫ ℎ(𝑥)exp(−𝑖𝜔𝑥) 𝑑𝑥. 
 
The fractional Fourier transform is a generalization of the Fourier transform with a paramater 𝛼. Let 𝛿 

be Dirac delta function (i.e. 𝛿(𝑥) =
∞, 𝑥 = 0
0, 𝑥 ≠ 0

 and ∫ 𝛿(𝑥) 𝑑𝑥 = 1). The fractional Fourier 

transform with angle 𝛼 of ℎ ∈ 𝐿 (ℝ) is given by 
 

𝐹 ℎ(𝑥) = 𝐾 (𝑥, 𝑦)ℎ(𝑦)𝑑𝑦 

 
such that 
 

𝐾 (𝑥, 𝑦) =

⎩
⎪
⎨

⎪
⎧ 1 − 𝑖cot𝛼

2𝜋
exp

𝑖

2
(𝑥 + 𝑦 )cot𝛼 − 𝑖𝑥𝑦cosec𝛼 , 𝛼 ≠ 𝑚𝜋, 𝑚 ∈ ℤ              

𝛿(𝑦 − 𝑥),                                                                      𝛼 = 2𝑚𝜋, 𝑚 ∈ ℤ            

𝛿(𝑦 + 𝑥),                                                                      𝛼 = (2𝑚 + 1)𝜋, 𝑚 ∈ ℤ.

 

 
If we take 𝛼 = , then the fractional Fourier transform coincides the Fourier transform, [13–17]. The 

definition of  the fractional Fourier transform on ℝ  is given below [18]: Let us take  𝛼 = (𝛼 , ⋯ , 𝛼 ) 
such that each 𝛼  is related to j-th coordinates of the variables of the function 𝐾 (𝑥, 𝑦), where 𝑥 =

(𝑥 , ⋯ , 𝑥 ), 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . Then the fractional Fourier transform of ℎ ∈ 𝐿 ℝ  is 
 

𝐹 ℎ(𝑥) = ⋯ 𝐾 (𝑥, 𝑦)ℎ(𝑦)𝑑𝑦 

 
such that 
 
𝐾 (𝑥, 𝑦) = 𝐾( ,⋯, )(𝑥 , ⋯ , 𝑥 ; 𝑦 , ⋯ , 𝑦 ) = 𝐾 (𝑥 , 𝑦 )𝐾 (𝑥 , 𝑦 ) ⋯ 𝐾 (𝑥 , 𝑦 ). 
 
Throughout this paper, we get 𝛼 ≠ 𝑚𝜋, 𝑚 ∈ ℤ for all j = 1,2, ⋯ , d. Therefore, the fractional Fourier 

transform of ℎ ∈ 𝐿 ℝ  is taken 
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𝐹 ℎ(𝑥) =  ∏ ℎ(𝑦)exp ∑ 𝑥 + 𝑦 cot𝛼 − 𝑖𝑥 y cosec𝛼 𝑑𝑦
ℝ

. (1) 

 
The fractional Fourier transform 𝐹 ℎ of ℎ ∈ 𝐿 ℝ  belongs to 𝐶 (ℝ ), [19]. Hence the operator 𝐹  is 
an integral operator with kernel function 𝐾 (𝑥, 𝑦). Then the operator 𝐹  is a linear operator from 
𝐿 ℝ  into 𝐶 (ℝ ). Let 𝑧 = (−𝑦 cot𝛼 , ⋯ , −𝑦 cot𝛼 ) for all 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . The 𝛩 
convolution operation is defined as 
 

(ℎ𝛩𝑓)(𝑥) = ℎ(𝑦)𝑓(𝑥 − 𝑦)exp 𝑖𝑦 𝑦 − 𝑥 cot𝛼 𝑑𝑦

ℝ

 

                   =  ℎ(𝑦)𝑇 𝑀 𝑓(𝑥)𝑑𝑦

ℝ

 

 
for all ℎ, 𝑓 ∈ 𝐿 ℝ , [20,21]. 
 
Let 𝐺 be a locally compact Abelian group and 𝐺 is dual group of 𝐺. The space 𝐴 (G) to be the space 
of 𝑔 ∈ 𝐿 (G) such that 𝑔 ∈ 𝐿 𝐺  for 1 ≤ 𝑝 < ∞. This space and its properties investigate in [22–25]. 
The weighted type of this spaces are studied in [26,27]. For the some other spaces that define by 
Fourier transform, we refer [28–31]. Also there are some spaces which define by other time-frequency 
operators, [32,33].   
 
 

II. MAIN RESULTS 
 

Definition 2.1. Let 𝑤 be a weight function on ℝ . Let 𝐵 and 𝑌 be a solid translation invariant BF-
space on ℝ , and local and the global component of 𝑊(𝐵, 𝑌) ℝ , respectively. The set 𝐴 ,

, ℝ  
consist of all functions ℎ ∈ 𝐿 ℝ  such that the fractional Fourier transforms 𝐹 ℎ ∈ 𝑊(𝐵, 𝑌) ℝ . 
Since the space 𝐿 ℝ  is a linear space, then 0 ∈ 𝐿 ℝ . By using (1), we get 𝐹 0 = 0. From the 
linearity of space 𝑊(𝐵, 𝑌) ℝ  clearly 0 ∈ 𝑊(𝐵, 𝑌) ℝ . This means that the zero function belongs 

to 𝐴 ,
, ℝ  and so the set 𝐴 ,

, ℝ  is non-empty. By using the linearity of the spaces 𝐿 ℝ  and 

𝑊(𝐵, 𝑌) ℝ , and the linearity property of the operator 𝐹 , it is easy to see that 𝐴 ,
, ℝ  is a linear 

space. Let us define a function on this linear space as  
 
‖ℎ‖

,
, = ‖ℎ‖ , + ‖𝐹 ℎ‖ ( , ) 

 
for all ℎ ∈ 𝐴 ,

, ℝ . Since 𝐿 ℝ , ‖. ‖ ,  and 𝑊(𝐵, 𝑌) ℝ , ‖. ‖ ( , )  are normed spaces, 
then ‖ℎ‖ , ≥ 0 and ‖𝐹 ℎ‖ ( , ) ≥ 0. Then we have 
 
‖ℎ‖

,
, = ‖ℎ‖ , + ‖𝐹 ℎ‖ ( , ) ≥ 0 

 
for all ℎ ∈ 𝐴 ,

, ℝ . By using the norms ‖. ‖ ,  and ‖. ‖ ( , ), and the linearity property of the 
operator 𝐹 , we obtain  
 
‖𝜆ℎ‖

,
, = ‖𝜆ℎ‖ , + ‖𝐹 𝜆ℎ‖ ( , ) 

                = |𝜆|‖ℎ‖ , + |𝜆|‖𝐹 ℎ‖ ( , ) = |𝜆|‖ℎ‖
,
,  
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and 
 
‖ℎ + 𝑔‖

,
, = ‖ℎ + 𝑔‖ , + ‖𝐹 (ℎ + 𝑔)‖ ( , ) 

                      = ‖ℎ + 𝑔‖ , + ‖𝐹 ℎ + 𝐹 𝑔‖ ( , ) 
                      ≤ ‖ℎ‖ , + ‖𝑔‖ , + ‖𝐹 ℎ‖ ( , ) + ‖𝐹 𝑔‖ ( , ) 
                      = ‖ℎ‖

,
, + ‖𝑔‖

,
,  

 
for all ℎ, 𝑔 ∈ 𝐴 ,

, ℝ  and 𝜆 ∈ ℂ. Let ℎ ∈ 𝐴 ,
, ℝ . If ‖ℎ‖

,
, = 0, then we get ℎ = 0 by using the 

norms ‖. ‖ ,  and ‖. ‖ ( , ). If ℎ = 0, then 𝐹 ℎ = 0 by (1), and so ‖ℎ‖
,
, = 0. Since the above 

mentioned properties are satisfied, the function ‖. ‖
,
,  is a norm on 𝐴 ,

, ℝ . If we take 𝐵 =

𝐿 ℝ  and 𝑌 = 𝐿 ℝ , then 𝑊 𝐿 ℝ , 𝐿 ℝ ℝ = 𝐿 ℝ , [3]. Therefore the space 

𝐴 ,
, ℝ  coincides to the space 𝐴 ,

, ℝ  which is given in [21]. 
 

Theorem 2.2. The space 𝐴 ,
, ℝ , ‖. ‖

,
,  is a Banach space. 

 
Proof. Let (ℎ ) ∈ℕ be a Cauchy sequence in 𝐴 ,

, ℝ . Hence, (ℎ ) ∈ℕ and (𝐹 ℎ ) ∈ℕ are Cauchy 
sequences in 𝐿 ℝ  and 𝑊(𝐵, 𝑌) ℝ , respectively. It is well known that the spaces 𝐿 ℝ  and 
𝑊(𝐵, 𝑌) ℝ  are Banach spaces. Thus there exist ℎ ∈ 𝐿 ℝ  and 𝑓 ∈ 𝑊(𝐵, 𝑌) ℝ  such that 
‖ℎ − ℎ‖ , → 0 and ‖𝐹 ℎ − 𝑓‖ ( , ) → 0. Since (𝐵, ‖. ‖ ) and (𝑌, ‖. ‖ ) are solid translation 

invariant BF-spaces, then the space 𝑊(𝐵, 𝑌) ℝ  is also a solid translation invariant BF-space 
[34,35]. Besides, since the space 𝑊(𝐵, 𝑌) ℝ  is a BF-space, then the sequence (𝐹 ℎ ) ∈ℕ that 
satisfies ‖𝐹 ℎ − 𝑓‖ ( , ) → 0 has a subsequence (𝐹 ℎ ) ∈ℕ that converges to the function 𝑓 
almost everywhere [4]. Therefore by using the inequality 
 
|𝐹 ℎ(𝑢) − 𝑓(𝑢)| = 𝐹 ℎ(𝑢) − 𝐹 ℎ (𝑢) + 𝐹 ℎ (𝑢) − 𝑓(𝑢)  

                            ≤ ∏ |(ℎ − ℎ)(𝑡)|𝑑𝑡
ℝ

+ |𝐹 ℎ (𝑢) − 𝑓(𝑢)| 

                            ≤ ∏  ‖ℎ − ℎ‖ , + |𝐹 ℎ (𝑢) − 𝑓(𝑢)|, 

 
we may write 𝐹 ℎ = 𝑓 almost everywhere. Thus ‖ℎ − ℎ‖

,
, → 0 and ℎ ∈ 𝐴 ,

, ℝ . This means 

𝐴 ,
, ℝ , ‖. ‖

,
,  is a Banach space. 

 

Theorem 2.3. The space 𝐴 ,
, ℝ , ‖. ‖

,
,  is a Banach algebra with 𝛩 convolution operation. 

 
Proof. The space 𝐴 ,

, ℝ , ‖. ‖
,
,  is a Banach space by Theorem 2.2. Let 𝑔, ℎ ∈ 𝐴 ,

, ℝ . 

Then 𝑔, ℎ ∈ 𝐿 ℝ  and 𝐹 𝑔, 𝐹 ℎ ∈ 𝑊(𝐵, 𝑌) ℝ  by the definition of the space 𝐴 ,
, ℝ . Since the 

space 𝐿 ℝ  is a Banach algebra with 𝛩 convolution operation (see [21]), we have  
 
‖𝑔𝛩ℎ‖ , ≤ ‖𝑔‖ , ‖ℎ‖ , . (2) 
 
Also, we shall write 
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|𝐹 (𝑔𝛩ℎ)(𝑢)| =
2𝜋

1 − 𝑖cot𝛼
exp −

𝑖

2
𝑢 cot𝛼 |𝐹 𝑔(𝑢)||𝐹 ℎ(𝑢)| 

 
                         ≤ |𝐹 ℎ(𝑢)| ∫ |𝑔(𝑡)|𝑑𝑡

ℝ
≤ |𝐹 ℎ(𝑢)|‖𝑔‖ ,  

(3) 

 
by Theorem 7 in [21]. It is known that the fractional Fourier transform of a function belongs to 
𝐶 (ℝ ), [19] and so it is continuous on ℝ . Thus 𝐹 (𝑔𝛩ℎ) is a measurable function on ℝ . Since 
(𝐵, ‖. ‖ ) and (𝑌, ‖. ‖ ) are solid translation invariant BF-spaces, then the space 𝑊(𝐵, 𝑌) ℝ  is also 
a solid translation invariant BF-space [34,35]. By using the solidity of the space 𝑊(𝐵, 𝑌) ℝ  and 
inequality (3), we obtain 𝐹 (𝑔𝛩ℎ) ∈ 𝑊(𝐵, 𝑌) ℝ  and  
 
‖𝐹 (𝑔𝛩ℎ)‖ ( , ) ≤ ‖𝐹 ℎ‖𝑔‖ , ‖ ( , ) = ‖𝑔‖ , ‖𝐹 ℎ‖ ( , ). 
 

(4) 

Combining (2) and (4), we get 
 
‖𝑔𝛩ℎ‖

,
, = ‖𝑔𝛩ℎ‖ , + ‖𝐹 (𝑔𝛩ℎ)‖ ( , ) 

                     ≤ ‖𝑔‖ , ‖ℎ‖ , + ‖𝑔‖ , ‖𝐹 ℎ‖ ( , ) ≤ ‖𝑔‖
,
, ‖ℎ‖

,
, . 

(5) 

 

Theorem 2.4. The space 𝐴 ,
, ℝ , ‖. ‖

,
,  is a Banach ideal on 𝐿 ℝ  with 𝛩 convolution 

operation. 
 
Proof. Let ℎ ∈ 𝐴 ,

, ℝ  and 𝑔 ∈ 𝐿 ℝ . By the definition of the space 𝐴 ,
, ℝ , clearly ℎ ∈

𝐿 ℝ . Then we have the inequality (2). By using the inequality (3) and solidity of the space 
𝑊(𝐵, 𝑌) ℝ , we get 𝐹 (𝑔𝛩ℎ) ∈ 𝑊(𝐵, 𝑌) ℝ  and the inequality (4). Hence, by combining (2) and 
(4), we obtain 
 
‖𝑔𝛩ℎ‖

,
, ≤ ‖𝑔‖ , ‖ℎ‖

,
, . 

 
Besides, by the definition of the norm ‖. ‖

,
, , we have ‖ℎ‖ , ≤ ‖ℎ‖

,
, . Thus, the space 

𝐴 ,
, ℝ , ‖. ‖

,
,  is a Banach ideal on 𝐿 ℝ . 

 
Proposition 2.5. Let 𝑤 be a weight function of regular growth on ℝ . If 𝐶 ℝ ⊂ 𝑊(𝐵, 𝑌) ℝ , 

then 𝐴 ,
, ℝ  is dense in 𝐿 ℝ . 

 
Proof. Let us take a set 𝐹 , (ℝ ) = 𝑔 ∈ 𝐿 (ℝ )|𝐹 𝑔 ∈ 𝐶 ℝ . Then it is known that the set 
𝐹 , (ℝ ) is dense in 𝐿 ℝ  by Corollary 2.14 in [36]. Since 𝐶 ℝ ⊂ 𝑊(𝐵, 𝑌) ℝ , then we get 
 
𝐹 , (ℝ ) ⊂ 𝐴 ,

, ℝ ⊂ 𝐿 (ℝ ). 
 
By using this inclusion and the density of 𝐹 , (ℝ ) in 𝐿 ℝ , it is easy to see that 𝐴 ,

, ℝ  is 
dense in 𝐿 ℝ . 
 
Proposition 2.6. Let 𝑤 be a weight function of regular growth on ℝ . If 𝐶 ℝ ⊂ 𝑊(𝐵, 𝑌) ℝ , 

then 𝐴 ,
, ℝ  is an abstract Segal algebra with respect to 𝐿 ℝ . 

 
Proof. The space 𝐴 ,

, ℝ  is a Banach algebra and also is a Banach ideal on 𝐿 ℝ , in addition the 
inequality ‖𝑔𝛩ℎ‖

,
, ≤ ‖𝑔‖ , ‖ℎ‖

,
,  holds for all 𝑔, ℎ ∈ 𝐴 ,

, ℝ  by Theorem 2.3 and Theorem 
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2.4. Furthermore, from the structure of the norm ‖. ‖
,
, , we may write an inequality ‖ℎ‖ , ≤

‖ℎ‖
,
,  for all ℎ ∈ 𝐴 ,

, ℝ . Finally, it is shown that 𝐴 ,
, ℝ  is dense in 𝐿 ℝ  by Proposition 

2.5. Thus under the given conditions, 𝐴 ,
, ℝ  is an abstract Segal algebra with respect to 𝐿 ℝ . 

 
Theorem 2.7. Let 𝐵 be a strongly character invariant space on ℝ . Suppose that translation and 
character operators are continuous in B and also 𝐶 ℝ  is dense in 𝑌. Let 𝑧 =

(−𝑦 cot𝛼 , . . . , −𝑦 cot𝛼 ) for all 𝑦 = (𝑦 , . . . , 𝑦 ) ∈ ℝ . 
 

1. 𝑇 𝑀 ℎ ∈ 𝐴 ,
, ℝ  and  

 
       ‖𝑇 𝑀 ℎ‖

,
, ≤ 𝑤(𝑦)‖ℎ‖

,
,  

 
for all ℎ ∈ 𝐴 ,

, ℝ . 
 

2. Assume that 𝐶 (ℝ ) ∩ 𝐴 ,
, ℝ  is dense in 𝐴 ,

, ℝ . Then the mapping 𝑦 → 𝑇 𝑀 ℎ from 

ℝ  into 𝐴 ,
, ℝ  is continuous. 

 
Proof. 1. Let ℎ ∈ 𝐴 ,

, ℝ . Then the definition of  𝐴 ,
, ℝ  implies ℎ ∈ 𝐿 ℝ  and 𝐹 ℎ ∈

𝑊(𝐵, 𝑌) ℝ . It is well known that the space 𝐿 ℝ  is translation and character invariant space and 
the inequality ‖𝑇 ℎ‖ , ≤ 𝑤(𝑦)‖ℎ‖ ,  holds for all 𝑦 ∈ ℝ . Therefore we shall write 
 
‖𝑇 𝑀 ℎ‖ , ≤ 𝑤(𝑦)‖ℎ‖ , . (6) 
 
Let us take 𝑣 = (−𝑦 cosec𝛼 , ⋯ , −𝑦 cosec𝛼 ) for all 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . Thus we have 
 

𝐹 (𝑇 𝑀 ℎ)(𝑢) = exp
𝑖

2
𝑦 cot𝛼 𝑀 𝐹 ℎ(𝑢) (7) 

 
by the equality (2.55) in [36]. Since 𝐵 is strongly character invariant, then 𝑊(𝐵, 𝑌) ℝ  is also 
strongly character invariant by Corollary 1.4 in [35]. Hence we obtain 
 

exp
𝑖

2
𝑦 cot𝛼 𝑀 𝐹 ℎ ∈  𝑊(𝐵, 𝑌) ℝ  

 
and 

‖𝐹 (𝑇 𝑀 h)‖ ( , ) = exp
𝑖

2
𝑦 cot𝛼 ‖𝑀 𝐹 ℎ‖ ( , )

                         = ‖𝑀 𝐹 ℎ‖ ( , ) = ‖𝐹 ℎ‖ ( , ).

 (8) 

 
Consequently, combininig (6) and (8), we get  
 
‖𝑇 𝑀 ℎ‖

,
, ≤ 𝑤(𝑦)‖ℎ‖

,
, . 

 
2. We will show continuity at 0. Assume that ℎ ∈ 𝐴 ,

, ℝ  and (𝑦 ) ∈ℕ ⊂ ℝ  such that lim
→

𝑦 = 0. 

Let 𝑧 = (−𝑦 cot𝛼 , ⋯ , −𝑦 cot𝛼 ) for all 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . It is known that the mapping 𝑦 →
𝑇 𝑀 h is continuous from ℝ  into 𝐿 ℝ  by Theorem 2.1 in [36]. Now, let us take the sequences 
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(𝑧 ) ∈ℕ and (𝑣 ) ∈ℕ in ℝ  where 𝑗 sequences of coordinates 𝑧 = −𝑦 cot𝛼  and 𝑣 =

−𝑦 cosec𝛼 . By the continuity of 𝑦 → 𝑇 𝑀 h, we shall write 
 
‖𝑇 𝑀 ℎ − ℎ‖ , → 0 (9) 
 
as 𝑛 approaches infinity. From the equality (6), we get  
 

𝐹 𝑇 𝑀 ℎ − ℎ
( , )

= 𝐹 𝑇 𝑀 ℎ − 𝐹 ℎ
( , )

 

                                          ≤ exp ∑ 𝑦 cot𝛼 𝑀 𝐹 ℎ 

                                              −exp ∑ 𝑦 cot𝛼 𝐹 ℎ
( , )

 

                                               + exp ∑ 𝑦 cot𝛼 𝐹 ℎ − 𝐹 ℎ
( , )

 

                                      = 𝑀 𝐹 ℎ − 𝐹 ℎ
( , )

 

                                           + exp ∑ 𝑦 cot𝛼 − 1 ‖𝐹 ℎ‖ ( , ). 

 

(10) 

 
Let us take 𝑣 = (−𝑦 csc𝛼 , ⋯ , −𝑦 csc𝛼 ) for all 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . Obviously, the mapping 
𝑦 → 𝑣 from ℝ  into ℝ  is continuous. Using that is given in the hypothesis, we say that the mapping 
𝑦 → 𝑀 h from ℝ  into 𝑊(𝐵, 𝑌) ℝ  is continuous (see Lemma 1.5 in [35]). Therefore the 
composition mapping 𝑦 → 𝑀 h from ℝ  into 𝑊(𝐵, 𝑌) ℝ  is continuous. In the other words, we can 
write 
 

𝑀 𝐹 ℎ − 𝐹 ℎ
( , )

→ 0 (11) 

 

as 𝑛 approaches infinity. Let us define 𝑝 = exp ∑ 𝑦 cot𝛼 − 1 for all 𝑛 ∈ ℕ. By using 

convergence of the sequence (𝑦 ) ∈ℕ to zero, we get |𝑝 | → 0 as 𝑛 approaches infinity. By combining 
(9), (10) and (11) we obtain 
 

𝑇 𝑀 ℎ − ℎ
,
, = 𝑇 𝑀 ℎ − ℎ

,
+ 𝐹 𝑇 𝑀 ℎ − ℎ

( , )
 

                                 ≤ 𝑇 𝑀 ℎ − ℎ
,

+ 𝑀 𝐹 ℎ − 𝐹 ℎ
( , )

 

                                    +|𝑝 |‖𝐹 ℎ‖ ( , ) → 0 
 
as 𝑛 approaches infinity. This means that the function 𝑦 → 𝑇 𝑀 ℎ is continuous at 0. Let us take any 
fixed point 𝑦∗ = (𝑦∗, ⋯ , 𝑦∗) ∈ ℝ . Hence we get  
 
𝑇 ∗𝑀 ∗(𝑇 ∗𝑀 ∗ℎ)(𝑥) = exp(𝑖𝑦∗𝑧 − 𝑖𝑦∗𝑧∗)𝑇 𝑀 ℎ(𝑥), 
 
where 𝑧∗ = (−𝑦∗cot𝛼 , ⋯ , −𝑦∗ cot𝛼 ) for all 𝑥 ∈ ℝ  by the proof of Theorem 2.17 (2) in [36]. 
Therefore, we may write 
 

𝑇 𝑀 ℎ − 𝑇 ∗𝑀 ∗ℎ
,
, = exp(𝑖𝑦∗𝑧∗ − 𝑖𝑦∗𝑧)𝑇 ∗𝑀 ∗(𝑇 ∗𝑀 ∗ℎ) − 𝑇 ∗𝑀 ∗ℎ

,
, . 

 
Let us take 𝑇 ∗𝑀 ∗ℎ = 𝑔. Then 𝑔 ∈ 𝐴 ,

, ℝ  by the first part of this theorem. Thus we have 
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𝑇 𝑀 ℎ − 𝑇 ∗𝑀 ∗ℎ
,
, = exp(𝑖𝑦∗𝑧∗ − 𝑖𝑦∗𝑧)𝑇 ∗𝑀 ∗g − g

,
,  

                                           ≤ 𝑇 ∗𝑀 ∗g − g
,
,  

                                              +‖g‖
,
, |exp(𝑖𝑦∗𝑧) − exp(𝑖𝑦∗𝑧∗)|. 

 
Let 𝜀 > 0 be given. By using continuity of the function 𝑦 → exp(𝑖𝑦∗𝑧) from ℝ  into ℂ and continuity 
at zero of the function 𝑦 → 𝑇 𝑀 ℎ, there exists 𝛿 > 0 such that 
 

𝑇 𝑀 ℎ − 𝑇 ∗𝑀 ∗ℎ
,
, < 𝜀 

 
when ‖𝑦 − 𝑦∗‖ < 𝛿. Since 𝑦∗ is an arbitrary fixed point, then the function 𝑦 → 𝑇 𝑀 ℎ is continuous 
on ℝ . 
 
Proposition 2.8. Assume that all the hypotheses given in Theorem 2.7 are satisfied. Let 𝐶 ℝ  be a 

dense subset of 𝑊(𝐵, 𝑌) ℝ  and 𝑤 be a weight function of regular growth on ℝ . Then 𝐴 ,
, ℝ  

has an approximate identity with compactly supported fractional Fourier transforms. 
 
Proof. Let us define a set  𝐻 = {ℎ , ℎ , ⋯ , ℎ } such that ℎ ∈ 𝐴 ,

, ℝ  for all 𝑗 = 1,2, ⋯ , 𝑘. Let ℎ ∈

𝐴 ,
, ℝ  and 𝑧 = (−𝑦 cot𝛼 , ⋯ , −𝑦 cot𝛼 ) for all 𝑦 = (𝑦 , ⋯ , 𝑦 ) ∈ ℝ . It is shown that the 

function 𝑦 → 𝑇 𝑀 h from ℝ  into 𝐴 ,
, ℝ  is continuous by Theorem 2.7. Let 𝜀 > 0 be given. By 

the continuity of 𝑦 → 𝑇 𝑀 h, there exist positive 𝛿  such that 
 

𝑇 𝑀 ℎ − ℎ
,
, <

𝜀

2
 

 
whenever ‖𝑦‖ < 𝛿  for all 𝑗 = 1,2, ⋯ , 𝑘. Let 𝛿 = min{𝛿 |𝑗 = 1,2, ⋯ , 𝑘}. Then we get 
 

𝑇 𝑀 ℎ − ℎ
,
, <

𝜀

2
 

 

(12) 

 
whenever ‖𝑦‖ < 𝛿 for all 𝑗 = 1,2, ⋯ , 𝑘. Let 𝑔 ∈ 𝐶 ℝ ⊂ 𝐿 ℝ  be a positive function that 
 
 supp𝑔 ⊂ {𝑥 ∈ ℝ |‖𝑥‖ < 𝛿} 
 
and ∫ 𝑔(𝑥) 

ℝ
𝑑𝑥 = 1. Therefore, by the definition of 𝛩 convolution, we shall write 

 

(𝑔𝛩ℎ )(𝑥) − ℎ (𝑥) = 𝑔(𝑦)𝑇 𝑀 ℎ (𝑥) 𝑑𝑦 − ℎ (𝑥)

ℝ

= 𝑔(𝑦) 𝑇 𝑀 ℎ (𝑥) − ℎ (𝑥)  𝑑𝑦

ℝ

 

 
for all 𝑥 ∈ ℝ  and 𝑗 = 1,2, ⋯ , 𝑘. By using (12), we obtain 
 

‖𝑔𝛩ℎ − ℎ ‖
,
, = 𝑔(𝑦) 𝑇 𝑀 ℎ − ℎ  𝑑𝑦

ℝ
,
,

 

                             ≤ |𝑔(𝑦)| 𝑇 𝑀 ℎ − ℎ
,
,  𝑑𝑦 

                             < ∫ |𝑔(𝑦)| 𝑑𝑦 =  

 

(13) 
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for all 𝑗 = 1,2, ⋯ , 𝑘. Let 𝐾 = max{ ℎ
,
, | 𝑗 = 1,2, ⋯ , 𝑘}. Let us take the set 𝐹 , (ℝ ) =

𝑔 ∈ 𝐿 (ℝ )|𝐹 𝑔 ∈ 𝐶 ℝ . Then it is known that the set 𝐹 , (ℝ ) is dense in 𝐿 ℝ  by 
Corollary 2.14 in [36]. From this density, there exists a function 𝑓 ∈ 𝐹 , (ℝ ) where 
 
‖g − 𝑓‖ , < . (14) 

 
Since 𝐶 ℝ  is a subset of 𝑊(𝐵, 𝑌) ℝ , then 𝑓 ∈ 𝐴 ,

, ℝ . By using (13) and (14), we get 
 
‖𝑓𝛩ℎ − ℎ ‖

,
, ≤ ‖𝑓𝛩ℎ − 𝑔𝛩ℎ ‖

,
, + ‖𝑔𝛩ℎ − ℎ ‖

,
,  

                            ≤ ‖g − 𝑓‖ , ℎ
,
, + ‖𝑔𝛩ℎ − ℎ ‖

,
, < 𝜀 

 
for all 𝑗 = 1,2, ⋯ , 𝑘. Hence, for every infinite subset 𝐻 = {ℎ , ℎ , ⋯ , ℎ } of 𝐴 ,

, ℝ  and every 𝜀 >

0 there exists a function 𝑓 ∈ 𝐹 , (ℝ )  such that  
 
‖𝑓𝛩ℎ − ℎ ‖

,
, < 𝜀 (15) 

 
for all 𝑗 = 1,2, ⋯ , 𝑘. Therefore, there exists an approximate identity of 𝐴 ,

, ℝ  that is defined by 
functions 𝑓 ∈ 𝐹 , (ℝ ) which ensure inequality (15) for every infinite subset 𝐻 = {ℎ , ℎ , ⋯ , ℎ } of 

𝐴 ,
, ℝ  and every 𝜀 > 0, by Proposition 1.3 in [37]. This means 𝐴 ,

, ℝ  has an approximate 
identity with compactly supported fractional Fourier transforms. 
 
 

III. CONCLUSION 
 

In this study, we investigate a subalgebra of 𝐿 ℝ  (with 𝛩 convolution operation) that fractional 
Fourier transforms of its elements belong to 𝑊(𝐵, 𝑌) ℝ . Let G be a locally compact abelian group 

and G be the dual group of G. It is known that the space 𝐴 , (G) consisting of all functions ℎ ∈ 𝐿 (G) 
whose Fourier transforms belong to Wiener-type spaces 𝑊(𝐵, 𝑌), [35]. Let us take 𝛼 =   for all 𝑗 =

1,2, ⋯ , 𝑑 such that 𝛼 = (𝛼 , 𝛼 , ⋯ , 𝛼 ). Therefore, the 𝛩 convolution opeator and the fractional 
Fourier transform coincide the usual convolution and the Fourier transform, respectively. Hence the 
space 𝐴 ,

, ℝ  corresponds the space 𝐴 , ℝ  which is given in [35]. This means that this study 
extend some results of [35] for G = ℝ . 
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